Search results for: open flow
269 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago
Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu
Abstract:
Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago
Procedia PDF Downloads 50268 Sustainable Housing and Urban Development: A Study on the Soon-To-Be-Old Population's Impetus to Migrate
Authors: Tristance Kee
Abstract:
With the unprecedented increase in elderly population globally, it is critical to search for new sustainable housing and urban development alternatives to traditional housing options. This research examines concepts of elderly migration pattern in the context of a high density city in Hong Kong to Mainland China. The research objectives are to: 1) explore the relationships between soon-to-be-old elderly and their intentions to move to Mainland upon retirement and their demographic characteristics; and 2) What are the desired amenities, locational factors and activities that are expected in the soon-to-be-old generation’s retirement housing environment? Primary data was collected through questionnaire survey conducted using random sampling method with respondents aged between 45-64 years old. The face-to-face survey was completed by 500 respondents. The survey was divided into four sections. The first section focused on respondent’s demographic information such as gender, age, education attainment, monthly income, housing tenure type and their visits to Mainland China. The second section focused on their retirement plans in terms of intended retirement age, prospective retirement funding and retirement housing options. The third section focused on the respondent’s attitudes toward retiring in Mainland for housing. It asked about their intentions to migrate retire into Mainland and incentives to retire in Hong Kong. The fourth section focused on respondent’s ideal housing environment including preferred housing amenities, desired living environment and retirement activities. The dependent variable in this study was ‘respondent’s consideration to move to Mainland China upon retirement’. Eight primary independent variables were integrated into the study to identify the correlations between them and retirement migration plan. The independent variables include: gender, age, marital status, monthly income, present housing tenure type, property ownership in Hong Kong, relationship with Mainland and the frequency of visiting Mainland China. In addition to the above independent variables, respondents were asked to indicate their retirement plans (retirement age, funding sources and retirement housing options), incentives to migrate to retire (choices included: property ownership, family relations, cost of living, living environment, medical facilities, government welfare benefits, etc.), perceived ideal retirement life qualities including desired amenities (sports, medical and leisure facilities etc.), desired locational qualities (green open space, convenient transport options and accessibility to urban settings etc.) and desired retirement activities (home-based leisure, elderly friendly sports, cultural activities, child care, social activities, etc.). The finding shows correlations between the used independent variables and consideration to migrate for housing options. The two independent variables indicated a possible correlation were gender and the frequency of visiting Mainland at present. When considering the increasing property prices across the border and strong social relationships, potential retirement migration is a very subjective decision that could vary from person to person. This research adds knowledge to housing research and migration study. Although the research is based in Mainland, most of the characteristics identified including better medical services, government welfare and sound urban amenities are shared qualities for all sustainable urban development and housing strategies.Keywords: elderly migration, housing alternative, soon-to-be-old, sustainable environment
Procedia PDF Downloads 211267 Problem, Policy and Polity in Agenda Setting: Analyzing Safe Motherhood Program in India
Authors: Vanita Singh
Abstract:
In developing countries, there are conflicting political agendas; policy makers have to prioritize issues from a list of issues competing for the limited resources. Thus, it is imperative to understand how some issues gain attention, and others lose in the policy circles. Multiple-Streams Theory of Kingdon (1984) is among the influential theories that help to understand the public policy process and is utilitarian for health policy makers to understand how certain health issues emerge on the policy agendas. The issue of maternal mortality was long standing in India and was linked with high birth rate thus the focus of maternal health policy was on family planning since India’s independence. However, a paradigm shift was noted in the maternal health policy in the year 1992 with the launch of Safe Motherhood Programme and then in the year 2005, when the agenda of maternal health policy became universalizing institutional deliveries and phasing-out of Traditional Birth Attendants (TBAs) from the health system. There were many solutions proposed by policy communities other than universalizing of institutional deliveries, including training of TBAs and improving socio-economic conditions of pregnant women. However, Government of India favored medical community, which was advocating for the policy of universalizing institutional delivery, and neglected the solutions proposed by other policy communities. It took almost 