Search results for: voltage stability and load flow
3787 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading
Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed
Abstract:
Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum
Procedia PDF Downloads 3883786 Lanthanum Fluoride with Embedded Silicon Nanocrystals: A Novel Material for Future Electronic Devices
Authors: Golam Saklayen, Sheikh Rashel al Ahmed, Ferdous Rahman, Ismail Abu Bakar
Abstract:
Investigation on Lanthanum Fluoride LaF3 layer embedding Silicon Nanocrystals (Si-NCs) fabricated using a novel one-step chemical method has been reported in this presentation. Application of this material has been tested for low-voltage operating non-volatile memory and Schottkey-junction solar cell. Colloidal solution of Si-NCs in hydrofluoric acid (HF) was prepared from meso-porous silicon by ultrasonic vibration (sonication). This solution prevents the Si-NCs to be oxidized. On a silicon (Si) substrate, LaCl3 solution in HCl is allowed to react with the colloidal solution of prepared Si-NCs. Since this solution contains HF, LaCl3 reacts with HF and produces LaF3 crystals that deposits on the silicon substrate as a layer embedding Si-NCs. This a novel single step chemical way of depositing LaF3 insulating layer embedding Si-NCs. The X-Ray diffraction of the deposited layer shows a polycrystalline LaF3 deposition on silicon. A non-stoichiometric LaF3 layer embedding Si-NCs was found by EDX analysis. The presence of Si-NCs was confirmed by SEM. FTIR spectroscopy of the deposited LaF3 powder also confirmed the presence of Si-NCs. The size of Si-NCs was found to be inversely proportional to the ultrasonic power. After depositing proper contacts on the back of Si and LaF3, the devices have been tested as a non-volatile memory and solar cell. A memory window of 525 mV was obtained at a programming and erasing bias of 2V. The LaF3 films with Si NCs showed strong absorption and was also found to decrease optical transmittance than pure LaF3 film of same thickness. The I-V characteristics of the films showed a dependency on the incident light intensity where current changed under various light illumination. Experimental results show a lot of promise for Si-NCs-embedded LaF3 layer to be used as an insulating layer in MIS devices as well as an photoactive material in Schottkey junction solar cells.Keywords: silicon nanocrystals (Si NCs), LaF3, colloidal solution, Schottky junction solar cell
Procedia PDF Downloads 3923785 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures
Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha
Abstract:
5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.Keywords: concrete beam, FRP bars, spacing effect, thermal deformation
Procedia PDF Downloads 2033784 Investigation and Analysis of Vortex-Induced Vibrations in Sliding Gate Valves Using Computational Fluid Dynamics
Authors: Kianoosh Ahadi, Mustafa Ergil
Abstract:
In this study, the event of vibrations caused by vortexes and the distribution of induced hydrodynamic forces due to vortexes on the sliding gate valves has been investigated. For this reason, a sliding valve with the help of computational fluid dynamics (CFD) software was simulated in two-dimensional )2D(, where the flow and turbulence equations were solved for three different valve openings (full, half, and 16.7 %) models. The variety of vortexes formed within the vicinity of the valve structure was investigated based on time where the trend of fluctuations and their occurrence regions have been detected. From the gathered solution dataset of the numerical simulations, the pressure coefficient (CP), the lift force coefficient (CL), the drag force coefficient (CD), and the momentum coefficient due to hydrodynamic forces (CM) were examined, and relevant figures were generated were from these results, the vortex-induced vibrations were analyzed.Keywords: induced vibrations, computational fluid dynamics, sliding gate valves, vortexes
Procedia PDF Downloads 1203783 Investigation on Phase Change Device for Satellite Thermal Control
Authors: Meng-Hao Chen, Jeng-Der Huang, Chia-Ray Chen
Abstract:
With the new space mission need of high power dissipation, low thermal inertia and cyclical operation unit, such as high power amplifier (HPA) for synthetic aperture radar (SAR) satellite, the development of phase change material (PCM) technology seems to be a proper solution. Generally, the expected benefit of PCM solution is to eliminate temperature variation and maintain the stability of electronic units by using the latent heat during phase change process. It can also result in advantages of decreased radiator area and heater power. However, the PCMs have a drawback of low thermal conductivity that leads to large temperature gradient between the heat source and PCM. This paper thus presents both experimental and simplified numerical investigations on configuration design of PCM’s container. A comparison was carried out between the container with and without internal pin-fins structure. The results showed the benefit of pin-fins that act as the heat transfer enhancer to improve the temperature uniformity during phase transition. Furthermore, thermal testing and measurements were presented for four PCM candidates (i.e. n-octadecane, n-eicosane, glycerin and gallium). The solidification and supercooling behaviors on different PCMs were compared with available literature data and discussed in this studyKeywords: phase change material (PCM), thermal control, solidification, supercooling
