Search results for: line voltage stability indices (LVSI)
430 Evaluation of Kabul BRT Route Network with Application of Integrated Land-use and Transportation Model
Authors: Mustafa Mutahari, Nao Sugiki, Kojiro Matsuo
Abstract:
The four decades of war, lack of job opportunities, poverty, lack of services, and natural disasters in different provinces of Afghanistan have contributed to a rapid increase in the population of Kabul, the capital city of Afghanistan. Population census has not been conducted since 1979, the first and last population census in Afghanistan. However, according to population estimations by Afghan authorities, the population of Kabul has been estimated at more than 4 million people, whereas the city was designed for two million people. Although the major transport mode of Kabul residents is public transport, responsible authorities within the country failed to supply the required means of transportation systems for the city. Besides, informal resettlement, lack of intersection control devices, presence of illegal vendors on streets, presence of illegal and unstandardized on-street parking and bus stops, driver`s unprofessional behavior, weak traffic law enforcement, and blocked roads and sidewalks have contributed to the extreme traffic congestion of Kabul. In 2018, the government of Afghanistan approved the Kabul city Urban Design Framework (KUDF), a vision towards the future of Kabul, which provides strategies and design guidance at different scales to direct urban development. Considering traffic congestion of the city and its budget limitations, the KUDF proposes a BRT route network with seven lines to reduce the traffic congestion, and it is said to facilitate more than 50% of Kabul population to benefit from this service. Based on the KUDF, it is planned to increase the BRT mode share from 0% to 17% and later to 30% in medium and long-term planning scenarios, respectively. Therefore, a detailed research study is needed to evaluate the proposed system before the implementation stage starts. The integrated land-use transport model is an effective tool to evaluate the Kabul BRT because of its future assessment capabilities that take into account the interaction between land use and transportation. This research aims to analyze and evaluate the proposed BRT route network with the application of an integrated land-use and transportation model. The research estimates the population distribution and travel behavior of Kabul within small boundary scales. The actual road network and land-use detailed data of the city are used to perform the analysis. The BRT corridors are evaluated not only considering its impacts on the spatial interactions in the city`s transportation system but also on the spatial developments. Therefore, the BRT are evaluated with the scenarios of improving the Kabul transportation system based on the distribution of land-use or spatial developments, planned development typology and population distribution of the city. The impacts of the new improved transport system on the BRT network are analyzed and the BRT network is evaluated accordingly. In addition, the research also focuses on the spatial accessibility of BRT stops, corridors, and BRT line beneficiaries, and each BRT stop and corridor are evaluated in terms of both access and geographic coverage, as well.Keywords: accessibility, BRT, integrated land-use and transport model, travel behavior, spatial development
Procedia PDF Downloads 222429 Investigation of Alumina Membrane Coated Titanium Implants on Osseointegration
Authors: Pinar Erturk, Sevde Altuntas, Fatih Buyukserin
Abstract:
In order to obtain an effective integration between an implant and a bone, implant surfaces should have similar properties to bone tissue surfaces. Especially mimicry of the chemical, mechanical and topographic properties of the implant to the bone is crucial for fast and effective osseointegration. Titanium-based biomaterials are more preferred in clinical use, and there are studies of coating these implants with oxide layers that have chemical/nanotopographic properties stimulating cell interactions for enhanced osseointegration. There are low success rates of current implantations, especially in craniofacial implant applications, which are large and vital zones, and the oxide layer coating increases bone-implant integration providing long-lasting implants without requiring revision surgery. Our aim in this study is to examine bone-cell behavior on titanium implants with an aluminum oxide layer (AAO) on effective osseointegration potential in the deformation of large zones with difficult spontaneous healing. In our study, aluminum layer coated titanium surfaces were anodized in sulfuric, phosphoric, and oxalic acid, which are the most common used AAO anodization electrolytes. After morphologic, chemical, and mechanical tests on AAO coated Ti substrates, viability, adhesion, and mineralization of adult bone cells on these substrates were analyzed. Besides with atomic layer deposition (ALD) as a sensitive and conformal technique, these surfaces were coated with pure alumina (5 nm); thus, cell studies were performed on ALD-coated nanoporous oxide layers with suppressed ionic content too. Lastly, in order to investigate the effect of the topography on the cell behavior, flat non-porous alumina layers on silicon wafers formed by ALD were compared with the porous ones. Cell viability ratio was similar between anodized surfaces, but pure alumina coated titanium and anodized surfaces showed a higher viability ratio compared to bare titanium and bare anodized ones. Alumina coated titanium surfaces, which anodized in phosphoric acid, showed significantly different mineralization ratios after 21 days over other bare titanium and titanium surfaces which anodized in other electrolytes. Bare titanium was the second surface that had the highest mineralization ratio. Otherwise, titanium, which is anodized in oxalic acid electrolyte, demonstrated the lowest mineralization. No significant difference was shown between bare titanium and anodized surfaces except AAO titanium surface anodized in phosphoric acid. Currently, osteogenic activities of these cells on the genetic level are investigated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis results of RUNX-2, VEGF, OPG, and osteopontin genes. Also, as a result of the activities of the genes mentioned before, Western Blot will be used for protein detection. Acknowledgment: The project is supported by The Scientific and Technological Research Council of Turkey.Keywords: alumina, craniofacial implant, MG-63 cell line, osseointegration, oxalic acid, phosphoric acid, sulphuric acid, titanium
Procedia PDF Downloads 131428 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids
Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout
Abstract:
Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.Keywords: graphene, layered material, field emission, plasma, doping
Procedia PDF Downloads 361427 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy
Authors: Shiva Shakori Poshteh
Abstract:
Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery
Procedia PDF Downloads 72426 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions
Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella
Abstract:
Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity
Procedia PDF Downloads 124425 Nutrition Budgets in Uganda: Research to Inform Implementation
Authors: Alexis D'Agostino, Amanda Pomeroy
Abstract:
Background: Resource availability is essential to effective implementation of national nutrition policies. To this end, the SPRING Project has collected and analyzed budget data from government ministries in Uganda, international donors, and other nutrition implementers to provide data for the first time on what funding is actually allocated to implement nutrition activities named in the national nutrition plan. Methodology: USAID’s SPRING Project used the Uganda Nutrition Action Plan (UNAP) as the starting point for budget analysis. Thorough desk reviews of public budgets from government, donors, and NGOs were mapped to activities named in the UNAP and validated by key informants (KIs) across the stakeholder groups. By relying on nationally-recognized and locally-created documents, SPRING provided a familiar basis for discussions to increase credibility and local ownership of findings. Among other things, the KIs validated the amount, source, and type (specific or sensitive) of funding. When only high-level budget data were available, KIs provided rough estimates of the percentage of allocations that were actually nutrition-relevant, allowing creation of confidence intervals around some funding estimates. Results: After validating data and narrowing in on estimates of funding to nutrition-relevant programming, researchers applied a formula to estimate overall nutrition allocations. In line with guidance by the SUN Movement and its three-step process, nutrition-specific funding was counted at 100% of its allocation amount, while nutrition sensitive funding was counted at 25%. The vast majority of nutrition funding in Uganda is off-budget, with over 90 percent of all nutrition funding is provided outside of the government system. Overall allocations are split nearly evenly between nutrition-specific and –sensitive activities. In FY 2013/14, the two-year study’s baseline year, on- and off-budget funding for nutrition was estimated to be around 60 million USD. While the 60 million USD allocations compare favorably to the 66 million USD estimate of the cost of the UNAP, not all activities are sufficiently funded. Those activities with a focus on behavior change were the most underfunded. In addition, accompanying qualitative research suggested that donor funding for nutrition activities may shift government funding into other areas of work, making it difficult to estimate the sustainability of current nutrition investments.Conclusions: Beyond providing figures, these estimates can be used together with the qualitative results of the study to explain how and why these amounts were allocated for particular activities and not others, examine the negotiation process that occurred, and suggest options for improving the flow of finances to UNAP activities for the remainder of the policy tenure. By the end of the PBN study, several years of nutrition budget estimates will be available to compare changes in funding over time. Halfway through SPRING’s work, there is evidence that country stakeholders have begun to feel ownership over the ultimate findings and some ministries are requesting increased technical assistance in nutrition budgeting. Ultimately, these data can be used within organization to advocate for more and improved nutrition funding and to improve targeting of nutrition allocations.Keywords: budget, nutrition, financing, scale-up
Procedia PDF Downloads 448424 Sorghum Polyphenols Encapsulated by Spray Drying, Using Modified Starches as Wall Materials
Authors: Adriana Garcia G., Alberto A. Escobar P., Amira D. Calvo L., Gabriel Lizama U., Alejandro Zepeda P., Fernando Martínez B., Susana Rincón A.
Abstract:
Different studies have recently been focused on the use of antioxidants such as polyphenols because of to its anticarcinogenic capacity. However, these compounds are highly sensible to environmental factors such as light and heat, so lose its long-term stability, besides possess an astringent and bitter taste. Nevertheless, the polyphenols can be protected by microcapsule formulation. In this sense, a rich source of polyphenols is sorghum, besides presenting a high starch content. Due to the above, the aim of this work was to obtain modified starches from sorghum by extrusion to encapsulate polyphenols the sorghum by spray drying. Polyphenols were extracted by ethanol solution from sorghum (Pajarero/red) and determined by the method of Folin-Ciocalteu, obtaining GAE at 30 mg/g. Moreover, was extracted starch of sorghum (Sinaloense/white) through wet milling (yield 32 %). The hydrolyzed starch was modified with three treatments: acetic anhydride (2.5g/100g), sodium tripolyphosphate (4g/100g), and sodium tripolyphosphate/ acetic anhydride (2g/1.25g by each 100 g) by extrusion. Processing conditions of extrusion were as follows: barrel temperatures were of 60, 130 and 170 °C at the feeding, transition, and high-pressure extrusion zones, respectively. Analysis of Fourier Transform Infrared spectroscopy (FTIR), showed bands exhibited of acetyl groups (1735 cm-1) and phosphates (1170 cm-1, 910 cm-1 and 525 cm-1), indicating the respective modification of starch. Besides, all modified starches not developed viscosity, which is a characteristic required for use in the encapsulation of polyphenols using the spray drying technique. As result of the modification starch, was obtained a water solubility index (WSI) from 33.8 to 44.8 %, and crystallinity from 8 to 11 %, indicating the destruction of the starch granule. Afterwards, microencapsulation of polyphenols was developed by spray drying, with a blend of 10 g of modified starch, 60 ml polyphenol extract and 30 ml of distilled water. Drying conditions were as follows: inlet air temperature 150 °C ± 1, outlet air temperature 80°C ± 5. As result of the microencapsulation: were obtained yields of 56.8 to 77.4 % and an efficiency of encapsulation from 84.6 to 91.4 %. The FTIR analysis showed evidence of microcapsules loaded with polyphenols in bands 1042 cm-1, 1038 cm-1 and 1148 cm-1. Analysis Differential scanning calorimetry (DSC) showed transition temperatures from 144.1 to 173.9 °C. For the order hand, analysis of Scanning Electron Microscopy (SEM), were observed rounded surfaces with concavities, typical feature of microcapsules produced by spray drying, how result of rapid evaporation of water. Finally, the modified starches were obtained by extrusion with good characteristics for use as cover materials by spray drying, where the phosphorylated starch was the best treatment in this work, according to the encapsulation yield, efficiency, and transition temperature.Keywords: encapsulation, extrusion, modified starch, polyphenols, spray drying
Procedia PDF Downloads 310423 Selective Extraction of Lithium from Native Geothermal Brines Using Lithium-ion Sieves
Authors: Misagh Ghobadi, Rich Crane, Karen Hudson-Edwards, Clemens Vinzenz Ullmann
Abstract:
Lithium is recognized as the critical energy metal of the 21st century, comparable in importance to coal in the 19th century and oil in the 20th century, often termed 'white gold'. Current global demand for lithium, estimated at 0.95-0.98 million metric tons (Mt) of lithium carbonate equivalent (LCE) annually in 2024, is projected to rise to 1.87 Mt by 2027 and 3.06 Mt by 2030. Despite anticipated short-term stability in supply and demand, meeting the forecasted 2030 demand will require the lithium industry to develop an additional capacity of 1.42 Mt of LCE annually, exceeding current planned and ongoing efforts. Brine resources constitute nearly 65% of global lithium reserves, underscoring the importance of exploring lithium recovery from underutilized sources, especially geothermal brines. However, conventional lithium extraction from brine deposits faces challenges due to its time-intensive process, low efficiency (30-50% lithium recovery), unsuitability for low lithium concentrations (<300 mg/l), and notable environmental impacts. Addressing these challenges, direct lithium extraction (DLE) methods have emerged as promising technologies capable of economically extracting lithium even from low-concentration brines (>50 mg/l) with high recovery rates (75-98%). However, most studies (70%) have predominantly focused on synthetic brines instead of native (natural/real), with limited application of these approaches in real-world case studies or industrial settings. This study aims to bridge this gap by investigating a geothermal brine sample collected from a real case study site in the UK. A Mn-based lithium-ion sieve (LIS) adsorbent was synthesized and employed to selectively extract lithium from the sample brine. Adsorbents with a Li:Mn molar ratio of 1:1 demonstrated superior lithium selectivity and adsorption capacity. Furthermore, the pristine Mn-based adsorbent was modified through transition metals doping, resulting in enhanced lithium selectivity and adsorption capacity. The modified adsorbent exhibited a higher separation factor for lithium over major co-existing cations such as Ca, Mg, Na, and K, with separation factors exceeding 200. The adsorption behaviour was well-described by the Langmuir model, indicating monolayer adsorption, and the kinetics followed a pseudo-second-order mechanism, suggesting chemisorption at the solid surface. Thermodynamically, negative ΔG° values and positive ΔH° and ΔS° values were observed, indicating the spontaneity and endothermic nature of the adsorption process.Keywords: adsorption, critical minerals, DLE, geothermal brines, geochemistry, lithium, lithium-ion sieves
