Search results for: common space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8899

Search results for: common space

1459 Being Authentic is the New “Pieces”: A Mixed Methods Study on Authenticity among African Christian Millennials

Authors: Victor Counted

Abstract:

Staying true to self is complicated. In most cases, we might not fully come to terms with this realities. Just like any journey, a self-discovery experience with the ‘self’, is like a rollercoaster ride. The researcher attempts to engage the reader in an empirical study on authenticity tendencies of African Christian Millennials. Hence, attempting the all-important question: What does it actually mean to be true to self for the African youth? A comprehensive, yet an unfinished business that applies the authenticity theory in its exploratory navigations to uncover the “lived world” of the participants who were part of this study. Using a mixed methods approach, the researcher will exhaustively give account to the authenticity tendencies and experiences of the respondents in the study by providing the reader with a unique narrative for understanding what it means to be true to oneself in Africa. At the quantitative study, the participants recorded higher scores on the Authenticity Scale (AS) authentic living, while showing a significant correlation within the subscales. Hypotheses were tested at the quantitative phase, which statistically supported gender and church affiliation as possible predictors for the authenticity orientations of the participants, while being a Christian native and race/ethnicity were not impact factors statistically. The results helped the researcher to develop the objectives behind the qualitative study, where only fifteen AS-authentic living participants were interviewed to understand why they scored high on authentic living, in order to understand what it means to be authentic. The hallmark of the qualitative case study exploration was the common coping mechanism of splitting adopted by the respondents to deal with their self-crisis as they tried to remain authentic to self, whilst self-regulating and self-investing the self to discover ‘self’. Specifically, the researcher observed the concurrent utilization of some kind of the religious-self by the respondents to regulate their self crisis, as they relate with self fragmenting through different splitting stages in hope for some kind of redemption. It was an explanation that led to the conclusion that being authentic is the new pieces. Authenticity is in fragments. This proposition led the researcher to introduce a hermeneutical support-system that will enable future researchers engage more critically and responsibly with their “living human documents” in order to inspire timely solutions that resolve the concerns of authenticity and wellbeing among Millennials in Africa.

Keywords: authenticity, self, identity, self-fragmentation, weak self integration, postmodern self, splitting

Procedia PDF Downloads 502
1458 Low Energy Technology for Leachate Valorisation

Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo

Abstract:

Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.

Keywords: forward osmosis, landfills, leachate valorization, solar evaporation

Procedia PDF Downloads 188
1457 Software User Experience Enhancement through Collaborative Design

Authors: Shan Wang, Fahad Alhathal, Daniel Hobson

Abstract:

User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023, aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight workshops with a diverse group of 11 individuals. Throughout these sessions, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.

Keywords: user experiences, co-design, design process, knowledge management tool, user-centered design

Procedia PDF Downloads 42
1456 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites Through T6 and T8 Heat Treatments

Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.

Abstract:

In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of their benefits such as moderate strength; better deforming characteristics, excellent chemical decay resistance, and affordable cost. 7075 Al-alloys have been used in the transportation industry for the fabrication of several types of automobile parts, such as wheel covers, panels and structures. It is expected that substitution of such aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminium alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties achievable by selecting and tailoring the suitable heat treatment process. On subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments, known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. Decreasing peak hardness value with increasing aging temperature is the well-known behavior of age hardenable alloys. The peak hardness value is further increasing when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. Considering these aspects, it is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and upto 5 times increase in wear resistance are also observed in the present study.

Keywords: reinforcement, precipitation, thermomechanical, dislocation, strain hardening

Procedia PDF Downloads 301
1455 Common Ragweed (Ambrosia artemisiifolia): Changing Proteomic Patterns of Pollen under Elevated NO₂ Concentration and/or Future Rising Temperature Scenario

Authors: Xiaojie Cheng, Ulrike Frank, Feng Zhao, Karin Pritsch

Abstract:

Ragweed (Ambrosia artemisiifolia) is an invasive weed that has become an increasing global problem. In addition to affecting land use and crop yields, ragweed has a strong impact on human health as it produces highly allergenic pollen. Global warming will result in an earlier and longer pollen season enhanced pollen production and an increase in pollen allergenicity with a negative effect on atopic patients. The aims of this study were to investigate the effects of increasing temperature, the future climate scenario in the Munich area, southern Germany, predicted on the basis of RCP8.5 until the end of 2050s, or/and NO₂, a major air pollutant, 1) on the vegetative and reproductive characteristics of ragweed plants, 2) on the total allergenicity of ragweed pollen, 3) on the total pollen proteomic patterns. Ragweed plants were cultivated for the whole plant vegetation period under controlled conditions either under ambient climate conditions or 4°C higher temperatures with or without additional NO₂. Higher temperature resulted in bigger plant sizes, longer male inflorescences, and longer pollen seasons. The total allergenic potential of the pollen was accessed by dot blot using serum from ragweed pollen sensitized patients. The comparative immunoblot analysis revealed that the in vivo fumigation of ragweed plants with elevated NO₂-concentrations significantly increased the allergenic potential of the pollen, and in combination with increased temperature, the allergenic potential was even higher. On the other hand, label-free protein quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed. The results showed that more proteins were significantly up- and down-regulated under higher temperatures with/without elevated NO₂ conditions. Most of the highly expressed proteins were participating intensively in the metabolic process, the cellular process, and the stress defense process. These findings suggest that rising temperature and elevated NO₂ are important environmental factors for higher abiotic stress activities, catalytic activities, and thus higher allergenic potential observed in pollen proteins.