Procedia PDF Downloads 3853782 The Association of Estrogen Receptor Alpha Xbai Gg Genotype and Severe Preeclampsia
Authors: Saeedeh Salimi, Farzaneh Farajian- Mashhadi, Ehsan Tabatabaei, Mahnaz Shahrakipoor, Minoo Yaghmaei, Mojgan Mokhtari
Abstract:
Purpose: Estrogen receptor-α (ERα) plays an essential role in the adaptation of increased uterine blood flow during gestation. Therefore ERα gene could be a possible candidate for preeclampsia(PE) susceptibility. In the current study, we aimed to investigate the association of the ERα gene polymorphisms and PE in an Iranian population. Methods: One hundred ninety-two pregnant women with PE and 186 normotensive women were genotyped for ERα gene (PvuII and XbaI) polymorphisms by PCR-RFLP method. Results: The frequency of alleles and genotypes of ERα PvuII and XbaI polymorphisms were not different between PE and normotensive control women. However, higher frequency of GG genotype was observed in women with severe PE compared to mild PE (OR, 1.8 [95% CI, 1.1 to 3]; P = 0.02) and in severe PE compared to normotensive women [OR= 1.8(1.1-3), P=0.02] after adjusting for age, ethnicity and primiparity. Conclusions: The GG genotype of ERα XbaI polymorphism could be a genetic risk factor for PE predisposition.Keywords: estrogen receptor-α, polymorphism, gene, preeclampsia
Procedia PDF Downloads 3093781 Molding Properties of Cobalt-Chrome-Based Feedstocks Used in Low-Pressure Powder Injection Molding
Authors: Ehsan Gholami, Vincent Demers
Abstract:
Low-pressure powder injection molding is an emerging technology for cost-effectively producing complex shape metallic parts with the proper dimensional tolerances, either in high or in low production volumes. In this study, the molding properties of cobalt-chrome-based feedstocks were evaluated for use in a low-pressure powder injection molding process. The rheological properties of feedstock formulations were obtained by mixing metallic powder with a proprietary wax-based binder system. Rheological parameters such as reference viscosity, shear rate sensitivity index, and activation energy for viscous flow, were extracted from the viscosity profiles and introduced into the Weir model to calculate the moldability index. Feedstocks were experimentally injected into a spiral mold cavity to validate the injection performance calculated with the model.Keywords: binder, feedstock, moldability, powder injection molding, viscosity
Procedia PDF Downloads 2743780 Achieving Sustainable Rapid Construction Using Lean Principles
Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof
Abstract:
There is the need to take the holistic approach in achieving sustainable construction for a contemporary practice. Sustainable construction is the practice that involved method of human preservation of the environment, whether economically or socially through responsibility, management of resources and maintenance utilizing support. This paper shows the correlation of achieving rapid construction with sustainable concepts using lean principles. Lean principles being used widely in the manufacturing industry, but this research will demonstrate the principles into building construction. Lean principle offers the benefits of stabilizing work flow and elimination of unnecessary work. Therefore, this principle contributes to time and waste reduction. The correlation shows that pulling factor provides the improvement of progress curve and stabilizing the time-quality relation. The finding shows the lean principles offer the elements of rapid construction synchronized with the elements of sustainability.Keywords: sustainable construction, rapid construction, time reduction, lean construction
Procedia PDF Downloads 2363779 Numerical Investigation of Cold Formed C-Section-Purlins with Different Opening Shapes
Authors: Mohamed M. El-heweity, Ahmed Shamel Fahmy, Mostafa Shawky, Ahmed Sherif
Abstract:
Cold-formed steel (CFS) lipped channel sections are popular as load-bearing members in building structures. These sections are used in the construction industry because of their high strength-to-weight ratio, lightweight, quick production, and ease of construction, fabrication, transportation, and handling. When those cold formed sections with high slenderness ratios are subjected to compression bending, they do not reach failure when reaching their ultimate bending stress, however, they sustain much higher loads due stress re-distribution. Hence, there is a need to study the sectional nominal capacity of CFS lipped channel beams with different web openings subjected to pure bending and uniformly distributed loads. By using finite element (FE) simulations using ANSYS APDL for numerical analysis. The results were verified and compared to previous experimental results. Then a parametric study was conducted and validated FE model to investigate the effect of different openings shapes on their nominal capacities. The results have revealed that CFS sections with hexagonal openings and intermediate notch can resist higher nominal capacities when compared to other sectional openings.Keywords: cold-formed steel, nominal capacity, finite element, lipped channel beam, numerical study, web opening