Procedia PDF Downloads 47422 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment
Authors: Nabil Al-Zaqri
Abstract:
Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production
Procedia PDF Downloads 141421 Challenges of Strategies for Improving Sustainability in Urban Historical Context in Developing Countries: The Case of Shiraz Bein Al-Haramein
Authors: Amir Hossein Ashari, Sedighe Erfan Manesh
Abstract:
One of the problems in developing countries is renovating the historical context and inducing behaviors appropriate to modern life to such a context. This study was conducted using field and library methods in 2012. Similar cases carried out in Iran and developing countries were compared to unveil the strengths and weaknesses of these projects. At present, in the historical context of Shiraz, the distance between two religious shrines of Shahcheragh (Ahmad ibn Musa) and Astaneh (Sayed Alaa al-Din Hossein), which are significant places in religious, cultural, social, and economic terms, is an area full of historic places called Bein Al-Haramein. Unfortunately, some of these places have been worn out and are not appropriate for common uses. The basic strategy of Bein Al-Haramein was to improve social development of Shiraz, to enhance the vitality and dynamism of the historical context of Bein Al-Haramein and to create tourist attractions in order to boost the city's economic and social stability. To this end, the project includes the huge Bein Al-Haramein Commercial Complex which is under construction now. To construct the complex, officials have decided to demolish places of historical value which can lead to irreparable consequences. Iranian urban design has always been based on three elements of bazaars, mosques and government facilities with bazaars being the organic connector of the other elements. Therefore, the best strategy in the above case is to provide for a commercial connection between the two poles. Although this strategy is included in the project, lack of attention to renovation principles in this area and complete destruction of the context will lead to its irreversible damage and will destroy its cultural and historical identity. In urban planning of this project, some important issues have been neglected including: preserving valuable buildings and special old features of the city, rebuilding worn buildings and context to attract trust and confidence of the people, developing new models according to changes, improving the structural position of old context with minimal degradation, attracting partnerships of residents and protecting their rights and finally using potential facilities of the old context. The best strategy for achieving sustainability in Bein Al-Haramein can be the one used in the distance between Santa Maria Novella and Santa Maria Del Fiore churches in historical context where while protecting the historic context and constructions, old buildings were renovated and given different commercial and service uses making them sustainable and dynamic places. Similarly, in Bein Al-Haramein, renovating old constructions and monuments and giving different commercial and other uses to them can help improve the economic and social sustainability of the area.Keywords: Bein Al-Haramein, sustainability, historical context, historical context
Procedia PDF Downloads 443420 The Messy and Irregular Experience of Entrepreneurial Life
Authors: Hannah Dean
Abstract:
The growth ideology, and its association with progress, is an important construct in the narrative of modernity. This ideology is embedded in neoclassical economic growth theory which conceptualises growth as linear and predictable, and the entrepreneur as a rational economic manager. This conceptualisation has been critiqued for reinforcing the managerial discourse in entrepreneurship studies. Despite these critiques, both the neoclassical growth theory and its adjacent managerial discourse dominate entrepreneurship studies notably the literature on female entrepreneurs. The latter is the focus of this paper. Given this emphasis on growth, female entrepreneurs are portrayed as problematic because their growth lags behind their male counterparts. This image which ignores the complexity and diversity of female entrepreneurs’ experience persists in the literature due to the lack of studies that analyse the process and contextual factors surrounding female entrepreneurs’ experience. This study aims to address the subordination of female entrepreneurs by questioning the hegemonic logic of economic growth and the managerial discourse as a true representation for the entrepreneurial experience. This objective is achieved by drawing on Schumpeter’s theorising and narrative inquiry. This exploratory study undertakes in depth interviews to gain insights into female entrepreneurs’ experience and the impact of the economic growth model and the managerial discourse on their performance. The narratives challenge a number of assumptions about female entrepreneurs. The participants occupied senior positions in the corporate world before setting up their businesses. This is at odds with much writing which assumes that women underperform because they leave their career without gaining managerial experience to achieve work-life balance. In line with Schumpeter, who distinguishes the entrepreneur from the manager, the participants’ main function was innovation. They did not believe that the managerial paradigm governing their corporate careers was applicable to their entrepreneurial experience. Formal planning and managerial rationality can hinder their decision making process. The narratives point to the gap between the two worlds which makes stepping into entrepreneurship a scary move. Schumpeter argues that the entrepreneurial process is evolutionary and that failure is an integral part of it. The participants’ entrepreneurial process was in fact irregular. The performance of new combinations was not always predictable. They therefore relied on their initiative. The inhibition to deploy these traits had an adverse effect on business growth. The narratives also indicate that over-reliance on growth threaten the business survival as it faces competing pressures. The study offers theoretical and empirical contributions to (female) entrepreneurship studies by presenting Schumpeter’s theorising as an alternative theoretical framework to the neoclassical economic growth theory. The study also reduces entrepreneurs’ vulnerability by making them aware of the negative influence that the linear growth model and the managerial discourse hold upon their performance. The study has implications for policy makers as it generates new knowledge that incorporates the current social and economic changes in the context of entrepreneurs that can no longer be sustained by the linear growth models especially in the current economic climate.Keywords: economic growth, female entrepreneurs, managerial discourse, Schumpeter