15 years for the advocates of institutional delivery to transform their proposed solution into a program - the Janani Suraksha Yojana (JSY), a safe-motherhood program promoting institutional delivery through cash incentives to pregnant women. Thus, the case of safe motherhood policy in India is worth studying to understand how certain issues/problems gain political attention and how advocacy work in policy circles. This paper attempts to understand the factors that favored the agenda of safe-motherhood in the policy circle in India, using John Kingdon’s Multiple-Stream model of agenda-setting. Through document analysis and literature review, the paper traces the evolution of safe motherhood program and maternal health policy. The study has used open source documents available on the website of Ministry of Health and Family Welfare, media reports (Times of India Archive) and related research papers. The documents analyzed include National health policy-1983, National Health Policy-2002, written reports of Ministry of Health and Family Welfare Department, National Rural Health Mission (NRHM) document, documents related to Janani Suraksha Yojana and research articles related to maternal health programme in India. The study finds that focusing events and credible indicators coupled with media attention has the potential to recognize a problem. The political elites favor clearly defined and well-accepted solutions. The trans-national organizations affect the agenda-setting process in a country through conditional resource provision. The closely-knit policy communities and political entrepreneurship are required for advocating solutions high on agendas. The study has implications for health policy makers in identifying factors that have the potential to affect the agenda-setting process for a desired policy agenda and identify the challenges in generating political priorities.Keywords: agenda-setting, focusing events, Kingdon’s model, safe motherhood program India
Procedia PDF Downloads 147266 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding
Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi
Abstract:
Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model
Procedia PDF Downloads 39265 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization
Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries
Abstract:
Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning
Procedia PDF Downloads 267264 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru
Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama
Abstract:
There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.Keywords: water economy, simulation, modeling, integration
Procedia PDF Downloads 155263 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks
Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe
Abstract:
The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D
Procedia PDF Downloads 499262 Solid Waste and Its Impact on the Human Health
Authors: Waseem Akram, Hafiz Azhar Ali Khan
Abstract:
Unplanned urbanization together with change in life from simple to more technologically advanced style with flow of rural masses to urban areas has played a vital role in pilling loads of solid wastes in our environment. The cities and towns have expanded beyond boundaries. Even the uncontrolled population expansion has caused the overall environmental burden. Thus, today the indifference remains as one of the biggest trash that has come up due to the non-responsive behavior of the people. Everyday huge amount of solid waste is thrown in the streets, on the roads, parks, and in all those places that are frequently and often visited by the human beings. This behavior based response in many countries of the world has led to serious health concerns and environmental issues. Over 80% of our products that are sold in the market are packed in plastic bags. None of the bags are later recycled but simply become a permanent environment concern that flies, choke lines or are burnt and release toxic gases in the environment or form dumps of heaps. Lack of classification of the daily waste generated from houses and other places lead to worst clogging of the sewerage lines and formation of ponding areas which ultimately favor vector borne disease and sometimes become a cause of transmission of polio virus. Solid waste heaps were checked at different places of the cities. All of the wastes on visual assessments were classified into plastic bags, papers, broken plastic pots, clay pots, steel boxes, wrappers etc. All solid waste dumping sites in the cities and wastes that were thrown outside of the trash containers usually contained wrappers, plastic bags, and unconsumed food products. Insect populations seen in these sites included the house flies, bugs, cockroaches and mosquito larvae breeding in water filled wrappers, containers or plastic bags. The population of the mosquitoes, cockroaches and houseflies were relatively very high in dumping sites close to human population. This population has been associated with cases like dengue, malaria, dysentery, gastro and also to skin allergies during the monsoon and summer season. Thus, dumping of the huge amount of solid wastes in and near the residential areas results into serious environmental concerns, bad smell circulation, and health related issues. In some places, the same waste is burnt to get rid of mosquitoes through smoke which ultimately releases toxic material in the atmosphere. Therefore, a proper environmental strategy is needed to minimize environmental burden and promote concepts of recycled products and thus, reduce the disease burden.Keywords: solid waste accumulation, disease burden, mosquitoes, vector borne diseases
