Search results for: absolute roughness
322 Outcome Analysis of Surgical and Nonsurgical Treatment on Indicated Operative Chronic Subdural Hematoma: Serial Case in Cipto Mangunkusumo Hospital Indonesia
Authors: Novie Nuraini, Sari Hanifa, Yetty Ramli
Abstract:
Chronic subdural hematoma (cSDH) is a common condition after head trauma. Although the size of the thickness of cSDH has an important role in the decision to perform surgery, but the size limit of the thickness is not absolute. In this serial case report, we evaluate three case report of cSDH that indicated to get the surgical procedure because of deficit neurologic and neuroimaging finding with subfalcine herniation more than 0.5 cm and hematoma thickness more than one cm. On the first case, the patient got evacuation hematoma procedure, but the second and third case, we did nonsurgical treatment because the patient and family refused to do the operation. We did the conservative treatment with bed rest and mannitol. Serial radiologic evaluation is done when we found worsening condition. We also reevaluated radiologic examination two weeks after the treatment. The results in this serial case report, the first and second case have a good outcome. On the third case, there was a worsening condition, which in this patient there was a comorbid with type two diabetic mellitus, pneumonie and chronic kidney disease. Some conservative treatment such as bed rest, corticosteroid, mannitol or the other hyperosmolar has a good outcome in patient without neurologic deficits, small hematoma, and or patient without comorbid disease. Evacuate hematome is the best choice in cSDH treatment with deficit neurologic finding. Afterall, there is some condition that we can not do the surgical procedure. Serial radiologic examination needed after two weeks to evaluate the treatment or if there is any worsening condition.Keywords: chronic subdural hematoma, traumatic brain injury, surgical treatment, nonsurgical treatment, outcome
Procedia PDF Downloads 332321 Simplified Stress Gradient Method for Stress-Intensity Factor Determination
Authors: Jeries J. Abou-Hanna
Abstract:
Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.Keywords: fracture mechanics, finite element method, stress intensity factor, stress gradient
Procedia PDF Downloads 135320 Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents
Authors: Ozlem Temiz Arpaci, Meryem Tasci, Hakan Goker
Abstract:
Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation.Keywords: benzimidazoles, synthesis, structure elucidation, antimicrobial
Procedia PDF Downloads 156319 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?
Authors: Gu Pang, Bartosz Gebka
Abstract:
We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput
Procedia PDF Downloads 504318 Fabrication of Superhydrophobic Galvanized Steel by Sintering Zinc Nanopowder
Authors: Francisco Javier Montes Ruiz-Cabello, Guillermo Guerrero-Vacas, Sara Bermudez-Romero, Miguel Cabrerizo Vilchez, Miguel Angel Rodriguez-Valverde
Abstract:
Galvanized steel is one of the widespread metallic materials used in industry. It consists on a iron-based alloy (steel) coated with a layer of zinc with variable thickness. The zinc is aimed to prevent the inner steel from corrosion and staining. Its production is cheaper than the stainless steel and this is the reason why it is employed in the construction of materials with large dimensions in aeronautics, urban/ industrial edification or ski-resorts. In all these applications, turning the natural hydrophilicity of the metal surface into superhydrophobicity is particularly interesting and would open a wide variety of additional functionalities. However, producing a superhydrophobic surface on galvanized steel may be a very difficult task. Superhydrophobic surfaces are characterized by a specific surface texture which is reached either by coating the surface with a material that incorporates such texture, or by conducting several roughening methods. Since galvanized steel is already a coated material, the incorporation of a second coating may be undesired. On the other hand, the methods that are recurrently used to incorporate the surface texture leading to superhydrophobicity in metals are aggressive and may damage their surface. In this work, we used a novel strategy which goal is to produce superhydrophobic galvanized steel by a two-step non-aggressive process. The first process is aimed to create a hierarchical structure by incorporating zinc nanoparticles sintered on the surface at a temperature slightly lower than the zinc’s melting point. The second one is a hydrophobization by a thick fluoropolymer layer deposition. The wettability of the samples is characterized in terms of tilting plate and bouncing drop experiments, while the roughness is analyzed by confocal microscopy. The durability of the produced surfaces was also explored.Keywords: galvanaized steel, superhydrophobic surfaces, sintering nanoparticles, zinc nanopowder