Procedia PDF Downloads 297419 Assessment of Psychological Needs and Characteristics of Elderly Population for Developing Information and Communication Technology Services
Authors: Seung Ah Lee, Sunghyun Cho, Kyong Mee Chung
Abstract:
Rapid population aging became a worldwide demographic phenomenon due to rising life expectancy and declining fertility rates. Considering the current increasing rate of population aging, it is assumed that Korean society enters into a ‘super-aged’ society in 10 years, in which people aged 65 years or older account for more than 20% of entire population. In line with this trend, ICT services aimed to help elderly people to improve the quality of life have been suggested. However, existing ICT services mainly focus on supporting health or nursing care and are somewhat limited to meet a variety of specialized needs and challenges of this population. It is pointed out that the majority of services have been driven by technology-push policies. Given that the usage of ICT services greatly vary on individuals’ socio-economic status (SES), physical and psychosocial needs, this study systematically categorized elderly population into sub-groups and identified their needs and characteristics related to ICT usage in detail. First, three assessment criteria (demographic variables including SES, cognitive functioning level, and emotional functioning level) were identified based on previous literature, experts’ opinions, and focus group interview. Second, survey questions for needs assessment were developed based on the criteria and administered to 600 respondents from a national probability sample. The questionnaire consisted of 67 items concerning demographic information, experience on ICT services and information technology (IT) devices, quality of life and cognitive functioning, etc. As the result of survey, age (60s, 70s, 80s), education level (college graduates or more, middle and high school, less than primary school) and cognitive functioning level (above the cut-off, below the cut-off) were considered the most relevant factors for categorization and 18 sub-groups were identified. Finally, 18 sub-groups were clustered into 3 groups according to following similarities; computer usage rate, difficulties in using ICT, and familiarity with current or previous job. Group 1 (‘active users’) included those who with high cognitive function and educational level in their 60s and 70s. They showed favorable and familiar attitudes toward ICT services and used the services for ‘joyful life’, ‘intelligent living’ and ‘relationship management’. Group 2 (‘potential users’), ranged from age of 60s to 80s with high level of cognitive function and mostly middle to high school graduates, reported some difficulties in using ICT and their expectations were lower than in group 1 despite they were similar to group 1 in areas of needs. Group 3 (‘limited users’) consisted of people with the lowest education level or cognitive function, and 90% of group reported difficulties in using ICT. However, group 3 did not differ from group 2 regarding the level of expectation for ICT services and their main purpose of using ICT was ‘safe living’. This study developed a systematic needs assessment tool and identified three sub-groups of elderly ICT users based on multi-criteria. It is implied that current cognitive function plays an important role in using ICT and determining needs among the elderly population. Implications and limitations were further discussed.Keywords: elderly population, ICT, needs assessment, population aging
Procedia PDF Downloads 143418 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins
Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava
Abstract:
The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles
Procedia PDF Downloads 156417 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality
Authors: Qian Yi Ooi
Abstract:
At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality
Procedia PDF Downloads 222416 Ruta graveolens Fingerprints Obtained with Reversed-Phase Gradient Thin-Layer Chromatography with Controlled Solvent Velocity
Authors: Adrian Szczyrba, Aneta Halka-Grysinska, Tomasz Baj, Tadeusz H. Dzido
Abstract:
Since prehistory, plants were constituted as an essential source of biologically active substances in folk medicine. One of the examples of medicinal plants is Ruta graveolens L. For a long time, Ruta g. herb has been famous for its spasmolytic, diuretic, or anti-inflammatory therapeutic effects. The wide spectrum of secondary metabolites produced by Ruta g. includes flavonoids (eg. rutin, quercetin), coumarins (eg. bergapten, umbelliferone) phenolic acids (eg. rosmarinic acid, chlorogenic acid), and limonoids. Unfortunately, the presence of produced substances is highly dependent on environmental factors like temperature, humidity, or soil acidity; therefore standardization is necessary. There were many attempts of characterization of various phytochemical groups (eg. coumarins) of Ruta graveolens using the normal – phase thin-layer chromatography (TLC). However, due to the so-called general elution problem, usually, some components remained unseparated near the start or finish line. Therefore Ruta graveolens is a very good model plant. Methanol and petroleum ether extract from its aerial parts were used to demonstrate the capabilities of the new device for gradient thin-layer chromatogram development. The development of gradient thin-layer chromatograms in the reversed-phase system in conventional horizontal chambers can be disrupted by problems associated with an excessive flux of the mobile phase to the surface of the adsorbent layer. This phenomenon is most likely caused by significant differences between the surface tension of the subsequent fractions of the mobile phase. An excessive flux of the mobile phase onto the surface of the adsorbent layer distorts the flow of the mobile phase. The described effect produces unreliable, and unrepeatable results, causing blurring and deformation of the substance zones. In the prototype device, the mobile phase solution is delivered onto the surface of the adsorbent layer with controlled velocity (by moving pipette driven by 3D machine). The delivery of the solvent to the adsorbent layer is equal to or lower than that of conventional development. Therefore chromatograms can be developed with optimal linear mobile phase velocity. Furthermore, under such conditions, there is no excess of eluent solution on the surface of the adsorbent layer so the higher performance of the chromatographic system can be obtained. Directly feeding the adsorbent layer with eluent also enables to perform convenient continuous gradient elution practically without the so-called gradient delay. In the study, unique fingerprints of methanol and petroleum ether extracts of Ruta graveolens aerial parts were obtained with stepwise gradient reversed-phase thin-layer chromatography. Obtained fingerprints under different chromatographic conditions will be compared. The advantages and disadvantages of the proposed approach to chromatogram development with controlled solvent velocity will be discussed.Keywords: fingerprints, gradient thin-layer chromatography, reversed-phase TLC, Ruta graveolens
Procedia PDF Downloads 289415 Single-parent Families and the Criminal Ramifications on Children in the United Kingdom; A Systematic Review
Authors: Naveed Ali
Abstract:
Under the construct of the ‘traditional family’ set-up (male and female parent) in the United Kingdom, the absence of a male parental figure remains a critical factor associated with an elevated risk of criminal behavior among youths. Empirical evidence suggests that father absence significantly correlates with increased rates of juvenile delinquency and criminality. For instance, data reveals that approximately 63% of young offenders in the United Kingdom originate from single-parent households, predominantly those without a father. Moreover, research displays that boys from father-absent homes are three times more likely to exhibit antisocial behavior compared to their peers from two-parent families. This absence can negatively impact educational attainment, with children from fatherless homes being twice as likely to leave school prematurely, thereby increasing their vulnerability to peer influence and gang affiliation- key pathways into criminal activities. Both legal frameworks and social policies in the United Kingdom acknowledge the pivotal role of family stability in crime prevention. Initiatives including parenting support programs, community-based interventions, and targeted youth services seek to address the challenges faced by single-parent families and mitigate the criminogenic effects of father absence. Despite these efforts, persistent challenges remain, including the need to address the broader socioeconomic determinants of family instability and to refine legal strategies that effectively address the root causes of youth offending linked to the absence of a male parental figure. A nuanced understanding of these dynamics is essential for developing more effective legal and social interventions aimed at reducing juvenile delinquency and supporting at-risk populations within the United Kingdom. This paper will highlight the significant impact of the absence of a male parental figure on youth crime rates in the United Kingdom, underlining the need for enhanced legal and social responses. By examining the interplay between family structure and juvenile offending, the paper will underline the importance of developing more comprehensive interventions that address both familial factors and the wider socioeconomic context. The findings aim to guide policymakers and practitioners in creating more effective strategies to reduce youth crime, ultimately strengthening support systems for vulnerable families and mitigating the adverse effects of father absence on young individuals.Keywords: criminality, family law, legal framework, the united kingdom perspective
Procedia PDF Downloads 31414 Voices of the Students From a Fully Inclusive Classroom
Authors: Ashwini Tiwari
Abstract:
Introduction: Inclusive education for all is a multifaceted approach that requires system thinking and the promotion of a "Culture of Inclusion." Such can only be achieved through the collaboration of multiple stakeholders at the community, regional, state, national, and international levels. Researchers have found effective practices used in inclusive general classrooms are beneficial to all students, including students with disabilities, those who experience challenges academically and socially, and students without disabilities as well. However, to date, no statistically significant effects on the academic performance of students without disabilities in the presence of students with disabilities have been revealed. Therefore, proponents against inclusive education practices, based solely on their beliefs regarding the detrimental effects of students without disabilities, appears to have unfounded perceptions. This qualitative case study examines students' perspectives and beliefs about inclusive education in a middle school in South Texas. More specifically, this study examined students understanding of how inclusive education practices intersect with the classroom community. The data was collected from the students attending fully inclusive classrooms through interviews and focus groups. The findings suggest that peer integration and friendships built during classes are an essential part of schooling for both disabled and non-disabled students. Research Methodology: This qualitative case study used observations and focus group interviews with 12 middle school students attending an inclusive classroom at a public school located in South Texas. The participant of this study includes eight females and five males. All the study participants attend a fully inclusive middle school with special needs peers. Five of the students had disabilities. The focus groups and interviews were conducted during for entire academic year, with an average of one focus group and observation each month. The data were analyzed using the constant comparative method. The data from the focus group and observation were continuously compared for emerging codes during the data collection process. Codes were further refined and merged. Themes emerged as a result of the interpretation at the end of the data analysis process. Findings and discussion: This study was conducted to examine disabled and non-disabled students' perspectives on the inclusion of disabled students. The study revealed that non-disabled students generally have positive attitudes toward their disabled peers. The students in the study did not perceive inclusion as a special provision; rather, they perceived inclusion as a way of instructional practice. Most of the participants in the study spoke about the multiple benefits of inclusion. They emphasized that peer integration and friendships built during classes are an essential part of their schooling. Students believed that it was part of their responsibility to assist their peers in the ways possible. This finding is in line with the literature that the personality of children with disabilities is not determined by their disability but rather by their social environment and its interaction with the child. Interactions with peers are one of the most important socio-cultural conditions for the development of children with disabilities.Keywords: inclusion, special education, k-12 education, student voices
Procedia PDF Downloads 81413 Youth Participation in Peace Building and Development in Northern Uganda
Authors: Eric Awich Ochen
Abstract:
The end of the conflict in Northern Uganda in 2006 brought about an opportunity for the youth to return to their original home and contribute to the peace building and development process of their communities. Post-conflict is used here to refer to the post-armed conflict situation and activities of rebels of Joseph Kony in northern Uganda. While the rebels remain very much active in the Sudan and Central African Republic, in Uganda the last confrontations occurred around 2006 or earlier, and communities have returned to their homes and began the process of rebuilding their lives. It is argued that socio-economic reconstruction is at the heart of peacebuilding and sustenance of positive peace in the aftermath of conflict, as it has a bearing on post-conflict stability and good governance. We recognize that several post-conflict interventions within Northern Uganda have targeted women and children with a strong emphasis on family socio-economic empowerment and capacity building, including access to micro finance. The aim of this study was to examine the participation of the youth in post-conflict peace building and development in Northern Uganda by assessing the breadth and width of their engagement and the stages of programming cycle that they are involved in, interrogating the space for participation and how they are facilitating or constraining participation. It was further aimed at examining the various dimensions of participation at play in Northern Uganda and where this fits within the conceptual debates on peace building and development in the region. Supporting young people emerging out of protracted conflict to re-establish meaningful socio-economic engagements and livelihoods is fundamental to their participation in the affairs of the community. The study suggests that in the post-conflict development context of Northern Uganda, participation has rarely been disaggregated or differentiated by sectors or groups. Where some disaggregation occurs, then the main emphasis has always been on either women or children. It appears therefore that little meaningful space has thus been created for young people to engage and participate in peace building initiatives within the region. In other cases where some space is created for youth participation, this has been in pre-conceived programs or interventions conceived by the development organizations with the youth or young people only invited to participate at particular stages of the project implementation cycle. Still within the implementation of the intervention, the extent to which young people participate is bounded, with little power to influence the course of the interventions or make major decisions. It is thus visible that even here young people mainly validate and legitimize what are predetermined processes only act as pawns in the major chess games played by development actors (dominant peace building partners). This paper, therefore, concludes that the engagement of the youth in post-conflict peace building has been quite problematic and tokenistic and has not given the adequate youth space within which they could ably participate and express themselves in the ensuing interventions.Keywords: youth, conflict, peace building, participation