Keywords: climate change, NO₂, pollen proteome, ragweed, temperature

Procedia PDF Downloads 169
1454 The Effects of Cultural Distance and Institutions on Foreign Direct Investment Choices: Evidence from Turkey and China

Authors: Nihal Kartaltepe Behram, Göksel Ataman, Dila Okçu

Abstract:

With the development of foreign direct investments, the social, cultural, political and economic interactions between countries and institutions have become visible and they have become determining factors for the strategic structuring and market goals. In this context the purpose of this study is to investigate the effects of cultural distance and institutions on foreign direct investment choices in terms of location and investment model. For international establishments, the concept of culture, as well as the concept of cultural distance, is taken specifically into consideration, especially in the selection of methods for entering the market. In the researches and empirical studies conducted, a direct relationship between cultural distance and foreign direct investments is set and institutions and effective variable factors are examined at the level of defining the investment types. When the detailed calculation strategies and empirical researches and studies are taken into consideration, the most common methods for determining the direct investment model, considering the cultural distances, are full-ownership enterprises and joint ventures. Also, when all of the factors affecting the investments are taken into consideration, it was seen that the effect of institutions such as Government Intervention, Intellectual Property Rights, Corruption and Contract Enforcements is very important. Furthermore agglomeration is more intense and effective on the investment, compared to other factors. China has been selected as the target country, due to its effectiveness in world economy and its contributions to developing countries, which has commercial relationships with. Qualitative research methods are used for this study conducted, to measure the effects of determinative variable factors in the hypotheses of study, on the direct foreign investors and to evaluate the findings. In this study in-depth interview is used as a data collection method and the data analysis is made through descriptive analysis. Foreign Direct Investments are so reactive to institutions and cultural distance is identified by all interviews and analysis. On the other hand, agglomeration is the most strong determiner factor on foreign direct investors in Chinese Market. The reason of this factors, which comprise the sectorial aggregate, are not the strongest factors as agglomeration that the most important finding. We expect that this study became a beneficial guideline for developed and developing countries and local and national institutions’ strategic plans.

Keywords: China, cultural distance, Foreign Direct Investments, institutions

Procedia PDF Downloads 404
1453 MAOD Is Estimated by Sum of Contributions

Authors: David W. Hill, Linda W. Glass, Jakob L. Vingren

Abstract:

Maximal accumulated oxygen deficit (MAOD), the gold standard measure of anaerobic capacity, is the difference between the oxygen cost of exhaustive severe intensity exercise and the accumulated oxygen consumption (O2; mL·kg–1). In theory, MAOD can be estimated as the sum of independent estimates of the phosphocreatine and glycolysis contributions, which we refer to as PCr+glycolysis. Purpose: The purpose was to test the hypothesis that PCr+glycolysis provides a valid measure of anaerobic capacity in cycling and running. Methods: The participants were 27 women (mean ± SD, age 22 ±1 y, height 165 ± 7 cm, weight 63.4 ± 9.7 kg) and 25 men (age 22 ± 1 y, height 179 ± 6 cm, weight 80.8 ± 14.8 kg). They performed two exhaustive cycling and running tests, at speeds and work rates that were tolerable for ~5 min. The rate of oxygen consumption (VO2; mL·kg–1·min–1) was measured in warmups, in the tests, and during 7 min of recovery. Fingerprick blood samples obtained after exercise were analysed to determine peak blood lactate concentration (PeakLac). The VO2 response in exercise was fitted to a model, with a fast ‘primary’ phase followed by a delayed ‘slow’ component, from which was calculated the accumulated O2 and the excess O2 attributable to the slow component. The VO2 response in recovery was fitted to a model with a fast phase and slow component, sharing a common time delay. Oxygen demand (in mL·kg–1·min–1) was determined by extrapolation from steady-state VO2 in warmups; the total oxygen cost (in mL·kg–1) was determined by multiplying this demand by time to exhaustion and adding the excess O2; then, MAOD was calculated as total oxygen cost minus accumulated O2. The phosphocreatine contribution (area under the fast phase of the post-exercise VO2) and the glycolytic contribution (converted from PeakLac) were summed to give PCr+glycolysis. There was not an interaction effect involving sex, so values for anaerobic capacity were examined using a two-way ANOVA, with repeated measures across method (PCr+glycolysis vs MAOD) and mode (cycling vs running). Results: There was a significant effect only for exercise mode. There was no difference between MAOD and PCr+glycolysis: values were 59 ± 6 mL·kg–1 and 61 ± 8 mL·kg–1 in cycling and 78 ± 7 mL·kg–1 and 75 ± 8 mL·kg–1 in running. Discussion: PCr+glycolysis is a valid measure of anaerobic capacity in cycling and running, and it is as valid for women as for men.

Keywords: alactic, anaerobic, cycling, ergometer, glycolysis, lactic, lactate, oxygen deficit, phosphocreatine, running, treadmill

Procedia PDF Downloads 118
1452 Biomechanical Analysis on Skin and Jejunum of Chemically Prepared Cat Cadavers Used in Surgery Training

Authors: Raphael C. Zero, Thiago A. S. S. Rocha, Marita V. Cardozo, Caio C. C. Santos, Alisson D. S. Fechis, Antonio C. Shimano, FabríCio S. Oliveira

Abstract:

Biomechanical analysis is an important factor in tissue studies. The objective of this study was to determine the feasibility of a new anatomical technique and quantify the changes in skin and the jejunum resistance of cats’ corpses throughout the process. Eight adult cat cadavers were used. For every kilogram of weight, 120ml of fixative solution (95% 96GL ethyl alcohol and 5% pure glycerin) was applied via the external common carotid artery. Next, the carcasses were placed in a container with 96 GL ethyl alcohol for 60 days. After fixing, all carcasses were preserved in a 30% sodium chloride solution for 60 days. Before fixation, control samples were collected from fresh cadavers and after fixation, three skin and jejunum fragments from each cadaver were tested monthly for strength and displacement until complete rupture in a universal testing machine. All results were analyzed by F-test (P <0.05). In the jejunum, the force required to rupture the fresh samples and the samples fixed in alcohol for 60 days was 31.27±19.14N and 29.25±11.69N, respectively. For the samples preserved in the sodium chloride solution for 30 and 60 days, the strength was 26.17±16.18N and 30.57±13.77N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days was 2.79±0.73mm and 2.80±1.13mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 2.53±1.03mm and 2.83±1.27mm, respectively. There was no statistical difference between the samples (P=0.68 with respect to strength, and P=0.75 with respect to displacement). In the skin, the force needed to rupture the fresh samples and the samples fixed for 60 days in alcohol was 223.86±131.5N and 211.86±137.53N respectively. For the samples preserved in sodium chloride solution for 30 and 60 days, the force was 227.73±129.06 and 224.78±143.83N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days were 3.67±1.03mm and 4.11±0.87mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 4.21±0.93mm and 3.93±0.71mm, respectively. There was no statistical difference between the samples (P=0.65 with respect to strength, and P=0.98 with respect to displacement). The resistance of the skin and intestines of the cat carcasses suffered little change when subjected to alcohol fixation and preservation in sodium chloride solution, each for 60 days, which is promising for use in surgery training. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9).

Keywords: anatomy, conservation, fixation, small animal

Procedia PDF Downloads 275
1451 Exercise Intervention For Women After Treatment For Ovarian Cancer

Authors: Deirdre Mc Grath, Joanne Reid

Abstract:

Background: Ovarian cancer is the leading cause of mortality among gynaecologic cancers in developed countries and the seventh most common cancer worldwide with nearly 240,000 women diagnosed each year. Although it is recognized engaging in exercise results in positive health care outcomes, women with ovarian cancer are reluctant to participate. No evidence currently exists focusing on how to successfully implement an exercise intervention program for patients with ovarian cancer, using a realist approach. There is a requirement for the implementation of exercise programmes within the oncology health care setting as engagement in such interventions has positive health care outcomes for women with ovarian cancer both during and following treatment. Aim: To co-design the implementation of an exercise intervention for women following treatment for ovarian cancer. Methods: This study is a realist evaluation using quantitative and qualitative methods of data collection and analysis. Realist evaluation is well-established within the health and social care setting and has in relation to this study enabled a flexible approach to investigate how to optimise implementation of an exercise intervention for this patient population. This single centre study incorporates three stages in order to identify the underlying contexts and mechanisms which lead to the successful implementation of an exercise intervention for women who have had treatment for ovarian cancer. Stage 1 - A realist literature review. Stage 2 -Co-design of the implementation of an exercise intervention with women following treatment for ovarian cancer, their carer’s, and health care professionals. Stage 3 –Implementation of an exercise intervention with women following treatment for ovarian cancer. Evaluation of the implementation of the intervention from the perspectives of the women who participated in the intervention, their informal carers, and health care professionals. The underlying program theory initially conceptualised before and during the realist review was developed further during the co-design stage. The evolving program theory in relation to how to successfully implement an exercise for these women is currently been refined and tested during the final stage of this realist evaluation which is the implementation and evaluation stage. Results: This realist evaluation highlights key issues in relation to the implementation of an exercise intervention within this patient population. The underlying contexts and mechanisms which influence recruitment, adherence, and retention rates of participants are identified. Conclusions: This study will inform future research on the implementation of exercise interventions for this patient population. It is anticipated that this intervention will be implemented into practice as part of standard care for this group of patients.

Keywords: ovarian cancer, exercise intervention, implementation, Co-design

Procedia PDF Downloads 168
1450 Physical Activity Levels in Qatar: A Pedometer-Based Assessment

Authors: Suzan Sayegh, Izzeldin Ibrahim, Mercia Van Der Walt, Mohamed Al-Kuwari

Abstract:

Background: Walking is the most common form of physical activity which can promote a healthy well-being among people of different age groups. In this regard, pedometers are becoming more popular within research and are considered useful tools in monitoring physical activity levels based on individuals’ daily steps. A value of ˂5,000 steps/day is identified as a sedentary lifestyle index where individuals are physically inactive. Those achieving 5,000-7,499 steps/day have a low active lifestyle as they do not meet the moderate-to-vigorous physical activity (MVPA) recommendations. Moreover, individuals achieving ≥7,500 steps/day are classified as physically active. The objective of this study is to assess the physical activity levels of adult population in Qatar through a pedometer-based program over a one-year period. Methods: A cross-sectional analysis, as part of a longitudinal study, was carried out over one year to assess the daily step count. “Step into Health” is a community-based program launched by Aspire as an approach for the purpose of improving physical activity across the population of Qatar. The program involves distribution of pedometers to registered members which is supported by a self-monitoring online account and linked to a web database. Daily habitual physical activity (daily total step count) was assessed through Omron HJ-324U pedometer. Analyses were done on data extracted from the web database. Results: A total of 1,988 members were included in this study (males: n=1,143, 57%; females: n=845, 43%). Average age was 37.8±10.9 years distributed as 60% of age between age 25-54 (n=1,186), 27% of age 45-64 (n=546), and 13% of age 18-24 years (n=256). Majority were non-Qataris, 81% (n=1,609) compared with 19% of the Qatari nationality (n=379). Average body mass index (BMI) was 27.8±6.1 (kg/m2) where most of them (41%, n=809) were found to be overweight, between 25-30 kg/m2. Total average step count was 5,469±3,884. Majority were found to be sedentary (n=1110, 55.8%). Middle aged individuals were more active than the other two age groups. Males were seen as more active than females. Those who were less active had a higher BMI. Older individuals were more active. There was a variation in the physical activity level throughout the year period. Conclusion: It is essential to further develop the available intervention programs and increase their physical activity behavior. Planning such physical activity interventions for female population should involve aspects such as time, environmental variables and aerobic steps.

