Search results for: learning & teaching
1122 Leveraging on Youth Agricultural Extension Outreach: Revisiting Young Farmer’s Club in Schools in Edo State, Nigeria
Authors: Christopher A. Igene, Jonathan O. Ighodalo
Abstract:
Youths play a critical role in the agricultural transformation of any developing nation such as Nigeria. Hence, the preparation of any nation for productive life depends on the policies and programmes designed for its youths. Studies have shown that children and youths contribute significantly in agricultural activities. Youths have vigour and prone to physical work, they constitute a great percentage of labour force in the country. It is of necessity that every policy on national development must of necessity take cognizance of the youths. Hence, the focus on youths in agricultural extension outreaches most especially, the young farmers club. It is an out-of-school education in agriculture and home economics for rural youth through learning by doing. Young farmers club in schools enables the young to learn and acquire those attributes that will enable them grown into useful and mature adult. There appears to be numerous constrains in the use of youths in extension, they are inadequate personnel, poor funding of agricultural sector, poor marketing channels, lack of good roads, others are poor input and lack of information. However, there is a need for Agricultural Development Programme (ADP) to organize workshop for secondary students and agricultural science teachers, schools to organize seminars and workshops for secondary schools who are members of Young Farmers Club (YFC). ADP should also organize agricultural show to encourage students to be members of Young Farmers Club (YFC).Keywords: agricultural extension, agricultural role, students, youths, young farmers club (YFC)
Procedia PDF Downloads 1671121 Approaches and Implications of Working on Gender Equality under Corporate Social Responsibility: A Case Study of Two Corporate Social Responsibilities in India
Authors: Shilpa Vasavada
Abstract:
One of the 17 SustainableDevelopmentGoals focuses on gender equality. The paper is based on the learning derived from working with two Corporate Social Responsibility cases in India: one, CSR of an International Corporate and the other, CSR of a multi state national level corporate -on their efforts to integrate gender perspective in their agriculture and livestock based rural livelihood programs. The author tries to dissect how ‘gender equality’ is seen by these two CSRs, where the goals are different. The implications of a CSR’sunderstandingon ‘gender equality’ as a goal; versus CSR’s understanding of working 'with women for enhancing quantity or quality of production’ gets reflected in their orientation to staff, resource allocation, strategic level and in processes followed at the rural grassroots level. The paper comes up with examples of changes made at programmatic front when CSR understands and works with the focus on gender equality as a goal. On the other hand, the paper also explores the differential, at times, the negative impact on women and the programmes;- when the goals differ. The paper concludes with recommendations for CSRs to take up at their resource allocation and strategic level if gender equality is the goal- which has direct implication at their grassroots programmatic work. The author argues that if gender equality has to be implemented actually in spirit by a CSR, it requires change in mindset and thus an openness to changes in strategies and resource allocation pattern of the CSR and not simply adding on women in the way intervention has been going on.Keywords: gender equality, approaches, differential impact, resource allocation
Procedia PDF Downloads 1961120 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1341119 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot
Authors: S. Cobos-Guzman
Abstract:
This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot
Procedia PDF Downloads 1761118 A Comparative Analysis of Liberation and Contemplation in Sankara and Aquinas
Authors: Zeite Shumneiyang Koireng
Abstract:
Liberation is the act of liberating or the state of being liberated. Indian philosophy, in general, understands liberation as moksa, which etymological is derived from the Sanskrit root muc+ktin meaning to loose, set free, to let go, discharge, release, liberate, deliver, etc. According to Indian schools of thought, moksa is the highest value on realizing which nothing remains to be realized. It is the cessation of birth and death, all kinds of pain and at the same time, it is the realization of one’s own self. Sankara’s Advaita philosophy is based on the following propositions: Brahman is the only Reality; the world has apparent reality, and the soul is not different from Brahman. According to Sankara, Brahman is the basis on which the world form appears; it is the sustaining ground of all various modification. It is the highest self and the self of all reveals himself by dividing himself [ as it was in the form of various objects] in