Procedia PDF Downloads 278261 Arc Plasma Application for Solid Waste Processing
Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator
Procedia PDF Downloads 250260 Blackcurrant-Associated Rhabdovirus: New Pathogen for Blackcurrants in the Baltic Sea Region
Authors: Gunta Resevica, Nikita Zrelovs, Ivars Silamikelis, Ieva Kalnciema, Helvijs Niedra, Gunārs Lācis, Toms Bartulsons, Inga Moročko-Bičevska, Arturs Stalažs, Kristīne Drevinska, Andris Zeltins, Ina Balke
Abstract:
Newly discovered viruses provide novel knowledge for basic phytovirus research, serve as tools for biotechnology and can be helpful in identification of epidemic outbreaks. Blackcurrant-associated rhabdovirus (BCaRV) have been discovered in USA germplasm collection samples from Russia and France. As it was reported in one accession originating from France it is unclear whether the material was already infected when it entered in the USA or it became infected while in collection in the USA. Due to that BCaRV was definite as non-EU viruses. According to ICTV classification BCaRV is representative of Blackcurrant betanucleorhabdovirus specie in genus Betanucleorhabdovirus (family Rhabdoviridae). Nevertheless, BCaRV impact on the host, transmission mechanisms and vectors are still unknown. In RNA-seq data pool from Ribes plants resistance gene study by high throughput sequencing (HTS) we observed differences between sample group gene transcript heat maps. Additional analysis of the whole data pool (total 393660492 of 150 bp long read pairs) by rnaSPAdes v 3.13.1 resulted into 14424 bases long contig with an average coverage of 684x with shared 99.5% identity to the previously reported first complete genome of BCaRV (MF543022.1) using EMBOSS Needle. This finding proved BCaRV presence in EU and indicated that it might be relevant pathogen. In this study leaf tissue from twelve asymptomatic blackcurrant cv. Mara Eglite plants (negatively tested for blackcurrant reversion virus (BRV)) from Dobele, Latvia (56°36'31.9"N, 23°18'13.6"E) was collected and used for total RNA isolation with RNeasy Plant Mini Kit with minor modifications, followed by plant rRNA removal by a RiboMinus Plant Kit for RNA-Seq. HTS libraries were prepared using MGI Easy RNA Directional Library Prep Set for 16 reactions to obtain 150 bp pair-end reads. Libraries were pooled, circularized and cleaned and sequenced on DNBSEQ-G400 using PE150 flow cell. Additionally, all samples were tested by RT-PCR, and amplicons were directly sequenced by Sanger-based method. The contig representing the genome of BCaRV isolate Mara Eglite was deposited at European Nucleotide Archive under accession number OU015520. Those findings indicate a second evidence on the presence of this particular virus in the EU and further research on BCaRV prevalence in Ribes from other geographical areas should be performed. As there are no information on BCaRV impact on the host this should be investigated, regarding the fact that mixed infections with BRV and nucleorhabdoviruses are reported.Keywords: BCaRV, Betanucleorhabdovirus, Ribes, RNA-seq
Procedia PDF Downloads 184259 Case Report: A Rare Presentation of Fowler's Syndrome in Pregnancy with Mitrofanoff Procedure
Authors: Humaira Saeed Malik, Salma Saad
Abstract:
Introduction: Fowler's syndrome, first described by Clare Fowler in 1985, is a rare urological condition characterized by difficulty in urination due to the abnormal function of the urethral sphincter. It predominantly affects young women and leads to chronic urinary retention. The main concern in managing this condition is ensuring regular bladder emptying. Clam cystoplasty is a bladder augmentation surgery in which the bladder is clam-shelled open, and a segment of the intestine is used to increase the bladder's capacity and reduce bladder pressure. The Mitrofanoff procedure, a surgical creation of a continent urinary diversion, is often performed in patients with Fowler's syndrome who require long-term catheterization. This procedure involves creating a conduit (from the appendix or a segment of the small intestine) between the bladder and the skin, allowing for intermittent self-catheterization to manage urinary retention. Study: This case study examines a 39-year-old gravida 3, para 0+2 woman with a BMI of 40, Fowler's syndrome, type I diabetes, and post-traumatic stress disorder (PTSD), presenting at Dumfries and Galloway Royal Infirmary at 8 weeks of gestation. Diagnosed with Fowler's syndrome at 23, . A sacral nerve stimulator (SNS) device was initially placed but was subsequently removed after one year due to malfunction caused by trauma, subsequently she had undergone clam cystoplasty and the Mitrofanoff procedure for bladder management. Her pregnancy was complicated by vaginal bleeding at 10 weeks, treated with progesterone pessaries, and a urinary tract infection at 14 weeks, managed with antibiotics. Despite these challenges, she continued self-catheterization through the Mitrofanoff stoma and was placed on prophylactic antibiotics. Her diabetes was well-controlled on insulin, and a 20-week fetal anomaly scan was normal. The multidisciplinary team, including an obstetrician and a urologist, planned for serial growth scans and the initiation of low molecular weight heparin (LMWH) from 28 weeks due to the intermediate risk of venous thromboembolism (VTE) and to continue six weeks after delivery. A planned cesarean delivery at 37 weeks was arranged, with