Keywords: adults, pedometer, physical activity, step-count

Procedia PDF Downloads 341
1449 Effects of Front Porch and Loft on Indoor Ventilation in the Renewal of Beijing Courtyard

Authors: Zhongzhong Zeng, Zichen Liang

Abstract:

In recent years, Beijing courtyards have been facing the problem of renewal and renovation, and the residents are faced with the problems of small house areas, large household sizes, old and dangerous houses, etc. Among the many renovation methods, the authors note two more common practices of using the front porch to expand the floor area and adding a loft. Residents and architects, however, did not give the ventilation performance of the significant interior consideration before beginning the remodeling. The aim of this article is to explore the good or negative impacts of both front porch and loft structures on the manner of interior ventilation in the courtyard. Ventilation, in turn, is crucial to the indoor environmental quality of a home. The major method utilized in this study is the comparative analysis method, in which the authors create four alternative house models with or without a front porch and an attic as two variables and examine internal ventilation using the CFD(Computational Fluid Dynamics) technique. The authors compare the indoor ventilation of four different architectural models with or without front porches and lofts as two variables. The results obtained from the analysis of the sectional airflow and the plane 1.5m height cloud are the existence of the loft, to a certain extent, disrupts the airflow organization of the building and makes the rear wall high windows of the building less effective. Occupying the front porch to become the area of the house has no significant effect on ventilation, but try not to occupy the front porch and add the loft at the same time in the building renovation. The findings of this study led to the following recommendations: strive to preserve the courtyard building's original architectural design and make adjustments to only the inappropriate elements or constructions. The ventilation in the loft portion is inadequate, and the inhabitants typically use the loft as a living area. This may lead to the building relying more on air conditioning in the summer, which would raise energy demand. The front porch serves as a transition place as well as a source of shade, weather protection, and inside ventilation. In conclusion, the examination of interior environments in upcoming studies should concentrate on cross-disciplinary, multi-angle, and multi-level research topics.

Keywords: Beijing courtyard renewal, CFD, indoor environment, ventilation analysis

Procedia PDF Downloads 69
1448 The Examination of Cement Effect on Isotropic Sands during Static, Dynamic, Melting and Freezing Cycles

Authors: Mehdi Shekarbeigi

Abstract:

The consolidation of loose substrates as well as substrate layers through promoting stabilizing materials is one of the most commonly used road construction techniques. Cement, lime, and flax, as well as asphalt emulsion, are common materials used for soil stabilization to enhance the soil’s strength and durability properties. Cement could be simply used to stabilize permeable materials such as sand in a relatively short time threshold. In this research, typical Portland cement is selected for the stabilization of isotropic sand; the effect of static and cyclic loading on the behavior of these soils has been examined with various percentages of Portland cement. Thus, firstly, a soil’s general features are investigated, and then static tests, including direct cutting, density and single axis tests, and California Bearing Ratio, are performed on the samples. After that, the dynamic behavior of cement on silica sand with the same grain size is analyzed. These experiments are conducted on cement samples of 3, 6, and 9 of the same rates and ineffective limiting pressures of 0 to 1200 kPa with 200 kPa steps of the face according to American Society for Testing and Materials D 3999 standards. Also, to test the effect of temperature on molds and frost samples, 0, 5, 10, and 20 are carried out during 0, 5, 10, and 20-second periods. Results of the static tests showed that increasing the cement percentage increases the soil density and shear strength. The single-axis compressive strength increase is higher for samples with higher cement content and lower densities. The results also illustrate the relationship between single-axial compressive strength and cement weight parameters. Results of the dynamic experiments indicate that increasing the number of loading cycles and melting and freezing cycles enhances permeability and decreases the applied pressure. According to the results of this research, it could be stated that samples containing 9% cement have the highest amount of shear modulus and, therefore, decrease the permeability of soil. This amount could be considered as the optimal amount. Also, the enhancement of effective limited pressure from 400 to 800kPa increased the shear modulus of the sample by an average of 20 to 30 percent in small strains.

Keywords: cement, isotropic sands, static load, three-axis cycle, melting and freezing cycles

Procedia PDF Downloads 62
1447 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization

Authors: Cheng-Jui Li, Chien-Chou Tseng

Abstract:

This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.

Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray

Procedia PDF Downloads 270
1446 Prevalence and Mechanisms of Antibiotic Resistance in Escherichia coli Isolated from Mastitic Dairy Cattle in Canada

Authors: Satwik Majumder, Dongyun Jung, Jennifer Ronholm, Saji George

Abstract:

Bovine mastitis is the most common infectious disease in dairy cattle, with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with three heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics, and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = +0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates, corroborating phenotype observations. This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through milk and dairy products.