Procedia PDF Downloads 151317 Evaluating Accuracy of Foetal Weight Estimation by Clinicians in Christian Medical College Hospital, India and Its Correlation to Actual Birth Weight: A Clinical Audit
Authors: Aarati Susan Mathew, Radhika Narendra Patel, Jiji Mathew
Abstract:
A retrospective study conducted at Christian Medical College (CMC) Teaching Hospital, Vellore, India on 14th August 2014 to assess the accuracy of clinically estimated foetal weight upon labour admission. Estimating foetal weight is a crucial factor in assessing maternal and foetal complications during and after labour. Medical notes of ninety-eight postnatal women who fulfilled the inclusion criteria were studied to evaluate the correlation between their recorded Estimated Foetal Weight (EFW) on admission and actual birth weight (ABW) of the newborn after delivery. Data concerning maternal and foetal demographics was also noted. Accuracy was determined by absolute percentage error and proportion of estimates within 10% of ABW. Actual birth weights ranged from 950-4080g. A strong positive correlation between EFW and ABW (r=0.904) was noted. Term deliveries (≥40 weeks) in the normal weight range (2500-4000g) had a 59.5% estimation accuracy (n=74) compared to pre-term (<40 weeks) with an estimation accuracy of 0% (n=2). Out of the term deliveries, macrosomic babies (>4000g) were underestimated by 25% (n=3) and low birthweight (LBW) babies were overestimated by 12.7% (n=9). Registrars who estimated foetal weight were accurate in babies within normal weight ranges. However, there needs to be an improvement in predicting weight of macrosomic and LBW foetuses. We have suggested the use of an amended version of the Johnson’s formula for the Indian population for improvement and a need to re-audit once implemented.Keywords: clinical palpation, estimated foetal weight, pregnancy, India, Johnson’s formula
Procedia PDF Downloads 364316 Official Secrecy and Confidentiality in Tax Administration and Its Impact on Right to Access Information: Nigerian Perspectives
Authors: Kareem Adedokun
Abstract:
Official secrecy is one of the colonial vestiges which upholds non – disclosure of essential information for public consumption. Information, though an indispensable tool in tax administration, is not to be divulged by any person in an official duty of the revenue agency. As a matter o fact, the Federal Inland Revenue Service (Establishment) Act, 2007 emphasizes secrecy and confidentiality in dealing with tax payer’s document, information, returns and assessment in a manner reminiscent of protecting tax payer’s privacy in all situations. It is so serious that any violation attracts criminal sanction. However, Nigeria, being a democratic and egalitarian state recently enacted Freedom of Information Act which heralded in openness in governance and takes away the confidentialities associated with official secrets Laws. Official secrecy no doubts contradicts the philosophy of freedom of information but maintaining a proper balance between protected rights of tax payers and public interest which revenue agency upholds is an uphill task. Adopting the Doctrinal method, therefore, the author of this paper probes into the real nature of the relationship between taxpayers and Revenue Agencies. It also interfaces official secrecy with the doctrine of Freedom of Information and consequently queries the retention of non – disclosure clause under Federal Inland Revenue Service (Establishment) Act (FIRSEA) 2007. The paper finds among others that non – disclosure provision in tax statutes particularly as provided for in FIRSEA is not absolute; so also is the constitutional rights and freedom of information and unless the non – disclosure clause finds justification under any recognized exemption provided under the Freedom of Information Act, its retention is antithesis to democratic ethos and beliefs as it may hinder public interest and public order.Keywords: confidentiality, information, official secrecy, tax administration
Procedia PDF Downloads 342315 Physical Dynamics of Planet Earth and Their Implications for Global Climate Change and Mitigation: A Case Study of Sistan Plain, Balochistan Region, Southeastern Iran
Authors: Hamidoddin Yousefi, Ahmad Nikbakht
Abstract:
The Sistan Plain, situated in the Balochistan region of southeastern Iran, is renowned for its arid climatic conditions and prevailing winds that persist for approximately 120 days annually. The region faces multiple challenges, including drought susceptibility, exacerbated by wind erosion, temperature fluctuations, and the influence of policies implemented by neighboring Afghanistan and Iran. This study focuses on investigating the characteristics of jet streams within the Sistan Plain and their implications for global climate change. Various models are employed to analyze convective mass fluxes, horizontal moisture transport, temporal variance, and the calculation of radiation convective equilibrium within the atmosphere. Key considerations encompass the distribution of relative humidity, dry air, and absolute humidity. Moreover, the research aims to predict the interplay between jet streams and human activities, particularly regarding their environmental impacts and water scarcity. The investigation encompasses both local and global environmental consequences, drawing upon historical climate change data and comprehensive field research. The anticipated outcomes of this study hold substantial potential for mitigating global climate change and its associated environmental ramifications. By comprehending the dynamics of jet streams and their interconnections with human activities, effective strategies can be formulated to address water scarcity and minimize environmental degradation.Keywords: Sistani plain, Baluchistan, Hamoun lake, climate change, jet streams, environmental impact, water scarcity, mitigation
Procedia PDF Downloads 74314 The Structure and Composition of Plant Communities in Ajluon Forest Reserve in Jordan
Authors: Maher J. Tadros, Yaseen Ananbeh
Abstract:
The study area is located in Ajluon Forest Reserve northern part of Jordan. It consists of Mediterranean hills dominated by open woodlands of oak and pistachio. The aims of the study were to investigate the positive and negative relationships between the locals and the protected area and how it can affect the long-term forest conservation. The main research objectives are to review the impact of establishing Ajloun Forest Reserve on nature conservation and on the livelihood level of local communities around the reserve. The Ajloun forest reserve plays a fundamental role in Ajloun area development. The existence of initiatives of nature conservation in the area supports various socio-economic activities around the reserve that contribute towards the development of local communities in Ajloun area. A part of this research was to conduct a survey to study the impact of Ajloun forest reserve on biodiversity composition. Also, studying the biodiversity content especially for vegetation to determine the economic impacts of Ajloun forest reserve on its surroundings was studied. In this study, several methods were used to fill the objectives including point-centered quarter method which involves selecting randomly 50 plots at the study site. The collected data from the field showed that the absolute density was (1031.24 plant per hectare). Density was recorded and found to be the highest for Quecus coccifera, and relative density of (73.7%), this was followed by Arbutus andrachne and relative density (7.1%), Pistacia palaestina and relative density (10.5%) and Crataegus azarulus (82.5 p/ha) and relative density (5.1%),Keywords: composition, density, frequency, importance value, point-centered quarter, structure, tree cover
Procedia PDF Downloads 279313 A Review of Kinematics and Joint Load Forces in Total Knee Replacements Influencing Surgical Outcomes
Authors: Samira K. Al-Nasser, Siamak Noroozi, Roya Haratian, Adrian Harvey
Abstract:
A total knee replacement (TKR) is a surgical procedure necessary when there is severe pain and/or loss of function in the knee. Surgeons balance the load in the knee and the surrounding soft tissue by feeling the tension at different ranges of motion. This method can be unreliable and lead to early failure of the joint. The ideal kinematics and load distribution have been debated significantly based on previous biomechanical studies surrounding both TKRs and normal knees. Intraoperative sensors like VERASENSE and eLibra have provided a method for the quantification of the load indicating a balanced knee. A review of the literature written about intraoperative sensors and tension/stability of the knee was done. Studies currently debate the quantification of the load in medial and lateral compartments specifically. However, most research reported that following a TKR the medial compartment was loaded more heavily than the lateral compartment. In several cases, these results were shown to increase the success of the surgery because they mimic the normal kinematics of the knee. In conclusion, most research agrees that an intercompartmental load differential of between 10 and 20 pounds, where the medial load was higher than the lateral, and an absolute load of less than 70 pounds was ideal. However, further intraoperative sensor development could help improve the accuracy and understanding of the load distribution on the surgical outcomes in a TKR. A reduction in early revision surgeries for TKRs would provide an improved quality of life for patients and reduce the economic burden placed on both the National Health Service (NHS) and the patient.Keywords: intraoperative sensors, joint load forces, kinematics, load balancing, and total knee replacement