an MRI scan scheduled later in the pregnancy to assist in surgical planning, ensuring the preservation of the Mitrofanoff stoma's function. The surgery will occur in an elective setting and include a consultant urologist. Conclusion: Pregnancy in women with Fowler's syndrome who have undergone Clam cystoplasty and the Mitrofanoff procedure is rare, and management requires careful planning and a multidisciplinary approach. This case highlights the importance of individualized care plans and close monitoring of both mother and fetus. The patient's risk of recurrent UTIs, coupled with her diabetes and high BMI, necessitated coordinated care across specialties to ensure the best possible outcomes. The Mitrofanoff procedure proved effective in managing her urinary retention, allowing her to maintain self-catheterization during pregnancy. The multidisciplinary team approach was crucial in addressing her complex medical needs, involving obstetrics, urology, and endocrinology. This case adds valuable information to the limited literature on pregnancy management in patients with Fowler's syndrome who have undergone the Mitrofanoff procedure, highlighting the need for comprehensive, individualized care and the involvement of a multidisciplinary team to achieve the best results.Keywords: fowler's syndrome, clam cystoplasty, mitrofanoff procedure, pregnancy
Procedia PDF Downloads 32258 Virtual Reference Service as a Space for Communication and Interaction: Providing Infrastructure for Learning in Times of Crisis at Uppsala University
Authors: Nadja Ylvestedt
Abstract:
Uppsala University Library is a geographically dispersed research library consisting of nine subject libraries located in different campus areas throughout the city of Uppsala. Despite the geographical dispersion, it is the library's ambition to be perceived as a cohesive library with consistently high service and quality. A key factor to being one cohesive library is the library's online services, especially the virtual reference service. E-mail, chat and phone are answered by a team of specially trained staff under the supervision of a team leader. When covid-19 hit, well-established routines and processes to provide an infrastructure for students and researchers at the university changed radically. The strong connection between services provided at the library locations as well as at the VRS has been one of the key components of the library’s success in providing patrons with the help they need. With radically minimized availability at the physical locations, the infrastructure was at risk of collapsing. Objectives:- The objective of this project has been to evaluate the consequences of the sudden change in the organization of the library. The focus of this evaluation is the library’s VRS as an important space for learning, interaction and communication between the library and the community when other traditional spaces were not available. The goal of this evaluation is to capture the lessons learned from providing infrastructure for learning and research in times of crisis both on a practical, user-centered level but also to stress the importance of leadership in ever-changing environments that supports and creates agile, flexible services and teams instead of rigid processes adhering to obsolete goals. Results:- Reduced availability at the physical library locations was one of the strategies to prevent the spread of the covid-19 virus. The library staff was encouraged to work from home, so student workers staffed the library’s physical locations during that time, leaving the VRS to be the only place where patrons could get expert help. The VRS had an increase of 65% of questions asked between spring term 2019 and spring term 2020. The VRS team had to navigate often complicated and fast-changing new routines depending on national guidelines. The VRS team has a strong emphasis on agility in their approach to the challenges and opportunities, with methods to evaluate decisions regularly with user experience in mind. Fast decision-making, collecting feedback, an open-minded approach to reviewing rules and processes with both a short-term and a long-term focus and providing a healthy work environment have been key factors in managing this crisis and learn from it. This was resting on a strong sense of ownership regarding the VRS, well-working communication tools and agile and active communication between team members, as well as between the team and the rest of the organization who served as a second-line support system to aid the VRS team. Moving forward, the VRS has become an important space for communication, interaction and provider of infrastructure, implementing new routines and more extensive availability due to the lessons learned during crisis. The evaluation shows that the virtual environment has become an important addition to the physical spaces, existing in its own right but always in connection with and in relationship with the library structure as a whole. Thereby showing that the basis of human interaction stays the same while its form morphs and adapts to changes, thus leaving the virtual environment as a space of communication and infrastructure with unique opportunities for outreach and the potential to become a staple in patron’s education and learning.Keywords: virtual reference service, leadership, digital infrastructure, research library
Procedia PDF Downloads 171257 Inhibition of Mild Steel Corrosion in Hydrochloric Acid Medium Using an Aromatic Hydrazide Derivative
Authors: Preethi Kumari P., Shetty Prakasha, Rao Suma A.