Keywords: antimicrobial resistance, E. coli, bovine mastitis, antibiotics, heavy-metals, efflux pump, ß-lactamase enzyme, biofilm, whole-genome sequencing

Procedia PDF Downloads 196
1445 Education as a Factor Which Reduces Poverty

Authors: E. V. Fakhrutdinova, Y. S. Kolesnikova, E. A. Karasik, V. M. Zagidullina

Abstract:

Poverty as the social and economic phenomenon exists in any society and represents a many-sided problem. In this sense it is universal and for many centuries serves as a research objects for scientists. Special attention to a problem of poverty in Russia is caused, first of all, by the critical growth of inequality and by scales of expansion of poverty, considerable decrease in the level and quality of life of the population, decrease in availability of education during the period of reforming. The expansion of poverty on the working members of society, youth, which has to provide reproduction of the population is alarming. As poverty is the reason of weakening of national security of the country, degradation of the population, decline in the quality of the human capital, complication of a demographic situation, strengthening of social contradictions in society, so far as the reduction of poverty, so, the increase in production. Poverty: the characteristic of an economic situation of the individual or social group at which they can't satisfy certain minimum requirements necessary for life, preservations of working capacity and reproduction. Poverty became one of the critical factors expelling people from the system of the institutional interactions reducing social space in which their relations were building breaking their social identity. Complication of the problem of poverty in modern society happened due to penetration of the related relations into many spheres of life. It is known that negative consequences of poverty display not only at the personal level of the poor person, but also at the level of interpersonal social interactions, decline in the quality and level of development of the human capital, and also at social and economic system in general. We conducted a research on the influence of education on the change of poverty level of the population. We consider education as a resource for an increase of the income and social mobility. Dependence of the income of the population on the level of education, availability of education (level of education and quality of education) on the level of income of families is found. Differentiation of quality and number of educational services for children depending on the level of the income of families is revealed. Influence of a factor of poverty on the availability of education is also studied. We consider expenses on education as the limiter of access to education. We consider education as a factor of fixation and aggravation of a property inequality. In the solution of problems of poverty the defining condition is the state regulation of social and economic development by means of creation of the effective institutional environment. The state has to develop measures for an increase of availability of various services to all categories of citizens, in particular services of health care and education, especially for poor citizens enters. The special attention regarding an increase of availability of education services has to be paid to creation of system of social elevators.

Keywords: poverty, education, human capital, quality of life

Procedia PDF Downloads 313
1444 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 148
1443 Shameful Heroes of Queer Cinema: A Critique of Mumbai Police (2013) and My Life Partner (2014)

Authors: Payal Sudhan

Abstract:

Popular films in India, Bollywood, and other local industries make a range of commercial films that attract vast viewership. Love, Heroism, Action, Adventure, Revenge, etc., are some of the dearest themes chosen by many filmmakers of various popular film Industries across the world. However, sexuality has become an issue to address within the cinema. Such films feature in small numbers compared to other themes. One can easily assume that homosexuality is unlikely to be a favorite theme found in Indian popular cinema. It doesn’t mean that there is absolutely no film made on the issues of homosexuality. There have been several attempts. Earlier, some movies depicted homosexual (gay) characters as comedians, which continued until the beginning of the 21st century. The study aims to explore how modern homophobia and stereotype are represented in the films and how it affects homosexuality in the recent Malayalam Cinema. The study wills primarily focusing on Mumbai Police (2013) and My Life Partner (2014). The study tries to explain social space, the idea of a cure, and criminality. The film that has been selected for the analysis Mumbai Police (2013) is a crime thriller. The nonlinear narration of the movie reveals, towards the end, the murderer of ACP Aryan IPS, who was shot dead in a public meeting. In the end, the culprit is the enquiring officer, ACP Antony Moses, himself a close friend and colleague of the victim. Much to one’s curiosity, the primary cause turns out to be the sexual relation Antony has. My Life Partner generically can be classified as a drama. The movie puts forth male bonding and visibly riddles the notions of love and sex between Kiran and his roommate Richard. Running through the same track, the film deals with a different ‘event.’ The ‘event’ is the exclusive celebration of male bonding. The socio-cultural background of the cinema is heterosexual. The elements of heterosexual social setup meet the ends of diplomacy of the Malayalam queer visual culture. The film reveals the life of two gays who were humiliated by the larger heterosexual society. In the end, Kiran dies because of extreme humiliation. The paper is a comparative and cultural analysis of the two movies, My Life Partner and Mumbai Police. I try to bring all the points of comparison together and explain the similarities and differences, how one movie differs from another. Thus, my attempt here explains how stereotypes and homophobia with other related issues are represented in these two movies.

Keywords: queer cinema, homophobia, malayalam cinema, queer films

Procedia PDF Downloads 219
1442 Exploration of Probiotics and Anti-Microbial Agents in Fermented Milk from Pakistani Camel spp. Breeds

Authors: Deeba N. Baig, Ateeqa Ijaz, Saloome Rafiq

Abstract:

Camel is a religious and culturally significant animal in Asian and African regions. In Pakistan Dromedary and Bactrian are common camel breeds. Other than the transportation use, it is a pivotal source of milk and meat. The quality of its milk and meat is predominantly dependent on the geographical location and variety of vegetation available for the diet. Camel milk (CM) is highly nutritious because of its reduced cholesterol and sugar contents along with enhanced minerals and vitamins level. The absence of beta-lactoglobulin (like human milk), makes CM a safer alternative for infants and children having Cow Milk Allergy (CMA). In addition to this, it has a unique probiotic profile both in raw and fermented form. Number of Lactic acid bacteria (LAB) including lactococcus, lactobacillus, enterococcus, streptococcus, weissella, pediococcus and many other bacteria have been detected. From these LAB Lactobacilli, Bifidobacterium and Enterococcus are widely used commercially for fermentation purpose. CM has high therapeutic value as its effectiveness is known against various ailments like fever, arthritis, asthma, gastritis, hepatitis, Jaundice, constipation, postpartum care of women, anti-venom, dropsy etc. It also has anti-diabetic, anti-microbial, antitumor potential along with its robust efficacy in the treatment of auto-immune disorders. Recently, the role of CM has been explored in brain-gut axis for the therapeutics of neurodevelopmental disorders. In this connection, a lot of grey area was available to explore the probiotics and therapeutics latent in the CM available in Pakistan. Thus, current study was designed to explore the predominant probiotic flora and antimicrobial potential of CM from different local breeds of Pakistan. The probiotics have been identified through biochemical, physiological and ribo-typing methods. In addition to this, bacteriocins (antimicrobial-agents) were screened through PCR-based approach. Results of this study revealed that CM from different breeds of camel depicted a number of similar probiotic candidates along with the range of limited variability. However, the nucleotide sequence analysis of selected anti-listerial bacteriocins exposed least variability. As a conclusion, the CM has sufficient probiotic availability and significant anti-microbial potential.