Procedia PDF Downloads 136312 Demonstration of Logical Inconsistency in the Discussion of the Problem of Evil
Authors: Mohammad Soltani Renani
Abstract:
The problem of evil is one of the heated battlegrounds of the idea of theism and its critics. Since time immemorial and in various philosophical schools and religions, the belief in an Omniscient, Omnipotent, and Absolutely Good God has been considered inconsistent with the existence of the evil in the universe. The theist thinkers have generally adopted one of the following four ways for answering this problem: denial of the existence of evil or considering it to be relative, privation theory of evil, attribution of evil to something other than God, and depiction of an alternative picture of God. Defense or criticism of these alternative answers have given rise to an extensive and unending dispute. However, evaluation of the presupposition and context upon/in which a question is raised precedes offering an answer to it. This point in the discussion of the problem of evil is of paramount importance for both parties, i.e., questioners and answerers, that the attributes of knowledge, power, love, good-will, among others, can be supposed to be infinite only in the essence of the attributed and the domain of potentiality but what can be realized in the domain of actuality is always finite. Therefore, infinite nature of Divine Attributes and realization of evil belong to two spheres. Divine Attributes are infinite (absolute) in Divine Essence, but when they are created, each one becomes bounded by the other. This boundedness is a result of the state of being surrounded of the attributes by each other in finite world of possibility. Evil also appears in this limited world. This inconsistency leads to the collapse of the problem of evil from within: the place of infinity of the Divine Attributes, in the words of Muslim mystics, lies in the Holiest Manifestation [Feyze Aqdas] while evil emerges in the Holy Manifestation where the Divine Attributes become bounded by each other. This idea is neither a new answer to the problem of evil nor a defense of theism; rather it reveals a logical inconsistency in the discussion of the problem of evil.Keywords: problem of evil, infinity of divine attributes, boundedness of divine attributes, holiest manifestation, holy manifestation
Procedia PDF Downloads 147311 Body Mass Components in Young Soccer Players
Authors: Elizabeta Sivevska, Sunchica Petrovska, Vaska Antevska, Lidija Todorovska, Sanja Manchevska, Beti Dejanova, Ivanka Karagjozova, Jasmina Pluncevic Gligoroska
Abstract:
Introduction: Body composition plays an important role in the selection of young soccer players and it is associated with their successful performance. The most commonly used model of body composition divides the body into two compartments: fat components and fat-free mass (muscular and bone components). The aims of the study were to determine the body composition parameters of young male soccer players and to show the differences in age groups. Material and methods: A sample of 52 young male soccer players, with an age span from 9 to 14 years were divided into two groups according to the age (group 1 aged 9 to 12 years and group 2 aged 12 to 14 years). Anthropometric measurements were taken according to the method of Mateigka. The following measurements were made: body weight, body height, circumferences (arm, forearm, thigh and calf), diameters (elbow, knee, wrist, ankle) and skinfold thickness (biceps, triceps, thigh, leg, chest, abdomen). The measurements were used in Mateigka’s equations. Results: Body mass components were analyzed as absolute values (in kilograms) and as percentage values: the muscular component (MC kg and MC%), the bone component (BCkg and BC%) and the body fat (BFkg and BF%). The group up to 12 years showed the following mean values of the analyzed parameters: MM=21.5kg; MM%=46.3%; BC=8.1kg; BC%=19.1%; BF= 6.3kg; BF%= 15.7%. The second group aged 12-14 year had mean values of body composition parameters as follows: MM=25.6 kg; MM%=48.2%; BC = 11.4 kg; BC%=21.6%; BF= 8.5 kg; BF%= 14. 7%. Conclusions: The young soccer players aged 12 up to 14 years who are in the pre-pubertal phase of growth and development had higher bone component (p<0.05) compared to younger players. There is no significant difference in muscular and fat body component between the two groups of young soccer players.Keywords: body composition, young soccer players, body fat, fat-free mass
Procedia PDF Downloads 458310 Strengthening Regulation and Supervision of Microfinance Sector for Development in Ethiopia