Procedia PDF Downloads 983778 Caged Compounds as Light-Dependent Initiators for Enzyme Catalysis Reactions
Authors: Emma Castiglioni, Nigel Scrutton, Derren Heyes, Alistair Fielding
Abstract:
By using light as trigger, it is possible to study many biological processes, such as the activity of genes, proteins, and other molecules, with precise spatiotemporal control. Caged compounds, where biologically active molecules are generated from an inert precursor upon laser photolysis, offer the potential to initiate such biological reactions with high temporal resolution. As light acts as the trigger for cleaving the protecting group, the ‘caging’ technique provides a number of advantages as it can be intracellular, rapid and controlled in a quantitative manner. We are developing caging strategies to study the catalytic cycle of a number of enzyme systems, such as nitric oxide synthase and ethanolamine ammonia lyase. These include the use of caged substrates, caged electrons and the possibility of caging the enzyme itself. In addition, we are developing a novel freeze-quench instrument to study these reactions, which combines rapid mixing and flashing capabilities. Reaction intermediates will be trapped at low temperatures and will be analysed by using electron paramagnetic resonance (EPR) spectroscopy to identify the involvement of any radical species during catalysis. EPR techniques typically require relatively long measurement times and very often, low temperatures to fully characterise these short-lived species. Therefore, common rapid mixing techniques, such as stopped-flow or quench-flow are not directly suitable. However, the combination of rapid freeze-quench (RFQ) followed by EPR analysis provides the ideal approach to kinetically trap and spectroscopically characterise these transient radical species. In a typical RFQ experiment, two reagent solutions are delivered to the mixer via two syringes driven by a pneumatic actuator or stepper motor. The new mixed solution is then sprayed into a cryogenic liquid or surface, and the frozen sample is then collected and packed into an EPR tube for analysis. The earliest RFQ instrument consisted of a hydraulic ram unit as a drive unit with direct spraying of the sample into a cryogenic liquid (nitrogen, isopentane or petroleum). Improvements to the RFQ technique have arisen from the design of new mixers in order to reduce both the volume and the mixing time. In addition, the cryogenic isopentane bath has been coupled to a filtering system or replaced by spraying the solution onto a surface that is frozen via thermal conductivity with a cryogenic liquid. In our work, we are developing a novel RFQ instrument which combines the freeze-quench technology with flashing capabilities to enable the studies of both thermally-activated and light-activated biological reactions. This instrument also uses a new rotating plate design based on magnetic couplings and removes the need for mechanical motorised rotation, which can otherwise be problematic at cryogenic temperatures.Keywords: caged compounds, freeze-quench apparatus, photolysis, radicals
Procedia PDF Downloads 2083777 Evaluating Viability of Solar Tubewell Irrigation Technology
Authors: Junaid N. Chauhdary, Bernard A. Engel, Allah Bakhsh
Abstract:
Solar powered tubewells can be a reliable and affordable source of supplying irrigation water compared with electric or diesel operated tubewells due to frequent load shedding and soaring energy prices. A study was conducted on a solar tubewell installed at the Water Management Research Center (WMRC), University of Agriculture, Faisalabad to investigate the viability of a solar powered tubewell in terms of discharge and benefit cost ratio. The tubewell discharge was 50 m3hr-1 with a total dynamic head of 30 m. The depth of bore was 31 m (14 m blind + 17 m screen) with a casing diameter of 15.2 cm (6 inches). A 3-stage submersible pump of 10.2 cm (4 inch) diameter was lowered in the casing to a depth of 22 m. The pump was powered from 21 solar panels of 200 W capacity each. The tubewell peak discharge was observed as 6 and 7 hr day-1 in winter and summer, respectively. The breakeven analysis of the solar tubewell showed that the payback period of the solar tubewell was 1.5 years of its 10 year usable life with an IRR (internal rate of return) of 69 %. The BCR (benefit cost ratio) of the solar tubewell at 2, 4, 6, and 8 percent discount rate were 3.75, 3.45, 3.19 and 2.96, respectively. The NPV (net present value) of the solar tubewell at 2, 4, 6, and 8 % discount rates were 1.89, 1.65, 1.45 and 1.27 million rupees, respectively. These results indicated that the solar powered tubewells are a viable option as well as environmentally friendly and can be adopted by the farmers due to their affordable payback period.Keywords: benefit cost ratio, internal rate of return (IRR), net present value (NPV), solar tubewell