Keywords: bacteriocins, camel milk, probiotics potential, therapeutics

Procedia PDF Downloads 115
1441 Cardio-respiratory Rehabilitation in Patients With Chronic or Post-acute Cardiomyopathy and COPD

Authors: Ledi Neçaj

Abstract:

Introduction: Cardio-respiratory rehabilitation is the set of coordinated interventions needed to provide the best physical, psychological, and social conditions so that patients with chronic or post-acute cardiopulmonary disease, with their efforts, maintain or resume optimal functioning in society through improved health behaviors. Purpose: To study the effectiveness of the application of Cardio-Respiratory Rehabilitation in the typology of patients with chronic or post-acute cardiomyopathy and chronic respiratory diseases in order to facilitate their therapeutic use and to improve the overall quality of life. Material and Method: This is a prospective study including patients with COPD and cardiac disease who were included in the rehabilitation program during the period January 2019 - November 2021. The study was conducted at the University Hospital Center "Mother Teresa" in Tirana, University Hospital "SHEFQET NDROQI", AMERICAN Hospital, HYGEA Hospital, and "Our Lady of Good Counsel, Tirana". An individual chart was used to collect sociodemographic, physical, clinical, and functional examinations for each patient. Results: The study included 253 patients, with a mean age of 62.1 (± 7.9) years, ranging from 48 to 82 years. (67.6%) of the patients were males, and (32.4%) female. Male patients predominated in all age groups, with a statistically significant difference with females (p<0.01). The most common cardiac pathologies are coronary artery bypass (24%), cerebral stroke (9%), myocardial infarction (17%), Stent placement (8%) (p<0.01). Correlation matrix of risk factors found a significant correlation of alcohol consumption with diabetes, smoking, dyslipidemia, sedentary life, obesity, AVC, and hypertension. Functional capacity estimated by change in metabolic equivalents (MET) improved by 46% from 4. ±2.2 to 7.2± .8 METs (p<0.01). Duration of exercise after rehabilitation was increased by 21% compared to baseline (p<0.01). The mean score of all three subscales of the questionnaire: symptoms (p=0.03), activity (p<0.01), and impact (p<0.01) after rehabilitation, was lower compared to pre-rehabilitation. Conclusions: The rehabilitation program has impacted on improving the quality of life, reducing symptoms, reducing the impact of negative factors on daily life, and reducing dyspnea during daily activities.

Keywords: cardio-respiratory rehabilitation, physical exercise, quality of life, diseases

Procedia PDF Downloads 80
1440 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data

Authors: S. Jurado, E. Pazmino

Abstract:

Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.

Keywords: medial axis, pore-throat distribution, porosity, porous media

Procedia PDF Downloads 101
1439 Assessment of Physical Activity Levels in Qatar: A Pedometer-Based Study

Authors: Souzan Al Sayegh, Izzeldin Ibrahim, Mercia Van Der Walt, Mohamed Al-Kuwari

Abstract:

Background: Walking is the most common form of physical activity which can promote a healthy well-being among people of different age groups. In this regard, pedometers are becoming more popular within research and are considered useful tools in monitoring physical activity levels based on individuals’ daily steps. A value of ˂5,000 steps/day is identified as a sedentary lifestyle index where individuals are physically inactive. Those achieving 5,000-7,499 steps/day have a low active lifestyle as they do not meet the moderate-to-vigorous physical activity (MVPA) recommendations. Moreover, individuals achieving ≥7,500 steps/day are classified as physically active. The objective of this study is to assess the physical activity levels of adult population in Qatar through a pedometer-based program over a one-year period. Methods: A cross-sectional analysis, as part of a longitudinal study, was carried out over one year to assess the daily step count. 'Step into Health' is a community-based program launched by Aspire as an approach for the purpose of improving physical activity across the population of Qatar. The program involves the distribution of pedometers to registered members which is supported by a self-monitoring online account and linked to a web database. Daily habitual physical activity (daily total step count) was assessed through Omron HJ-324U pedometer. Analyses were done on data extracted from the web database. Results: A total of 1,988 members were included in this study (males: n=1,143, 57%; females: n=845, 43%). Average age was 37.8±10.9 years distributed as 60% of age between age 25-54 (n=1,186), 27% of age 45-64 (n=546), and 13% of age 18-24 years (n=256). Majority were non-Qataris, 81% (n=1,609) compared with 19% of the Qatari nationality (n=379). Average body mass index (BMI) was 27.8±6.1 (kg/m2) where most of them (41%, n=809) were found to be overweight, between 25-30 kg/m2. Total average step count was 5,469±3,884. Majority were found to be sedentary (n=1110, 55.8%). Middle aged individuals were more active than the other two age groups. Males were seen as more active than females. Those who were less active had a higher BMI. Older individuals were more active. There was a variation in the physical activity level throughout the year period. Conclusion: It is essential to further develop the available intervention programs and increase their physical activity behavior. Planning such physical activity interventions for female population should involve aspects such as time, environmental variables and aerobic steps.