Abstract:
Mild steel has been widely employed as construction materials for pipe work in the oil and gas production such as down hole tubular, flow lines and transmission pipelines, in chemical and allied industries for handling acids, alkalis and salt solutions due to its excellent mechanical property and low cost. Acid solutions are widely used for removal of undesirable scale and rust in many industrial processes. Among the commercially available acids hydrochloric acid is widely used for pickling, cleaning, de-scaling and acidization of oil process. Mild steel exhibits poor corrosion resistance in presence of hydrochloric acid. The high reactivity of mild steel in presence of hydrochloric acid is due to the soluble nature of ferrous chloride formed and the cementite phase (Fe3C) normally present in the steel is also readily soluble in hydrochloric acid. Pitting attack is also reported to be a major form of corrosion in mild steel in the presence of high concentrations of acids and thereby causing the complete destruction of metal. Hydrogen from acid reacts with the metal surface and makes it brittle and causes cracks, which leads to pitting type of corrosion. The use of chemical inhibitor to minimize the rate of corrosion has been considered to be the first line of defense against corrosion. In spite of long history of corrosion inhibition, a highly efficient and durable inhibitor that can completely protect mild steel in aggressive environment is yet to be realized. It is clear from the literature review that there is ample scope for the development of new organic inhibitors, which can be conveniently synthesized from relatively cheap raw materials and provide good inhibition efficiency with least risk of environmental pollution. The aim of the present work is to evaluate the electrochemical parameters for the corrosion inhibition behavior of an aromatic hydrazide derivative, 4-hydroxy- N '-[(E)-1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 2M hydrochloric acid using Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques at 30-60 °C. The results showed that inhibition efficiency increased with increase in inhibitor concentration and decreased marginally with increase in temperature. HIBH showed a maximum inhibition efficiency of 95 % at 8×10-4 M concentration at 30 °C. Polarization curves showed that HIBH act as a mixed-type inhibitor. The adsorption of HIBH on mild steel surface obeys the Langmuir adsorption isotherm. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface followed mixed adsorption with predominantly physisorption at lower temperature and chemisorption at higher temperature. Thermodynamic parameters for the adsorption process and kinetic parameters for the metal dissolution reaction were determined.Keywords: electrochemical parameters, EIS, mild steel, tafel polarization
Procedia PDF Downloads 337256 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications
Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi
Abstract:
With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality
Procedia PDF Downloads 80255 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus
Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai
Abstract:
Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method
Procedia PDF Downloads 356254 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring
Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong
Abstract:
In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system
Procedia PDF Downloads 191253 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir
Authors: Worawanna Panyakotkaew, Falan Srisuriyachai
Abstract:
Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery
Procedia PDF Downloads 459252 Enabling Rather Than Managing: Organizational and Cultural Innovation Mechanisms in a Heterarchical Organization
Authors: Sarah M. Schoellhammer, Stephen Gibb
Abstract:
Bureaucracy, in particular, its core element, a formal and stable hierarchy of authority, is proving less and less appropriate under the conditions of today’s knowledge economy. Centralization and formalization were consistently found to hinder innovation, undermining cross-functional collaboration, personal responsibility, and flexibility. With its focus on systematical planning, controlling and monitoring the development of new or improved solutions for customers, even innovation management as a discipline is to a significant extent based on a mechanistic understanding of organizations. The most important drivers of innovation, human creativity, and initiative, however, can be more hindered than supported by central elements of classic innovation management, such as predefined innovation strategies, rigid stage gate processes, and decisions made in management gate meetings. Heterarchy, as an alternative network form of organization, is essentially characterized by its dynamic influence structures, whereby the biggest influence is allocated by the collective to the persons perceived the most competent in a certain issue. Theoretical arguments that the non-hierarchical concept better supports innovation than bureaucracy have been supported by empirical research. These prior studies either focus on the structure and general functioning of non-hierarchical organizations or on their innovativeness, that means innovation as an outcome. Complementing classic innovation management approaches, this work aims to shed light on how innovations are initiated and realized in heterarchies in order to identify alternative solutions practiced under conditions of the post-bureaucratic organization. Through an initial individual case study, which is part of a multiple-case project, the innovation practices of an innovative and highly heterarchical medium-sized company in the German fire engineering industry are investigated. In a pragmatic mixed methods approach media resonance, company documents, and workspace architecture are analyzed, in addition to qualitative interviews with the CEO and employees of the case company, as well as a quantitative survey aiming to characterize the company along five scaled dimensions of a heterarchy spectrum. The analysis reveals some similarities and striking differences to approaches suggested by classic innovation management. The studied heterarchy has no predefined innovation strategy guiding new product and service development. Instead, strategic direction is provided by the CEO, described as visionary and creative. Procedures for innovation are