Procedia PDF Downloads 403412 Ecological Engineering Through Organic Amendments: Enhancing Pest Regulation, Beneficial Insect Populations, and Rhizosphere Microbial Diversity in Cabbage Ecosystems
Authors: Ravi Prakash Maurya, Munaswamyreddygari Sreedhar
Abstract:
The present studies on ecological engineering through soil amendments in cabbage crops for insect pests regulation were conducted at G. B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, India. Ten treatments viz., Farm Yard Manure (FYM), Neem cake (NC), Vermicompost (VC), Poultry manure (PM), PM+FYM, NC+VC, NC+PM, VC+FYM, Urea+ SSP+MOP (Standard Check) and Untreated Check were evaluated to study the effect of these amendments on the population of insect pests, natural enemies and the microbial community of the rhizosphere in the cabbage crop ecosystem. The results revealed that most of the cabbage pests, viz., aphids, head borer, gram pod borer, and armyworm, were more prevalent in FYM, followed by PM and NC-treated plots. The best cost-benefit ratio was found in PM + FYM treatment, which was 1: 3.62, while the lowest, 1: 0.97, was found in the VC plot. The population of natural enemies like spiders, coccinellids, syrphids, and other hymenopterans and dipterans was also found to be prominent in organic plots, namely FYM, followed by VC and PM plots. Diversity studies on organic manure-treated plots were also carried out, which revealed a total of nine insect orders (Hymenoptera, Hemiptera, Lepidoptera, Coleoptera, Neuroptera, Diptera, Orthoptera, Dermaptera, Thysanoptera, and one arthropodan class, Arachnida) in different treatments. The Simpson Diversity Index was also studied and found to be maximum in FYM plots. The metagenomic analysis of the rhizosphere microbial community revealed that the highest bacterial count was found in NC+PM plot as compared to standard check and untreated check. The diverse microbial population contributes to soil aggregation and stability. Healthier soil structures can improve water retention, aeration, and root penetration, which are all crucial for crop health. The further analysis also identified a total of 39 bacterial phyla, among which the most abundant were Actinobacteria, Firmicutes, and the SAR324 clade. Actinobacteria and Firmicutes are known for their roles in decomposing organic matter and mineralizing nutrients. Their highest abundance suggests improved nutrient cycling and availability, which can directly enhance plant growth. Hence, organic amendments in cabbage farming can transform the rhizosphere microbiome, reduce pest pressure, and foster populations of beneficial insects, leading to healthier crops and a more sustainable agricultural ecosystem.Keywords: cabbage ecosystem, organic amendments, rhizosphere microbiome, pest and natural enemy diversity
Procedia PDF Downloads 16411 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel
Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti
Abstract:
With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra
Procedia PDF Downloads 429410 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads
Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani
Abstract:
The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 38409 Corrosion Protection and Failure Mechanism of ZrO₂ Coating on Zirconium Alloy Zry-4 under Varied LiOH Concentrations in Lithiated Water at 360°C and 18.5 MPa
Authors: Guanyu Jiang, Donghai Xu, Huanteng Liu
Abstract:
After the Fukushima-Daiichi accident, the development of accident tolerant fuel cladding materials to improve reactor safety has become a hot topic in the field of nuclear industry. ZrO₂ has a satisfactory neutron economy and can guarantee the fission chain reaction process, which enables it to be a promising coating for zirconium alloy cladding. Maintaining a good corrosion resistance in primary coolant loop during normal operations of Pressurized Water Reactors is a prerequisite for ZrO₂ as a protective coating on zirconium alloy cladding. Research on the corrosion performance of ZrO₂ coating in nuclear water chemistry is relatively scarce, and existing reports failed to provide an in-depth explanation for the failure causes of ZrO₂ coating. Herein, a detailed corrosion process of ZrO₂ coating in lithiated water at 360 °C and 18.5 MPa was proposed based on experimental research and molecular dynamics simulation. Lithiated water with different LiOH solutions in the present work was deaerated and had a dissolved oxygen concentration of < 10 ppb. The concentration of Li (as LiOH) was determined to be 2.3 ppm, 70 ppm, and 500 ppm, respectively. Corrosion tests were conducted in a static autoclave. Modeling and corresponding calculations were operated on Materials Studio software. The calculation of adsorption energy and dynamics parameters were undertaken by the Energy task and Dynamics task of the Forcite module, respectively. The protective effect and failure mechanism of ZrO₂ coating on Zry-4 under varied LiOH concentrations was further revealed by comparison with the coating corrosion performance in pure water (namely 0 ppm Li). ZrO₂ coating provided a favorable corrosion protection with the occurrence of localized corrosion at low LiOH concentrations. Factors influencing corrosion resistance mainly include pitting corrosion extension, enhanced Li+ permeation, short-circuit diffusion of O²⁻ and ZrO₂ phase transformation. In highly-concentrated LiOH solutions, intergranular corrosion, internal oxidation, and perforation resulted in coating failure. Zr ions were released to coating surface to form flocculent ZrO₂ and ZrO₂ clusters due to the strong diffusion and dissolution tendency of α-Zr in the Zry-4 substrate. Considering that primary water of Pressurized Water Reactors usually includes 2.3 ppm Li, the stability of ZrO₂ make itself a candidate fuel cladding coating material. Under unfavorable conditions with high Li concentrations, more boric acid should be added to alleviate caustic corrosion of ZrO₂ coating once it is used. This work can provide some references to understand the service behavior of nuclear coatings under variable water chemistry conditions and promote the in-pile application of ZrO₂ coating.Keywords: ZrO₂ coating, Zry-4, corrosion behavior, failure mechanism, LiOH concentration
Procedia PDF Downloads 86408 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film
Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta
Abstract:
A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.Keywords: biosensor, reagentless, urea, ZnO-CuO composite
Procedia PDF Downloads 290407 Ex-vivo Bio-distribution Studies of a Potential Lung Perfusion Agent
Authors: Shabnam Sarwar, Franck Lacoeuille, Nadia Withofs, Roland Hustinx
Abstract:
After the development of a potential surrogate of MAA, and its successful application for the diagnosis of pulmonary embolism in artificially embolized rats’ lungs, this microparticulate system were radiolabelled with gallium-68 to synthesize 68Ga-SBMP with high radiochemical purity >99%. As a prerequisite step of clinical trials, 68Ga- labelled starch based microparticles (SBMP) were analysed for their in-vivo behavior in small animals. The purpose of the presented work includes the ex-vivo biodistribution studies of 68Ga-SBMP in order to assess the activity uptake in target organs with respect to time, excretion pathways of the radiopharmaceutical, %ID/g in major organs, T/NT ratios, in-vivo stability of the radiotracer and subsequently the microparticles in the target organs. Radiolabelling of starch based microparticles was performed by incubating it with 68Ga generator eluate (430±26 MBq) at room temperature and pressure without using any harsh reaction condition. For Ex-vivo biodistribution studies healthy White Wistar rats weighing between 345-460 g were injected intravenously 68Ga-SBMP 20±8 MBq, containing about 2,00,000-6,00,000 SBMP particles in a volume of 700µL. The rats were euthanized at predefined time intervals (5min, 30min, 60min and 120min) and their organ parts were cut, washed, and put in the pre-weighed tubes and measured for radioactivity counts through automatic Gamma counter. The 68Ga-SBMP produced >99% RCP just after 10-20 min incubation through a simple and robust procedure. Biodistribution of 68Ga-SBMP showed that initially just after 5 min post injection major uptake was observed in the lungs following by blood, heart, liver, kidneys, bladder, urine, spleen, stomach, small intestine, colon, skin and skeleton, thymus and at last the smallest activity was found in brain. Radioactivity counts stayed stable in lungs with gradual decrease with the passage of time, and after 2h post injection, almost half of the activity were seen in lungs. This is a sufficient time to perform PET/CT lungs scanning in humans while activity in the liver, spleen, gut and urinary system decreased with time. The results showed that urinary system is the excretion pathways instead of hepatobiliary excretion. There was a high value of T/NT ratios which suggest fine tune images for PET/CT lung perfusion studies henceforth further pre-clinical studies and then clinical trials should be planned in order to utilize this potential lung perfusion agent.Keywords: starch based microparticles, gallium-68, biodistribution, target organs, excretion pathways
Procedia PDF Downloads 177406 ReactorDesign App: An Interactive Software for Self-Directed Explorative Learning
Authors: Chia Wei Lim, Ning Yan
Abstract:
The subject of reactor design, dealing with the transformation of chemical feedstocks into more valuable products, constitutes the central idea of chemical engineering. Despite its importance, the way it is taught to chemical engineering undergraduates has stayed virtually the same over the past several decades, even as the chemical industry increasingly leans towards the use of software for the design and daily monitoring of chemical plants. As such, there has been a widening learning gap as chemical engineering graduates transition from university to the industry since they are not exposed to effective platforms that relate the fundamental concepts taught during lectures to industrial applications. While the success of technology enhanced learning (TEL) has been demonstrated in various chemical engineering subjects, TELs in the teaching of reactor design appears to focus on the simulation of reactor processes, as opposed to arguably more important ideas such as the selection and optimization of reactor configuration for different types of reactions. This presents an opportunity for us to utilize the readily available easy-to-use MATLAB App platform to create an educational tool to aid the learning of fundamental concepts of reactor design and to link these concepts to the industrial context. Here, interactive software for the learning of reactor design has been developed to narrow the learning gap experienced by chemical engineering undergraduates. Dubbed the ReactorDesign App, it enables students to design reactors involving complex design equations for industrial applications without being overly focused on the tedious mathematical steps. With the aid of extensive visualization features, the concepts covered during lectures are explicitly utilized, allowing students to understand how these fundamental concepts are applied in the industrial context and equipping them for their careers. In addition, the software leverages the easily accessible MATLAB App platform to encourage self-directed learning. It is useful for reinforcing concepts taught, complementing homework assignments, and aiding exam revision. Accordingly, students are able to identify any lapses in understanding and clarify them accordingly. In terms of the topics covered, the app incorporates the design of different types of isothermal and non-isothermal reactors, in line with the lecture content and industrial relevance. The main features include the design of single reactors, such as batch reactors (BR), continuously stirred tank reactors (CSTR), plug flow reactors (PFR), and recycle reactors (RR), as well as multiple reactors consisting of any combination of ideal reactors. A version of the app, together with some guiding questions to aid explorative learning, was released to the undergraduates taking the reactor design module. A survey was conducted to assess its effectiveness, and an overwhelmingly positive response was received, with 89% of the respondents agreeing or strongly agreeing that the app has “helped [them] with understanding the unit” and 87% of the respondents agreeing or strongly agreeing that the app “offers learning flexibility”, compared to the conventional lecture-tutorial learning framework. In conclusion, the interactive ReactorDesign App has been developed to encourage self-directed explorative learning of the subject and demonstrate the industrial applications of the taught design concepts.Keywords: explorative learning, reactor design, self-directed learning, technology enhanced learning
Procedia PDF Downloads 94405 Cross Carpeting in Nigerian Politics: Some Legal and Moral Issues Generated
Authors: Agbana Olaseinde Julius, Opadere Olaolu Stephen
Abstract:
The concept of cross carpeting is as old as politics itself. Basically, it entails an individual leaving a political party/group, to join another. The reasons for which cross carpeting is embarked upon are diverse: ideological differences; ethnic and/or religious differences; access to actual or perceived better political opportunities; liberty of association; rancor; etc. The current democratic dispensation in Nigeria has experienced renewed and rather alarming rate of cross carpeting, for reasons including those enumerated above and others. Right to cross carpet is inherent in a democratic setting as well as the political stakeholder; so does it also comprise of the constitutional right of ‘freedom of association’. However, the current species of cross carpeting in Nigeria requires scrutiny, in view of some potential legal and moral challenges it poses for both the present and the future. Cross carpeting is considered both legal and constitutional, but the current spate raises the question of expediency, particularly in a nascent democracy. It is considered to have a propensity of negatively impacting political stability in a polity with fragile nerves. Importantly too, cross carpeting is considered a potential damage to the psyche of posterity with regards to a warped disposition to promises, honour and integrity. The perceived peculiar dimension of cross carpeting in Nigeria raises questions on the quality of leadership presently obtainable in the country, vis-à-vis greed, self-centeredness, disregard for the concern and interest of avowed followers/fans, entrenchment of distrust, etc. Thus, the study made use of primary and secondary sources of information. The primary sources included the Constitutions of the Federal Republic of Nigeria 1999 (as amended); judicial decisions; and the Electoral Act, 2010 (as Amended). The secondary sources comprised of information from books, journals, newspapers, magazines and Internet documents. Data obtained from these sources were subjected to content analysis. Findings of this study show that though the act of cross carpeting may not be in breach of any Statute or Law, it however, in most cases, breaches the morals of expediency. The morality thereof is far from justifiable, and should be condemned in the interest of the present and posterity. There is a great and urgent need to embark on a re-entrenchment of the culture of political ideology in the Nigerian polity, as obtainable in developed democracies. In conclusion, the need to exercise the right of cross carpeting with caution cannot be overemphasized. Membership of a political group/party should be backed by commitment to well defined ideologies and values. Commitment to them should be regarded akin to that found in the family, which is not easily or flippantly jettisoned.Keywords: cross-carpeting, Nigeria, legal, moral issues, politics