Procedia PDF Downloads 2083776 Novel Steviosides Analogs Induced Apoptosis in Breast Cancers
Authors: Ahmed Malki
Abstract:
Breast cancer has been identified as the most lethal form of cancer today. In our study, we designed and screened 16 steviosides derivatives for their cytotoxic activities in MCF-7human breast cancer cells and normal MCF-12a cells. Our data indicated that steviosides derivatives 9 and 15 decreased cell proliferation and induced apoptosis in MCF-7 breast cancer cells more thannormal breast cells epithelial cells. Flow cytometric analysis showed that both steviosides, derivatives 9 and 15 arrested the MCF-7 cells in G1 phase, which is further confirmed by the increased expression level of p21. Moreover, both steviosides derivatives increased caspase-9 activity, and the induction of apoptosis was significantly reduced after treating cells with caspase-9 inhibitor LEHD-CHO. Both steviosides derivatives increased Caspase 3 activities and induced Parp-1 cleavage in H1299 cells. Based on previous results, we have identified two novel steviosides derivatives which provoked apoptosis in breast cancer cells by arresting cells in G1 phase and increasing caspase-9 and caspase-3 activities which merits further development and investigations.Keywords: steviosides, breast cancer, p53, cell cycle
Procedia PDF Downloads 1203775 A Portable Device for Pulse Wave Velocity Measurements
Authors: Chien-Lin Wang, Cha-Ling Ko, Tainsong Chen
Abstract:
Pulse wave velocity (PWV) of blood flow provides important information of vessel property and blood pressure which can be used to assess cardiovascular disease. However, the above measurements need expensive equipment, such as Doppler ultrasound, MRI, angiography etc. The photoplethysmograph (PPG) signals are commonly utilized to detect blood volume changes. In this study, two infrared (IR) probes are designed and placed at a fixed distance from finger base and fingertip. An analog circuit with automatic gain adjustment is implemented to get the stable original PPG signals from above two IR probes. In order to obtain the time delay precisely between two PPG signals, we obtain the pulse transit time from the second derivative of the original PPG signals. To get a portable, wireless and low power consumption PWV measurement device, the low energy Bluetooth 4.0 (BLE) and the microprocessor (Cortex™-M3) are used in this study. The PWV is highly correlated with blood pressure. This portable device has potential to be used for continuous blood pressure monitoring.Keywords: pulse wave velocity, photoplethysmography, portable device, biomedical engineering
Procedia PDF Downloads 5273774 Friction and Wear Behavior of Zr-Nb Alloy Under Different Conditions
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are generally used for designing the core components of nuclear reactors due to their good mechanical and tribological properties. Some core components are subjected to flow-induced vibrations resulting in wear of these components due to their interaction with one another. To simulate these conditions, low amplitude reciprocating wear tests are conducted at room temperature and high temperature (260 degrees Celsius) between Zr-2.5Nb alloy and SS-410. The tests are conducted at a frequency range of 5 Hz to 25 Hz and an amplitude range of 200 µm to 600 µm. Friction and wear responses were recorded and correlated with the change in parameters. Worn surfaces are analysed using scanning electron microscopy (SEM) and optical profilometer. Elemental changes on the worn surfaces were determined using energy dispersive spectroscopy (EDS). The coefficient of friction (COF) increases with increasing temperature and decreases with increasing frequency. Adhesive wear is found to be the dominant wear mechanism which increases at high temperature.Keywords: nuclear reactor, Zr-2.5Nb, SS-410, friction and wear
Procedia PDF Downloads 853773 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks
Authors: Sunmyeng Kim
Abstract:
IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.Keywords: cooperative communications, MAC protocol, relay node, WLAN
Procedia PDF Downloads 3333772 Economic Analysis of an Integrated Anaerobic Digestion and Ozonolysis System
Authors: Tshilenge Kabongo, John Kabuba
Abstract:
The distillery wastewater has become major issues in sanitation sectors. One of the solutions to overcome this sewage is to install the Wastewater Treatment Plant. Economic analysis is fundamentally required for its viability. Integrated anaerobic digestion and advanced oxidation (AD-AOP) in the treatment of distillery wastewater (DWW), anaerobic digestion achieved sufficient biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removals of 95% and 75%, respectively, and methane production of 0.292 L/g COD removed at an organic loading rate of 15 kg COD/m3/d. However, a considerable amount of biorecalcitrant compounds still existed in the anaerobically treated effluent, contributing to a residual COD of 4.5 g/L and an intense dark brown color. To remove the biorecalcitrant color and COD, ozonation, which is an AOP, was introduced as a post-treatment method to AD. Ozonation is a highly competitive treatment technique that can be easily applied to remove the biorecalcitrant compounds, including color, and turbidity. In the ozonation process carried out for an hour, more than 80% of the color was removed at an ozone dose of 45 mg O3/L/min (corresponding to 1.8 g O3/g COD). Thus, integrating AD with the AOP can be effective for organic load and color reductions during the treatment of DWW. The deliverable established the best configuration of the AD-AOP system, where DWW is first subjected to AD followed by AOP post-treatment. However, for establishing the feasibility of the industrial application of the integrated system, it is necessary to carry out the economic analysis. This may help the starting point of the wastewater treatment plant construction and its operation and maintenance costs.Keywords: distillery wastewater, economic analysis, integrated anaerobic digestion, ozonolysis, treatment
Procedia PDF Downloads 1343771 Aerodynamic Interference of Propellers Group with Adjustable Mutual Position
Authors: Michal Biały, Krzysztof Skiba, Zdzislaw Kaminski
Abstract:
The research results of the influence of the adjustable mutual position of the propellers for getting optimal lift force on a specially designed bench. The bench consists of frame with electric motors and with attached propellers. Engines were arranged in a matrix of two columns and three rows. The distance between the columns averages from 0 to 20”, while the engine was placed at a height of 8”, 15.5” and 23.6”. By adjusting the tilt of an electric motor, an angle of the propeller in the range of 0° to 60°, by 15° was controlled. Propellers with a diameter of 8" and pitch of 4.5” were driven by brushless model engines Roxxy BL-Outrunner 2827/26 with a power of 110W (each). Rotational speed control of electric motors were realized parallel for all propellers. The speed adjustment was realized using an aggregate of radio-controlled regulators. Electric power supplied to the engines from zero to maximum power, by the setting for every 14W, was controlled by radio system. Measurement system was placed on a laboratory scale. The lift was measured and recorded by an electronic scale. The lift force for different configurations of propellers arrangement was recorded during the test. All propellers were driven in one rotational direction and in different directions when they were in the same pairs. Propellers were driven concurrently and contra-concurrently along one of the columns and along the selected rows. During the tests, except the lift, parameters such as: rotational speed of propellers, voltage and current to the electric engines were recorded. The main aim of the research was to show the influence of aerodynamic interference between the propellers to receive lift force depending on the drive configuration of individual propellers. The research has shown that, this interference exists. The increase of the lift force for a distance between columns above 26.6” was noticed during the driving propellers in different directions. The optimum tilt angle of the propeller was 45°. Furthermore there has been also approx. 12% increase of the lift for propellers driven alternately in column and contra-concurrently in relation to the contra-rotating drive in the row.Keywords: aerodynamic, interference, lift force, propeller, propulsion system
Procedia PDF Downloads 3443770 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism
Authors: Rui Liu, Pengyu Cui, Nan Jiang
Abstract:
At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion
Procedia PDF Downloads 1993769 The Impact of Developing Tourism on the Spatial Pattern in Jordan
Authors: Khries Sawsan
Abstract:
the phenomenon of urbanization is considered as one of the most important tourism resources that differ from one country to another and from one region to another in the same country. Our concern in tourism accommodation is explained by the fact that their location is directly related to the movement to tourist sites .Besides, these constructions comport security considered as the most important motivation for tourists in their choice of any destination. Hotels are the most representative expression of tourism. This is due to their physical prominence in the landscape and being the sole urban component totally unique to tourism. This study sheds light on the impact of tourism development on the spatial pattern in Jordan. It describes the linkages between existing tourism development policies and the spatial development patterns that have occurred as a result throughout Jordan, particularly looking at the impact that tourism has had on the physical environment of major tourism destinations. It puts an illustrative plan of the impact of the augmentation of tourism accommodations in Jordan in the past 40 years ago. The findings of this study help us to understand better the operation of Jordan’ dynamic changes in the location An intensive analysis is then applied on a representative case study in three regions: Amman, Petra and Aqaba. The study proceeds from an historical perspective to, show the evolution of the current development patterns an increase of tourism’s impact on spatial, in the presence of factors as political and economic stability, is expected.Keywords: spatial patterns, urbanisation, spatial transformations, tourism planning, Jordan