hardly formalized, with new product ideas being evaluated on the basis of gut feeling and flexible, rather general criteria. Employees still being hesitant to take responsibility and make decisions, hierarchical influence is still prominent. Described as open-minded and collaborative, culture and leadership were found largely congruent with definitions of innovation culture. Overall, innovation efforts at the case company tend to be coordinated more through cultural than through formal organizational mechanisms. To better enable innovation in mainstream organizations, responsible practitioners are recommended not to limit changes to reducing the central elements of the bureaucratic organization, formalization, and centralization. The freedoms this entails need to be sustained through cultural coordination mechanisms, with personal initiative and responsibility by employees as well as common innovation-supportive norms and values. These allow to integrate diverse competencies, opinions, and activities and, thus, to guide innovation efforts.Keywords: bureaucracy, heterarchy, innovation management, values
Procedia PDF Downloads 187251 Pueblos Mágicos in Mexico: The Loss of Intangible Cultural Heritage and Cultural Tourism
Authors: Claudia Rodriguez-Espinosa, Erika Elizabeth Pérez Múzquiz
Abstract:
Since the creation of the “Pueblos Mágicos” program in 2001, a series of social and cultural events had directly affected the heritage conservation of the 121 registered localities until 2018, when the federal government terminated the program. Many studies have been carried out that seek to analyze from different perspectives and disciplines the consequences that these appointments have generated in the “Pueblos Mágicos.” Multidisciplinary groups such as the one headed by Carmen Valverde and Liliana López Levi, have brought together specialists from all over the Mexican Republic to create a set of diagnoses of most of these settlements, and although each one has unique specificities, there is a constant in most of them that has to do with the loss of cultural heritage and that is related to transculturality. There are several factors identified that have fostered a cultural loss, as a direct reflection of the economic crisis that prevails in Mexico. It is important to remember that the origin of this program had as its main objective to promote the growth and development of local economies since one of the conditions for entering the program is that they have less than 20,000 inhabitants. With this goal in mind, one of the first actions that many “Pueblos Mágicos” carried out was to improve or create an infrastructure to receive both national and foreign tourists since this was practically non-existent. Creating hotels, restaurants, cafes, training certified tour guides, among other actions, have led to one of the great problems they face: globalization. Although by itself it is not bad, its impact in many cases has been negative for heritage conservation. The entry into and contact with new cultures has led to the undervaluation of cultural traditions, their transformation and even their total loss. This work seeks to present specific cases of transformation and loss of cultural heritage, as well as to reflect on the problem and propose scenarios in which the negative effects can be reversed. For this text, 36 “Pueblos Mágicos” have been selected for study, based on those settlements that are cited in volumes I and IV (the first and last of the collection) of the series produced by the multidisciplinary group led by Carmen Valverde and Liliana López Levi (researchers from UNAM and UAM Xochimilco respectively) in the project supported by CONACyT entitled “Pueblos Mágicos. An interdisciplinary vision”, of which we are part. This sample is considered representative since it forms 30% of the total of 121 “Pueblos Mágicos” existing at that moment. With this information, the elements of its intangible heritage loss or transformation have been identified in every chapter based on the texts written by the participants of that project. Finally, this text shows an analysis of the effects that this federal program, as a public policy applied to 132 populations, has had on the conservation or transformation of the intangible cultural heritage of the “Pueblos Mágicos.” Transculturality, globalization, the creation of identities and the desire to increase the flow of tourists have impacted the changes that traditions (main intangible cultural heritage) have had in the 18 years that the federal program lasted.Keywords: public policies, cultural tourism, heritage preservation, pueblos mágicos program
Procedia PDF Downloads 189250 Human Immuno-Deficiency Virus Co-Infection with Hepatitis B Virus and Baseline Cd4+ T Cell Count among Patients Attending a Tertiary Care Hospital, Nepal
Authors: Soma Kanta Baral
Abstract:
Background: Since 1981, when the first AIDS case was reported, worldwide, more than 34 million people have been infected with HIV. Almost 95 percent of the people infected with HIV live in developing countries. As HBV & HIV share similar routes of transmission by sexual intercourse or drug use by parenteral injection, co-infection is common. Because of the limited access to healthcare & HIV treatment in developing countries, HIV-infected individuals are present late for care. Enumeration of CD4+ T cell count at the time of diagnosis has been useful to initiate the therapy in HIV infected individuals. The baseline CD4+ T cell count shows high immunological variability among patients. Methods: This prospective study was done in the serology section of the Department of Microbiology over a period of one year from august 2012 to July 2013. A total of 13037 individuals subjected for HIV test were included in the study comprising of 4982 males & 8055 females. Blood sample was collected by vein puncture aseptically with standard operational procedure in clean & dry test-tube. All blood samples were screened for HIV as described by WHO algorithm by Immuno-chromatography rapid kits. Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. After informed consent, HIV positive individuals were screened for HBsAg by Immuno-chromatography rapid kits (Hepacard). Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. EDTA blood samples were collected from the HIV sero-positive individuals for baseline CD4+ T count. Then, CD4+ T cells count was determined by using FACS Calibur Flow Cytometer (BD). Results: Among 13037 individuals screened for HIV, 104 (0.8%) were found to be infected comprising of 69(66.34%) males & 35 (33.65%) females. The study showed that the high infection was noted in housewives (28.7%), active age group (30.76%), rural area (56.7%) & in heterosexual route (80.9%) of transmission. Out of total HIV infected individuals, distribution of HBV co-infection was found to be 6(5.7%). All co- infected individuals were married, male, above the age of 25 years & heterosexual route of transmission. Baseline CD4+ T cell count of HIV infected patient was found higher (mean CD4+ T cell count; 283cells/cu.mm) than HBV co-infected patients (mean CD4+ T cell count; 91 cells/cu.mm). Majority (77.2%) of HIV infected & all co-infected individuals were presented in our center late (CD4+ T cell count;< 350/cu. mm) for diagnosis and care. Majority of co- infected 4 (80%) were late presented with advanced AIDS stage (CD4+ count; <200/cu.mm). Conclusions: The study showed a high percentage of HIV sero-positive & co- infected individuals. Baseline CD4+ T cell count of majority of HIV infected individuals was found to be low. Hence, more sustained and vigorous awareness campaigns & counseling still need to be done in order to promote early diagnosis and management.Keywords: HIV/AIDS, HBsAg, co-infection, CD4+
Procedia PDF Downloads 215249 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis
Authors: Liliia N. Butymova, Vladimir Ya Modorskii
Abstract:
To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.Keywords: aeroelasticity, labyrinth packings, oscillation phase shift, vibration
Procedia PDF Downloads 296248 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria
Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan
Abstract:
Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM
Procedia PDF Downloads 138247 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions
Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin
Abstract:
The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: aircraft, piston engine, heat, emission
Procedia PDF Downloads 118246 Anaerobic Digestion of Spent Wash through Biomass Development for Obtaining Biogas
Authors: Sachin B. Patil, Narendra M. Kanhe
Abstract:
A typical cane molasses based distillery generates 15 L of waste water per liter of alcohol production. Distillery waste with COD of over 1,00,000 mg/l and BOD of over 30,000 mg/l ranks high amongst the pollutants produced by industries both in magnitude and strength. Treatment and safe disposal of this waste is a challenging task since long. The high strength of waste water renders aerobic treatment very expensive and physico-chemical processes have met with little success. Thermophilic anaerobic treatment of distillery waste may provide high degree of treatment and better recovery of biogas. It may prove more feasible in most part of tropical country like India, where temperature is suitable for thermophilic micro-organisms. Researchers have reviled that, at thermophilic conditions due to increased destruction rate of organic matter and pathogens, higher digestion rate can be achieved. Literature review reveals that the variety of anaerobic reactors including anaerobic lagoon, conventional digester, anaerobic filter, two staged fixed film reactors, sludge bed and granular bed reactors have been studied, but little attempts have been made to evaluate the usefulness of thermophilic anaerobic treatment for treating distillery waste. The present study has been carried out, to study feasibility of thermophilic anaerobic digestion to facilitate the design of full scale reactor. A pilot scale anaerobic fixed film fixed bed reactor (AFFFB) of capacity 25m3 was designed, fabricated, installed and commissioned for thermophilic (55-65°C) anaerobic digestion at a constant pH of 6.5-7.5, because these temperature and pH ranges are considered to be optimum for biogas recovery from distillery wastewater. In these conditions, working of the reactor was studied, for different hydraulic retention times (HRT) (0.25days to 12days) and variable organic loading rates (361.46 to 7.96 Kg COD/m3d). The parameters such as flow rate and temperature, various chemical parameters such as pH, chemical oxygen demands (COD), biogas quantity, and biogas composition were regularly monitored. It was observed that, with the increase in OLR, the biogas production was increased, but the specific biogas yield decreased. Similarly, with the increase in HRT, the biogas production got decrease, but the specific biogas yield was increased. This may also be due to the predominant activity of acid producers to methane producers at the higher substrate loading rates. From the present investigation, it can be concluded that for thermophilic conditions the highest COD removal percentage was obtained at an HRT of 08 days, thereafter it tends to decrease from 8 to 12 days HRT. There is a little difference between COD removal efficiency of 8 days HRT (74.03%) and 5 day HRT (78.06%), therefore it would not be feasible to increase the reactor size by 1.5 times for mere 4 percent more efficiency. Hence, 5 days HRT is considered to be optimum, at which the biogas yield was 98 m3/day and specific biogas yield was 0.385 CH4 m3/Kg CODr.Keywords: spent wash, anaerobic digestion, biomass, biogas
Procedia PDF Downloads 265245 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics
Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones
Abstract:
Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.Keywords: auto rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact
Procedia PDF Downloads 194244 Determination of Physical Properties of Crude Oil Distillates by Near-Infrared Spectroscopy and Multivariate Calibration
Authors: Ayten Ekin Meşe, Selahattin Şentürk, Melike Duvanoğlu
Abstract:
Petroleum refineries are a highly complex process industry with continuous production and high operating costs. Physical separation of crude oil starts with the crude oil distillation unit, continues with various conversion and purification units, and passes through many stages until obtaining the final product. To meet the desired product specification, process parameters are strictly followed. To be able to ensure the quality of distillates, routine analyses are performed in quality control laboratories based on appropriate international standards such as American Society for Testing and Materials (ASTM) standard methods and European Standard (EN) methods. The cut point of distillates in the crude distillation unit is very crucial for the efficiency of the upcoming processes. In order to maximize the process efficiency, the determination of the quality of distillates should be as fast as possible, reliable, and cost-effective. In this sense, an alternative study was carried out on the crude oil distillation unit that serves the entire refinery process. In this work, studies were conducted with three different crude oil distillates which are Light Straight Run Naphtha (LSRN), Heavy Straight Run Naphtha (HSRN), and Kerosene. These products are named after separation by the number of carbons it contains. LSRN consists of five to six carbon-containing hydrocarbons, HSRN consist of six to ten, and kerosene consists of sixteen to twenty-two carbon-containing hydrocarbons. Physical properties of three different crude distillation unit products (LSRN, HSRN, and Kerosene) were determined using Near-Infrared Spectroscopy with multivariate calibration. The absorbance spectra of the petroleum samples were obtained in the range from 10000 cm⁻¹ to 4000 cm⁻¹, employing a quartz transmittance flow through cell with a 2 mm light path and a resolution of 2 cm⁻¹. A total of 400 samples were collected for each petroleum sample for almost four years. Several different crude oil grades were processed during sample collection times. Extended Multiplicative Signal Correction (EMSC) and Savitzky-Golay (SG) preprocessing techniques were applied to FT-NIR spectra of samples to eliminate baseline shifts and suppress unwanted variation. Two different multivariate calibration approaches (Partial Least Squares Regression, PLS and Genetic Inverse Least Squares, GILS) and an ensemble model were applied to preprocessed FT-NIR spectra. Predictive performance of each multivariate calibration technique and preprocessing techniques were compared, and the best models were chosen according to the reproducibility of ASTM reference methods. This work demonstrates the developed models can be used for routine analysis instead of conventional analytical methods with over 90% accuracy.Keywords: crude distillation unit, multivariate calibration, near infrared spectroscopy, data preprocessing, refinery
Procedia PDF Downloads 129243 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique
Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham
Abstract:
Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT
Procedia PDF Downloads 189242 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery
Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek
Abstract:
Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.Keywords: liposomes, siRNA, pH-sensitive, molecular switch
Procedia PDF Downloads 204241 Creating a Critical Digital Pedagogy Context: Challenges and Potential of Designing and Implementing a Blended Learning Intervention for Adult Refugees in Greece
Authors: Roula Kitsiou, Sofia Tsioli, Eleni Gana
Abstract:
The current sociopolitical realities (displacement, encampment, and resettlement) refugees experience in Greece are a quite complex issue. Their educational and social ‘integration’ is characterized by transition, insecurity, and constantly changing needs. Based on the current research data, technology and more specifically mobile phones are one of the most important resources for refugees, regardless of their levels of conventional literacy. The proposed paper discusses the challenges encountered during the design and implementation of the educational Action 16 ‘Language Education for Adult Refugees’. Action 16 is one of the 24 Actions of the Project PRESS (Provision of Refugee Education and Support Scheme), funded by the Hellenic Open University (2016-2017). Project PRESS had two main objectives: a) to address the educational and integration needs of refugees in transit, who currently reside in Greece, and b) implement research-based educational interventions in online and offline sites. In the present paper, the focus is on reflection and discussion about the challenges and the potential of integrating technology in language learning for a target-group with many specific needs, which have been recorded in field notes among other research tools (ethnographic data) used in the context of PRESS. Action 16, explores if and how technology enhanced language activities in real-time and place mediated through teachers, as well as an autonomous computer-mediated learning space (moodle platform and application) builds on and expands the linguistic, cultural and digital resources and repertoires of the students by creating collaborative face-to-face and digital learning spaces. A broader view on language as a dynamic puzzle of semiotic resources and processes based on the concept of translanguaging is adopted. Specifically, designing the blended learning environment we draw on the construct of translanguaging a) as a symbolic means to valorize students’ repertoires and practices, b) as a method to reach to specific applications of a target-language that the context brings forward (Greek useful to them), and c) as a means to expand refugees’ repertoires. This has led to the creation of a learning space where students' linguistic and cultural resources can find paths to expression. In this context, communication and learning are realized by mutually investing multiple aspects of the team members' identities as educational material designers, teachers, and students on the teaching and learning processes. Therefore, creativity, humour, code-switching, translation, transference etc. are all possible means that can be employed in order to promote multilingual communication and language learning towards raising intercultural awareness in a critical digital pedagogy context. The qualitative analysis includes critical reflection on the developed educational material, team-based reflexive discussions, teachers’ reports data, and photographs from the interventions. The endeavor to involve women and men with a refugee background into a blended learning experience was quite innovative especially for the Greek context. It reflects a pragmatist ethos of the choices made in order to respond to the here-and-now needs of the refugees, and finally it was a very challenging task that has led all actors involved into Action 16 to (re)negotiations of subjectivities and products in a creative and hopeful way.Keywords: blended learning, integration, language education, refugees
Procedia PDF Downloads 128240 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 66