Procedia PDF Downloads 449404 Oligarchic Transitions within the Tunisian Autocratic Authoritarian System and the Struggle for Democratic Transformation: Before and beyond the 2010 Jasmine Revolution
Authors: M. Moncef Khaddar
Abstract:
This paper focuses mainly on a contextualized understanding of ‘autocratic authoritarianism’ in Tunisia without approaching its peculiarities in reference to the ideal type of capitalist-liberal democracy but rather analysing it as a Tunisian ‘civilian dictatorship’. This is reminiscent, to some extent, of the French ‘colonial authoritarianism’ in parallel with the legacy of the traditional formal monarchic absolutism. The Tunisian autocratic political system is here construed as a state manufactured nationalist-populist authoritarianism associated with a de facto presidential single party, two successive autocratic presidents and their subservient autocratic elites who ruled with an iron fist the de-colonialized ‘liberated nation’ that came to be subjected to a large scale oppression and domination under the new Tunisian Republic. The diachronic survey of Tunisia’s autocratic authoritarian system covers the early years of autocracy, under the first autocratic president Bourguiba, 1957-1987, as well as the different stages of its consolidation into a police-security state under the second autocratic president, Ben Ali, 1987-2011. Comparing the policies of authoritarian regimes, within what is identified synchronically as a bi-cephalous autocratic system, entails an in-depth study of the two autocrats, who ruled Tunisia for more than half a century, as modern adaptable autocrats. This is further supported by an exploration of the ruling authoritarian autocratic elites who played a decisive role in shaping the undemocratic state-society relations, under the 1st and 2nd President, and left an indelible mark, structurally and ideologically, on Tunisian polity. Emphasis is also put on the members of the governmental and state-party institutions and apparatuses that kept circulating and recycling from one authoritarian regime to another, and from the first ‘founding’ autocrat to his putschist successor who consolidated authoritarian stability, political continuity and autocratic governance. The reconfiguration of Tunisian political life, in the post-autocratic era, since 2011 will be analysed. This will be scrutinized, especially in light of the unexpected return of many high-profile figures and old guards of the autocratic authoritarian apparatchiks. How and why were, these public figures, from an autocratic era, able to return in a supposedly post-revolutionary moment? Finally, while some continue to celebrate the putative exceptional success of ‘democratic transition’ in Tunisia, within a context of ‘unfinished revolution’, others remain perplexed in the face of a creeping ‘oligarchic transition’ to a ‘hybrid regime’, characterized rather by elites’ reformist tradition than a bottom-up genuine democratic ‘change’. This latter is far from answering the 2010 ordinary people’s ‘uprisings’ and ‘aspirations, for ‘Dignity, Liberty and Social Justice’.Keywords: authoritarianism, autocracy, democratization, democracy, populism, transition, Tunisia
Procedia PDF Downloads 150403 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator
Authors: Victoria L. Chester, Usha Kuruganti
Abstract:
The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.Keywords: EMG, forestry, human factors, wrist biomechanics
Procedia PDF Downloads 147402 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins Performance: North Gaza Emergency Sewage Treatment Plant as Case Study
Authors: Sadi Ali, Yaser Kishawi
Abstract:
As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.Keywords: SAT, wastewater quality, soil remediation, North Gaza
Procedia PDF Downloads 234401 Investigation and Comprehensive Benefit Analysis of 11 Typical Polar-Based Agroforestry Models Based on Analytic Hierarchy Process in Anhui Province, Eastern China
Authors: Zhihua Cao, Hongfei Zhao, Zhongneng Wu
Abstract:
The development of polar-based agroforestry was necessary due to the influence of the timber market environment in China, which can promote the coordinated development of forestry and agriculture, and gain remarkable ecological, economic and social benefits. The main agroforestry models of the main poplar planting area in Huaibei plain and along the Yangtze River plain were carried out. 11 typical management models of poplar were selected to sum up: pure poplar forest, poplar-rape-soybean, poplar-wheat-soybean, poplar-rape-cotton, poplar-wheat, poplar-chicken, poplar-duck, poplar-sheep, poplar-Agaricus blazei, poplar-oil peony, poplar-fish, represented by M0-M10, respectively. 12 indexes related with economic, ecological and social benefits (annual average cost, net income, ratio of output to investment, payback period of investment, land utilization ratio, utilization ratio of light energy, improvement and system stability of ecological and production environment, product richness, labor capacity, cultural quality of labor force, sustainability) were screened out to carry on the comprehensive evaluation and analysis to 11 kinds of typical agroforestry models based on analytic hierarchy process (AHP). The results showed that the economic benefit of each agroforestry model was in the order of: M8 > M6 > M9 > M7 > M5 > M10 > M4 > M1 > M2 > M3 > M0. The economic benefit of poplar-A. blazei model was the highest (332, 800 RMB / hm²), followed by poplar-duck and poplar-oil peony model (109, 820RMB /hm², 5, 7226 RMB /hm²). The order of comprehensive benefit was: M8 > M4 > M9 > M6 > M1 > M2 > M3 > M7 > M5 > M10 > M0. The economic benefit and comprehensive benefit of each agroforestry model were higher than that of pure poplar forest. The comprehensive benefit of poplar-A. blazei model was the highest, and that of poplar-wheat model ranked second, while its economic benefit was not high. Next were poplar-oil peony and poplar-duck models. It was suggested that the model of poplar-wheat should be adopted in the plain along the Yangtze River, and the whole cycle mode of poplar-grain, popalr-A. blazei, or poplar-oil peony should be adopted in Huaibei plain, northern Anhui. Furthermore, wheat, rape, and soybean are the main crops before the stand was closed; the agroforestry model of edible fungus or Chinese herbal medicine can be carried out when the stand was closed in order to maximize the comprehensive benefit. The purpose of this paper is to provide a reference for forest farmers in the selection of poplar agroforestry model in the future and to provide the basic data for the sustainable and efficient study of poplar agroforestry in Anhui province, eastern China.Keywords: agroforestry, analytic hierarchy process (AHP), comprehensive benefit, model, poplar
Procedia PDF Downloads 166