Keywords: adults, pedometer, physical activity, step-count

Procedia PDF Downloads 285
1438 Silver-Curcumin Nanoparticle Eradicate Enterococcus faecalis in Human ex vivo Dentine Model

Authors: M. Gowri, E. K. Girija, V. Ganesh

Abstract:

Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate E. faecalis. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against E. faecalis. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on E. faecalis was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against E. faecalis. silver-curcumin nanoparticle exerted time kill effect. Further, SEM images of E. faecalis showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of E. faecalis and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Further, silver-curcumin nanoparticle was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non-mutagenic. Conclusion: The results of this study can pave the way for developing new antibacterial agents with well deciphered mechanisms of action and can be a promising antibacterial agent or medicament against root canal infection.

Keywords: ex vivo dentine model, inhibition of biofilm formation, root canal infection, silver-curcumin nanoparticle

Procedia PDF Downloads 175
1437 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments

Authors: Turin Datta, Kisor K. Sahu

Abstract:

Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.

Keywords: DSS 2205, polarization, pitting, SEM

Procedia PDF Downloads 250
1436 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 200
1435 Observation on Microbiological Profile of Type2 Diabetic Foot Ulcer and Its Antimicrobial Sensitivity Pattern in a Tertiary Care Hospital in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

Diabetes Mellitus (DM) is commonly encountered metabolic disorder in clinical practice. An estimated 25 percent of DM patients develop foot problems. Foot ulceration and infection are one of the major causes of morbidity, hospitalization or even amputation. Objective: To isolate and identify bacterial pathogens in Diabetic Foot Ulcer (DFU) and to observe its antimicrobial sensitivity pattern. Methodology: A prospective study was conducted for a period of 9 months at the Department of Microbiology, GD Hospital & Diabetes Institute, Kolkata. 75 DFU patients were recruited in the study. Specimens for microbiological studies obtained from ulcer base were examined as gram stained smear and was cultured aerobically on Nutrient agar, Blood agar and MacConkey agar plates. Antimicrobial sensitivity test was performed by disc diffusion techniques according to CLSI guidelines. Result: In this study out of 75cases, 73% (55/75) were male and 27% (20/75) were females with mean (SD) age of 51.11(±10) years. Out of 75 pus cultures, 63(84%) showed growth of microorganism making total of 81 bacterial isolates with 71.42% of monomicrobial infection and 28.57% of polymicrobial infection. Out of 81 isolates 53(65.43%) were gram negative and 21(25.92%) were gram positive. E.coli was relatively common isolate 21(26%) followed by Staphylococcus aureus 15(18.5%), Klebsiella pneumonia 14(17.28%), Pseudomonas aeruginosa 12 (14.81%), Proteus spp. 3 (3.70%), and Enterococcus faecalis 6 (7.40%). 75% of Gram-negative microorganism were extended Beta-lactamase enzyme (ESBL) producer and around 20 % of Klebsiella and Proteus spp. were carbapenemase enzyme producer. Among Gram positive, around 50% of S.aureus was MRSA, sensitive only to Vancomycin, Teicoplanin & Linezolid. Conclusion: More prevalence of monomicrobial gram-negative bacteria than gram-positive bacteria in DFU was observed. This study emphasizes that Beta-Lactam group of antibiotics should not be the empirical treatment of choice for Gram-negative isolates; instead alternatives like Carbapenems, Amikacin could be a better option. On the other hand, Vancomycin and Linezolid are preferred for most of the infection with gram-positive aerobes. Continuous surveillance of resistant bacteria is required for empiric therapy.

Keywords: antibiotic resistant, antimicrobial susceptibility, diabetic foot ulcer, surveillance

Procedia PDF Downloads 348
1434 Investigation of Dry-Blanching and Freezing Methods of Fruits

Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné

Abstract:

Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.

Keywords: blanching, freezing, fruits, microwave blanching, microwave

Procedia PDF Downloads 252
1433 The Good, the Bad and the Unknown: Exploring the Knowledge, Attitude and Behaviour towards the Use of Insecticide Treated Mosquito Nets among Pregnant Women and Children in Rural South-Western Uganda

Authors: Ivan M. Taremwa, Scholastic Ashaba, Harriet O. Adrama, Carlrona Ayebazibwe, Daniel Omoding, Imelda Kemeza, Jane Yatuha, Thadeus Turuho, Noni E. MacDonald, Robert Hilliard

Abstract:

Background: The burden of malaria in Uganda remains unacceptably high, especially among children and pregnant women. To prevent malaria related complications, household possession and use of Insecticide Treated mosquito Nets (ITNs) has become a common practice in the country. Despite the availability of ITNs, the number of malaria cases has not gone down. We sought to explore knowledge, attitude, and behaviour towards the use of ITNs as a nightly malaria prevention strategy among pregnant women and children under five years of age in rural southwest Uganda. Materials and Methods: This was a community based, descriptive cross-sectional study, in which households with children under 5 years, and/or pregnant women were enrolled. We used a structured questionnaire to collect data on participants’ understanding of the causes, signs and symptoms of malaria; use of ITNs to prevent malaria; attitudes and behaviours towards the use of ITNs. We also conducted key informant interviews (KIIs) to get in-depth understanding of responses from the participants. We analysed quantitative data using STATA version 12. Qualitative findings from the KIIs were transcribed and translated, and manually analysed using thematic content analysis. Results: Of the 369 households enrolled, 98.6% (N=363) households had children under five. Most participants (41.2%, N=152) were in the 21-30 years of age category (mean age; 32.2). 98.6% (N=362) of the respondents considered ITNs a key malaria prevention strategy. The ITN possession rate was 84.0% (N=310), of these, 67.0% (N=205) consistently used them. 39% of the respondents did not have a positive attitude towards ITNs, as they considered more the perceived effects of ITNs. Conclusions: Although 84.0% of the respondents possessed ITNs, many were not consistently using them. There is need to engage all stakeholders (including cultural leaders, community health workers, religious leaders and the government) in the malaria prevention campaigns using ITNs through: a) government’s concerted effort to ensure universal access of good quality ITNs, b) end-user directed education to correct false beliefs and misinformation, c) telling the ITN success stories to improve on the usage.