Procedia PDF Downloads 5483768 Artificial Nesting in Birds at UVAS-Ravi Campus: Punjab-Pakistan
Authors: Fatima Chaudhary, Rehan Ul Haq
Abstract:
Spatial and anthropogenic factors influencing nest-site selection in birds need to be identified for effective conservative practices. Environmental attributes such as food availability, predator density, previous reproductive success, etc., provide information regarding the site's quality. An artificial nest box experiment was carried out to evaluate the effect of various factors on nest-site selection, as it is hard to assess the natural cavities. The experiment was conducted whereby half of the boxes were filled with old nest material. Artificial nest boxes created with different materials and different sizes and colors were installed at different heights. A total of 14 out of 60 nest boxes were occupied and four of them faced predation. The birds explored a total of 32 out of 60 nests, whereas anthropogenic factors destroyed 25 out of 60 nests. Birds chose empty nest boxes at higher rates however, there was no obvious avoidance of sites having high ectoparasites load due to old nest material. It is also possible that the preference towards the artificial nest boxes may differ from year to year because of several climatic factors and the age of old nest material affecting the parasite's survival. These variables may fluctuate from one season to another. Considering these factors, nest-site selection experiments concerning the effectiveness of artificial nest boxes should be carried out over several successive seasons. This topic may stimulate further studies, which could lead to a fully understanding the birds' evolutionary ecology. Precise information on these factors influencing nest-site selection can be essential from an economic point of view as well.Keywords: artificial nesting, nest box, old nest material, birds
Procedia PDF Downloads 933767 Internet-Based Architecture for Machine-to-Machine Communication of a Public Security Network
Authors: Ogwueleka Francisca Nonyelum, Jiya Muhammad
Abstract:
Poor communication between the victims of the burglaries, road and fire accidents and the agencies, and lack of quick emergency response by the agencies is solved through Machine-to-Machine (M2M) communication. A distress caller is expected to make a call through a network to the respective agency for emergency response but due to some challenges, this often becomes arduous and futile. This research puts forth an Internet-based architecture for Machine-to-Machine (M2M) communication to enhance information dissemination in National Public Security Communication System (NPSCS) network. M2M enables the flow of data between machines and machines and ultimately machines and people with information flowing from a machine over a network, and then through a gateway to a system where it is reviewed and acted on. The research findings showed that Internet-based architecture for M2M communication is most suitable for deployment of a public security network which will allow machines to use Internet to talk to each other.Keywords: machine-to-machine (M2M), internet-based architecture, network, gateway
Procedia PDF Downloads 4843766 Wastewater Treatment Using Sodom Apple Tree in Arid Regions
Authors: D. Oulhaci, M. Zehah, S. Meguellati
Abstract:
Collected by the sewerage network, the wastewater contains many polluting elements, coming from the population, commercial, industrial and agricultural activities. These waters are collected and discharged into the natural environment and pollute it. Hence the need to transport them before discharge to a treatment plant to undergo several treatment phases. The objective of this study is to highlight the purification performance of the "Sodom apple tree" which is a very common shrub in the region of Djanet and Illizi in Algeria. As material, we used small buckets filled with sand with a gravel substrate. We sowed seeds that we let grow a few weeks. The water supply is under a horizontal flow regime under-ground. The urban wastewater used is preceded by preliminary treatment. The water obtained after purification is collected using a tap in a container placed under the seal. The comparison between the inlet and the outlet waters showed that the presence of the Sodom apple tree contributes to reducing their pollutant parameters with significant rates: 81% for COD, 84%, for BOD , 95% for SM , 82% for NO⁻² , and 85% for NO⁻³ and can be released into the environment without risk of pollutionKeywords: arid zone, pollution, purification, re-use, wastewater.