Authors: Megersa Dugasa Fite
Abstract:
This paper analyses regulatory and supervisory issues in the Ethiopian micro finance sector, which caters to the needs of those who have been excluded from the formal financial sector. Micro-finance has received increased importance in development because of its grand goal to give credits to the poor to raise their economic and social well-being and improve the quality of lives. The micro-finance at present has been moving towards a credit-plus period through covering savings and insurance functions. It thus helps in reducing the rate of financial exclusion and social segregation, alleviating poverty and, consequently, stimulating development. The Ethiopian micro finance policy has been generally positive and developmental but major regulatory and supervisory limitations such as the absolute prohibition of NGOs to participate in micro credit functions, higher risks for depositors of micro-finance institutions, lack of credit information services with research and development, the unmet demand, and risks of market failures due to over-regulation are disappointing. Therefore, to remove the limited reach and high degree of problems typical in the informal means of financial intermediation plus to deal with the failure of formal banks to provide basic financial services to a significant portion of the country’s population, more needs to be done on micro finance. Certain key regulatory and supervisory revisions hence need to be taken to strengthen the Ethiopian micro finance sector so that it can practically provide majority poor access to a range of high quality financial services that help them work their way out of poverty and the incapacity it imposes.Keywords: micro-finance, micro-finance regulation and supervision, micro-finance institutions, financial access, social segregation, poverty alleviation, development, Ethiopia
Procedia PDF Downloads 397309 Antimicrobial Activity of Some Plant Extracts against Clinical Pathogen and Candida Species
Authors: Marwan Khalil Qader, Arshad Mohammad Abdullah
Abstract:
Antimicrobial resistance is a major cause of significant morbidity and mortality globally. Seven plant extracts (Plantago mediastepposa, Quercusc infectoria, Punic granatum, Thymus lcotschyana, Ginger officeinals, Rhus angustifolia and Cinnamon) were collected from different regions of Kurdistan region of Iraq. These plants’ extracts were dissolved in absolute ethanol and distillate water, after which they were assayed in vitro as an antimicrobial activity against Candida tropicalis, Candida albicanus, Candida dublinensis, Candida krusei and Candida glabrata also against 2 Gram-positive (Bacillus subtilis and Staphylococcus aureus) and 3 Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Klebsilla pneumonia). The antimicrobial activity was determined in ethanol extracts and distilled water extracts of these plants. The ethanolic extracts of Q. infectoria showed the maximum activity against all species of Candida fungus. The minimum inhibition zone of the Punic granatum ethanol extracts was 0.2 mg/ml for all microorganisms tested. Klebsilla pneumonia was the most sensitive bacterial strain to Quercusc infectoria and Rhus angustifolia ethanol extracts. Among both Gram-positive and Gram-negative bacteria tested with MIC of 0.2 mg/ml, the minimum inhibition zone of Ginger officeinals D. W. extracts was 0.2 mg/mL against Pseudomonas aeruginosa and Klebsilla pneumonia. The most sensitive bacterial strain to Thymus lcotschyana and Plantago mediastepposa D.W. extracts was S. aureus and E. coli.Keywords: antimicrobial activity, pathogenic bacteria, plant extracts, chemical systems engineering
Procedia PDF Downloads 339308 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network
Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin
Abstract:
The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake
Procedia PDF Downloads 64307 Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing
Authors: K. Haggag, N. S. Elshemy
Abstract:
Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined.Keywords: nano-binder, microwave heating, renewable resource, alkyd resins, sunflower oil, soybean oil
Procedia PDF Downloads 374306 Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Ping Jing Mo
Abstract:
As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating.Keywords: superhydrophobic nanocomposite, fouling release, nanofillers, surface coating
Procedia PDF Downloads 235305 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network
Authors: Biruhi Tesfaye, Avinash M. Potdar
Abstract:
The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC
Procedia PDF Downloads 193304 Performance and Emission Characteristics of Spark Ignition Engine Running with Gasoline, Blends of Ethanol, and Blends of Ethiopian Arekie
Authors: Mengistu Gizaw Gawo, Bisrat Yoseph Gebrehiwot