Keywords: ITNs use, malaria, pregnant women, rural Uganda

Procedia PDF Downloads 341
1432 The Effects of Self- and Partner Reported Attachment Orientations and Mate Retention Behaviors: Actor and Partner Effects in Romantic Couples

Authors: Jasna Hudek-Knezevic, Igor Kardum, Nada Krapic, Martina Jurcic

Abstract:

The aim of this study was to examine the effects of self- and partner reported attachment orientations on self-reported mate retention behaviors in romantic couples using the actor-partner interdependence model. The study was carried out on 187 heterosexual couples aged from 18 to 35 years, with an average relationship length of 4.5 years. Participants were asked to complete the revised scale of adult attachment and short form of mate retention inventory. Actor and partner effects of self- and partner reported anxious and avoidant attachment orientations on mate retention categories (direct guarding, intersexual negative inducements, positive inducements, public signals of possession and intrasexual negative inducements) and domains (cost-inflicting and benefit-provisioning), as well on overall mate retention were examined. Actor effects for women estimate whether their attachment orientations predict their own mate retention behaviors, whereas men’s actor effects estimate whether their attachment orientations predict their own mate retention behaviors. Women’s partner effects estimate whether their attachment orientations predict their partner’s mate retention behaviors, whereas men’s partner effects estimate whether their attachment orientations predict their partner’s mate retention behaviors. The use of two data sources, self- and partner reports, allow the control of the effects of common method variance when exploring actor and partner effects. Positive actor and partner effects of anxious attachment, as well as negative actor and partner effects of avoidant attachment on mate retention, were expected. In other words, it was expected that more anxiously attached individuals themselves, as well as their partners, will use mate retention behaviors more frequently. On the other hand, more avoidantly attached individuals themselves, as well as their partners, will use mate retention behaviors less frequently. These hypotheses were partially confirmed. The results showed that the strongest and most consistent effects across both data sources were men’s actor effects on the cost-inflicting mate retention domain, and especially on two mate retention categories, direct guarding, and intersexual negative inducements. Additionally, a consistent positive partner effect of men’s anxious attachment orientations on direct guarding was also obtained. Avoidant attachment orientation exerted few and inconsistent actor and partner effects on mate retention domains and categories. The results are explained by theoretical propositions addressing the effects of attachment orientations on an interpersonal romantic relationship in early adulthood.

Keywords: actor and partner effects, attachment orientations, dyadic analysis, mate retention behavior

Procedia PDF Downloads 148
1431 Desulphurization of Waste Tire Pyrolytic Oil (TPO) Using Photodegradation and Adsorption Techniques

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The nature of tires makes them extremely challenging to recycle due to the available chemically cross-linked polymer and, therefore, they are neither fusible nor soluble and, consequently, cannot be remolded into other shapes without serious degradation. Open dumping of tires pollutes the soil, contaminates underground water and provides ideal breeding grounds for disease carrying vermins. The thermal decomposition of tires by pyrolysis produce char, gases and oil. The composition of oils derived from waste tires has common properties to commercial diesel fuel. The problem associated with the light oil derived from pyrolysis of waste tires is that it has a high sulfur content (> 1.0 wt.%) and therefore emits harmful sulfur oxide (SOx) gases to the atmosphere when combusted in diesel engines. Desulphurization of TPO is necessary due to the increasing stringent environmental regulations worldwide. Hydrodesulphurization (HDS) is the commonly practiced technique for the removal of sulfur species in liquid hydrocarbons. However, the HDS technique fails in the presence of complex sulfur species such as Dibenzothiopene (DBT) present in TPO. This study aims to investigate the viability of photodegradation (Photocatalytic oxidative desulphurization) and adsorptive desulphurization technologies for efficient removal of complex and non-complex sulfur species in TPO. This study focuses on optimizing the cleaning (removal of impurities and asphaltenes) process by varying process parameters; temperature, stirring speed, acid/oil ratio and time. The treated TPO will then be sent for vacuum distillation to attain the desired diesel like fuel. The effect of temperature, pressure and time will be determined for vacuum distillation of both raw TPO and the acid treated oil for comparison purposes. Polycyclic sulfides present in the distilled (diesel like) light oil will be oxidized dominantly to the corresponding sulfoxides and sulfone via a photo-catalyzed system using TiO2 as a catalyst and hydrogen peroxide as an oxidizing agent and finally acetonitrile will be used as an extraction solvent. Adsorptive desulphurization will be used to adsorb traces of sulfurous compounds which remained during photocatalytic desulphurization step. This desulphurization convoy is expected to give high desulphurization efficiency with reasonable oil recovery.

Keywords: adsorption, asphaltenes, photocatalytic oxidation, pyrolysis

Procedia PDF Downloads 257
1430 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods

Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz

Abstract:

Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.

Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure

Procedia PDF Downloads 63