Procedia PDF Downloads 803765 High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements
Authors: Chengzhu Liao, Jianbo Zhang, Haiou Wang, Jing Ming, Huili Li, Yanyan Li, Hua Cheng, Sie Chin Tjong
Abstract:
Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements.Keywords: biocompatibility, biocomposite, carbon nanofiber, high density polyethylene, hydroxyapatite
Procedia PDF Downloads 3033764 Performance Evaluation of Various Displaced Left Turn Intersection Designs
Authors: Hatem Abou-Senna, Essam Radwan
Abstract:
With increasing traffic and limited resources, accommodating left-turning traffic has been a challenge for traffic engineers as they seek balance between intersection capacity and safety; these are two conflicting goals in the operation of a signalized intersection that are mitigated through signal phasing techniques. Hence, to increase the left-turn capacity and reduce the delay at the intersections, the Florida Department of Transportation (FDOT) moves forward with a vision of optimizing intersection control using innovative intersection designs through the Transportation Systems Management & Operations (TSM&O) program. These alternative designs successfully eliminate the left-turn phase, which otherwise reduces the conventional intersection’s (CI) efficiency considerably, and divide the intersection into smaller networks that would operate in a one-way fashion. This study focused on the Crossover Displaced Left-turn intersections (XDL), also known as Continuous Flow Intersections (CFI). The XDL concept is best suited for intersections with moderate to high overall traffic volumes, especially those with very high or unbalanced left turn volumes. There is little guidance on determining whether partial XDL intersections are adequate to mitigate the overall intersection condition or full XDL is always required. The primary objective of this paper was to evaluate the overall intersection performance in the case of different partial XDL designs compared to a full XDL. The XDL alternative was investigated for 4 different scenarios; partial XDL on the east-west approaches, partial XDL on the north-south approaches, partial XDL on the north and east approaches and full XDL on all 4 approaches. Also, the impact of increasing volume on the intersection performance was considered by modeling the unbalanced volumes with 10% increment resulting in 5 different traffic scenarios. The study intersection, located in Orlando Florida, is experiencing recurring congestion in the PM peak hour and is operating near capacity with volume to a capacity ratio closer to 1.00 due to the presence of two heavy conflicting movements; southbound and westbound. The results showed that a partial EN XDL alternative proved to be effective and compared favorably to a full XDL alternative followed by the partial EW XDL alternative. The analysis also showed that Full, EW and EN XDL alternatives outperformed the NS XDL and the CI alternatives with respect to the throughput, delay and queue lengths. Significant throughput improvements were remarkable at the higher volume level with percent increase in capacity of 25%. The percent reduction in delay for the critical movements in the XDL scenarios compared to the CI scenario ranged from 30-45%. Similarly, queue lengths showed percent reduction in the XDL scenarios ranging from 25-40%. The analysis revealed how partial XDL design can improve the overall intersection performance at various demands, reduce the costs associated with full XDL and proved to outperform the conventional intersection. However, partial XDL serving low volumes or only one of the critical movements while other critical movements are operating near or above capacity do not provide significant benefits when compared to the conventional intersection.Keywords: continuous flow intersections, crossover displaced left-turn, microscopic traffic simulation, transportation system management and operations, VISSIM simulation model
Procedia PDF Downloads 3103763 Effect of Modifiers (Sr/Sb) and Heat Treatment on the Microstructures and Wear Properties of Al-11Si-3Cu-0.5Mg Alloys
Authors: Sheng-Long Lee, Tse-An Pan
Abstract:
In this study, an optical microscope (OM), electron microscope (SEM), electrical conductivity meter (% IACS), hardness test, and wear test were subjected to analyze the microstructure of the wrought Al-11Si-3Cu-0.5Mg alloys. The effect of eutectic silicon morphology and alloy hardness on wear properties was investigated. The results showed that in the cast state, the morphology of eutectic silicon modified by strontium and antimony is lamellar and finer fibrous structure. After homogenization, the eutectic Si modified by Sr coarsened, and the eutectic Si modified by Sb refined due to fragmentation. The addition of modifiers, hot rolling, and solution aging treatment can control eutectic silicon morphology and hardness. The finer eutectic silicon and higher hardness have better wear resistance. During the wearing process, a protective oxide layer, also known as Mechanical Mixed Layer (MML), is formed on the surface of the alloy. The MML has higher stability and cracking resistance in Sr-modified alloys than in Sb-modified alloys. The study found that the wearing behavior of Al-11Si-3Cu-0.5Mg alloy was enhanced by the combination of adding Sr with lower solution time and T6 peak aging.Keywords: Al-Si-Cu-Mg alloy, eutectic silicon, heat treatment, wear property
Procedia PDF Downloads 793762 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 523761 Investment Casting Conditions with Tourmaline In-Situ
Authors: Kageeporn Wongpreedee, Bongkot Phichaikamjornwut, Duangkhae Bootkul
Abstract:
The technique of stone in place casting had been established in jewelry production for two decades. However, the process were not widely used since it was limited to precious stones with high hardness and high stabililty at high temperature. This experiment were tested on tourmaline which is semi-precious gemstone having less hardness and less stability comparing to precious stones. The experiment were designed into two parts. The first part is to understand the phenomena of tourmaline under the heating conditions. Natural tourmaline stones were investigated and compared inclusions inside stones tested at temperature of 500 °C, 600 °C, and 700 °C. The second part is to cast the treated tourmaline with ion-implanation under the stones in place casting conditions. The results showed that stones were able to tolerate as much as at 700 °C showing the growths of inclusions inside the stones. The second part of this experiment were compared tourmaline with ion-implantation and natural tourmaline using on stones in place casting process at different stone setting types. The results showed that the cracks and inclustions of both treat and natural tourmaline with stones in place casting were propagate due to high stress of metal contractions. The stones with ion-implatation were more likely tolerate to cracks and inclusion propagations inside the stones.Keywords: stone in place casting, tourmaline, ion implantation, metal contraction
Procedia PDF Downloads 2163760 Flame Propagation Velocity of Selected Gas Mixtures Depending on the Temperature
Authors: Kaczmarzyk Piotr, Anna Dziechciarz, Wojciech Klapsa
Abstract:
The purpose of this paper is demonstration the test results of research influence of temperature on the velocity of flame propagation using gas and air mixtures for selected gas mixtures. The research was conducted on the test apparatus in the form of duct 2 m long. The test apparatus was funded from the project: “Development of methods to neutralize threats of explosion for determined tanks contained technical gases, including alternative sources of supply in the fire environment, taking into account needs of rescuers” number: DOB-BIO6/02/50/2014. The Project is funded by The National Centre for Research and Development. This paper presents the results of measurement of rate of pressure rise and rate in flame propagation, using test apparatus for mixtures air and methane or air and propane. This paper presents the results performed using the test apparatus in the form of duct measuring the rate of flame and overpressure wave. Studies were performed using three gas mixtures with different concentrations: Methane (3% to 8% vol), Propane (3% to 6% vol). As regard to the above concentrations, tests were carried out at temperatures 20 and 30 ̊C. The gas mixture was supplied to the inside of the duct by the partial pressure molecules. Data acquisition was made using 5 dynamic pressure transducers and 5 ionization probes, arranged along of the duct. Temperature conditions changes were performed using heater which was mounted on the duct’s bottom. During the tests, following parameters were recorded: maximum explosion pressure, maximum pressure recorded by sensors and voltage recorded by ionization probes. Performed tests, for flammable gas and air mixtures, indicate that temperature changes have an influence on overpressure velocity. It should be noted, that temperature changes do not have a major impact on the flame front velocity. In the case of propane and air mixtures (temperature 30 ̊C) was observed DDT (Deflagration to Detonation) phenomena. The velocity increased from 2 to 20 m/s. This kind of explosion could turn into a detonation, but the duct length is too short (2 m).Keywords: flame propagation, flame propagation velocity, explosion, propane, methane
Procedia PDF Downloads 2263759 Periodic Change in the Earth’s Rotation Velocity
Authors: Sung Duk Kim, Kwan U. Kim, Jin Sim, Ryong Jin Jang
Abstract:
The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity.Keywords: Earth rotation, moment function, periodic change, seasonal variation, relativistic change
Procedia PDF Downloads 733758 Synthesis and Characterization of Poly (N-(Pyridin-2-Ylmethylidene)Pyridin-2-Amine: Thermal and Conductivity Properties
Authors: Nuray Yılmaz Baran
Abstract:
The conjugated Schiff base polymers which are also called as polyazomethines are promising materials for various applications due to their good thermal resistance semiconductive, liquid crystal, fiber forming, nonlinear optical outstanding photo- and electroluminescence and antimicrobial properties. In recent years, polyazomethines have attracted intense attention of researchers especially due to optoelectronic properties which have made its usage possible in organic light emitting diodes (OLEDs), solar cells (SCs), organic field effect transistors (OFETs), and photorefractive holographic materials (PRHMs). In this study, N-(pyridin-2-ylmethylidene)pyridin-2-amine Schiff base was synthesized from condensation reaction of 2-aminopyridine with 2-pyridine carbaldehyde. Polymerization of Schiff base was achieved by polycondensation reaction using NaOCl oxidant in methanol medium at various time and temperatures. The synthesized Schiff base monomer and polymer (Poly(N-(pyridin-2-ylmethylidene)pyridin-2-amine)) was characterized by UV-vis, FT-IR, 1H-NMR, XRD techniques. Molecular weight distribution and the surface morphology of the polymer was determined by GPC and SEM-EDAX techniques. Thermal behaviour of the monomer and polymer was investigated by TG/DTG, DTA and DSC techniques.Keywords: polyazomethines, polycondensation reaction, Schiff base polymers, thermal stability
Procedia PDF Downloads 232