Abstract:
Petroleum fuels have become a threat to the world because of their toxic emissions. Besides, it is unknown how long they will last. The only known fact is that they are depleting rapidly and will not last long. So the world’s concern about finding environmentally friendly alternative fuels has increased recently. Hence alcohol fuels are found to be the most convenient alternatives to use in internal combustion engines. This research intends to introduce Ethiopian locally produced alcohol as an alternative in the blended form with gasoline to use in spark ignition engines. The traditionally distilled Arekie was purchased from a local producer and purified using fractional distillation. Then five Arekie-gasoline blends were prepared with the proportion of 5,10,15,20 and 25%v/v (A5, A10, A15, A20, and A25, respectively). Also, absolute ethanol was purchased from a local supplier, and ethanol-gasoline blends were prepared with a similar proportion as Arekie-gasoline blends (E5, E10, E15, E20, and E25). Then an experiment was conducted on a single-cylinder, 4-stroke, spark-ignition engine running at a constant speed of 2500 rpm and variable loads to investigate the performance and emission characteristics. Results showed that the performance and emission parameters are significantly improved as the ratio of Arekie and ethanol in gasoline increases at all loads. Among all tested fuels, E20 exhibited better performance, and E25 exhibited better emission. A20 provided a slightly lower performance than E20 but was much improved compared to pure gasoline. A25 provided comparable emissions with E25 and was much better than pure gasoline. Generally, adding up to 20%v/v Ethiopian Arekie in gasoline could make a better, renewable alternative to spark ignition engines.Keywords: alcohol fuels, alternative fuels, pollutant emissions, spark-ignition engine, Arekie-gasoline blends
Procedia PDF Downloads 121303 Relevance of Brain Stem Evoked Potential in Diagnosis of Central Demyelination in Guillain Barre’ Syndrome
Authors: Geetanjali Sharma
Abstract:
Guillain Barre’ syndrome (GBS) is an auto-immune mediated demyelination poly-radiculo-neuropathy. Clinical features include progressive symmetrical ascending muscle weakness of more than two limbs, areflexia with or without sensory, autonomic and brainstem abnormalities, the purpose of this study was to determine subclinical neurological changes of CNS with GBS and to establish the presence of central demyelination in GBS. The study was prospective and conducted in the Department of Physiology, Pt. B. D. Sharma Post-graduate Institute of Medical Sciences, University of Health Sciences, Rohtak, Haryana, India to find out early central demyelination in clinically diagnosed patients of GBS. These patients were referred from the department of Medicine of our Institute to our department for electro-diagnostic evaluation. The study group comprised of 40 subjects (20 clinically diagnosed GBS patients and 20 healthy individuals as controls) aged between 6-65 years. Brain Stem evoked Potential (BAEP) were done in both groups using RMS EMG EP mark II machine. BAEP parameters included the latencies of waves I to IV, inter peak latencies I-III, III-IV & I-V. Statistically significant increase in absolute peak and inter peak latencies in the GBS group as compared with control group was noted. Results of evoked potential reflect impairment of auditory pathways probably due to focal demyelination in Schwann cell derived myelin sheaths that cover the extramedullary portion of auditory nerves. Early detection of the sub-clinical abnormalities is important as timely intervention reduces morbidity.Keywords: brainstem, demyelination, evoked potential, Guillain Barre’
Procedia PDF Downloads 303302 An Experimental Investigation of the Surface Pressure on Flat Plates in Turbulent Boundary Layers
Authors: Azadeh Jafari, Farzin Ghanadi, Matthew J. Emes, Maziar Arjomandi, Benjamin S. Cazzolato
Abstract:
The turbulence within the atmospheric boundary layer induces highly unsteady aerodynamic loads on structures. These loads, if not accounted for in the design process, will lead to structural failure and are therefore important for the design of the structures. For an accurate prediction of wind loads, understanding the correlation between atmospheric turbulence and the aerodynamic loads is necessary. The aim of this study is to investigate the effect of turbulence within the atmospheric boundary layer on the surface pressure on a flat plate over a wide range of turbulence intensities and integral length scales. The flat plate is chosen as a fundamental geometry which represents structures such as solar panels and billboards. Experiments were conducted at the University of Adelaide large-scale wind tunnel. Two wind tunnel boundary layers with different intensities and length scales of turbulence were generated using two sets of spires with different dimensions and a fetch of roughness elements. Average longitudinal turbulence intensities of 13% and 26% were achieved in each boundary layer, and the longitudinal integral length scale within the three boundary layers was between 0.4 m and 1.22 m. The pressure distributions on a square flat plate at different elevation angles between 30° and 90° were measured within the two boundary layers with different turbulence intensities and integral length scales. It was found that the peak pressure coefficient on the flat plate increased with increasing turbulence intensity and integral length scale. For example, the peak pressure coefficient on a flat plate elevated at 90° increased from 1.2 to 3 with increasing turbulence intensity from 13% to 26%. Furthermore, both the mean and the peak pressure distribution on the flat plates varied with turbulence intensity and length scale. The results of this study can be used to provide a more accurate estimation of the unsteady wind loads on structures such as buildings and solar panels.Keywords: atmospheric boundary layer, flat plate, pressure coefficient, turbulence
Procedia PDF Downloads 140301 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs
Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi
Abstract:
Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.Keywords: active damper, fixation system, hardened material, passive damper
Procedia PDF Downloads 222300 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping
Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope
Abstract:
The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing
Procedia PDF Downloads 85299 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 471298 3D Human Face Reconstruction in Unstable Conditions
Authors: Xiaoyuan Suo
Abstract:
3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition
Procedia PDF Downloads 151297 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 108296 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics
Authors: Said Belaaouad
Abstract:
This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation
Procedia PDF Downloads 98295 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface
Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi
Abstract:
By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test
Procedia PDF Downloads 261294 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa
Authors: Samy A. Khalil, U. Ali Rahoma
Abstract:
The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa
Procedia PDF Downloads 101293 Investor Beware - Significance of Investor Conduct under the Fair and Equitable Treatment Standard
Authors: Damayanti Sen
Abstract:
The Fair and Equitable Treatment standard has emerged as a core tenet of a formulated legal structure aimed at encouraging investment through the granting of a secure and stable environment for the investor in the Host State. As an absolute, non-contingent standard, it constitutes an independent and reliable system for the protection of the investor and is frequently invoked and applied in investor-state dispute settlement under bilateral and multilateral investment treaties. Thus far, the standard has been examined principally as a measure for determining the responsibility of host countries towards investors and investments. The conduct of investor in applying the Fair and Equitable Treatment Standard is relatively unexplored. Such an assessment may be necessary in light of the development of new defenses to demands of host governments to confine the application of the standard in order to ensure a proper balance between the protection of investors and the inherent right of a State to regulate economic conduct within its borders. This paper explores the implications of including considerations of investor conduct in the determination of whether an act of the host country’s administrative and/or judicial authorities has breached the fair and equitable treatment principle. The need for such defenses are of special concern for governments of developing countries, whose limited resources can affect their ability to provide an effective evaluation of the nature of the proposed investment, and, subsequently, to ensure that the expected benefits are realized. On the basis of conceptual analysis, and emerging international judicial and arbitral case law, this paper suggests that investor duties such as, the avoidance of unconscionable conduct, the reasonable assessment of investment risk in the host country, and a duty to operate an investment reasonably are leading to a new limit upon the fair and equitable treatment standard- one that can be succinctly captured in the phrase “Caveat Investor”.Keywords: BITs, FET Standard, investor behavior, arbitral case law
Procedia PDF Downloads 313