multiple ways. The whole world is the manifestation of the Supreme Being. Brahman modifying itself into the Atman or internal self of all things is the world. Since Brahman is the Upadhana karana of the world, the sruti speaks of the world as the modification of Brahman into the Atman of the effect. Contemplation as the fulfillment of man finds a radical foundation in Aquinas teaching concerning the natural end or as he also referred to it, natural desire. The third book of the Summa Contra Gentiles begins the study of happiness with a consideration of natural desire. According to him, all creatures, even those devoid of understanding are ordered to God as an ultimate end. Intrinsically, a part of every nature is a tendency or inclination, originating in the natural form and tendency toward the end for which the possessor of nature exists. It is the study of the nature and finality of inclination that Aquinas establishes through an argument of induction man’s Contemplation of God as the fulfillment of his nature. The present paper is attempted to critically approach two important, seminal and originated thought, representing Indian and Western traditions which mark on the thinking of their respective times. Both these thoughts- Advaitic concept of Liberation in the Indian tradition and the concept of Contemplation in Thomas Aquinas’ Summa Contra Gentiles’- confront directly the question of the ultimate meaning of human existence. According to Sankara, it is knowledge and knowledge alone which is the means of moksa and the highest knowledge is moksa itself. Liberation in Sankara Vedanta is attained as a process of purification of self, which gradually and increasingly turns into purer and purer intentional construction. Man’s inner natural tendency for Aquinas is towards knowledge. The human subject is driven to know more and more about reality and in particular about the highest reality. Contemplation of this highest reality is fulfillment in the philosophy of Aquinas. Rather, Contemplation is the perfect activity in man’s present state of existence.Keywords: liberation, Brahman, contemplation, fulfillment
Procedia PDF Downloads 1931117 Combining the Production of Radiopharmaceuticals with the Department of Radionuclide Diagnostics
Authors: Umedov Mekhroz, Griaznova Svetlana
Abstract:
In connection with the growth of oncological diseases, the design of centers for diagnostics and the production of radiopharmaceuticals is the most relevant area of healthcare facilities. The design of new nuclear medicine centers should be carried out from the standpoint of solving the following tasks: the availability of medical care, functionality, environmental friendliness, sustainable development, improving the safety of drugs, the use of which requires special care, reducing the rate of environmental pollution, ensuring comfortable conditions for the internal microclimate, adaptability. The purpose of this article is to substantiate architectural and planning solutions, formulate recommendations and principles for the design of nuclear medicine centers and determine the connections between the production and medical functions of a building. The advantages of combining the production of radiopharmaceuticals and the department of medical care: less radiation activity is accumulated, the cost of the final product is lower, and there is no need to hire a transport company with a special license for transportation. A medical imaging department is a structural unit of a medical institution in which diagnostic procedures are carried out in order to gain an idea of the internal structure of various organs of the body for clinical analysis. Depending on the needs of a particular institution, the department may include various rooms that provide medical imaging using radiography, ultrasound diagnostics, and the phenomenon of nuclear magnetic resonance. The production of radiopharmaceuticals is an object intended for the production of a pharmaceutical substance containing a radionuclide and intended for introduction into the human body or laboratory animal for the purpose of diagnosis, evaluation of the effectiveness of treatment, or for biomedical research. The research methodology includes the following subjects: study and generalization of international experience in scientific research, literature, standards, teaching aids, and design materials on the topic of research; An integrated approach to the study of existing international experience of PET / CT scan centers and the production of radiopharmaceuticals; Elaboration of graphical analysis and diagrams based on the system analysis of the processed information; Identification of methods and principles of functional zoning of nuclear medicine centers. The result of the research is the identification of the design principles of nuclear medicine centers with the functions of the production of radiopharmaceuticals and the department of medical imaging. This research will be applied to the design and construction of healthcare facilities in the field of nuclear medicine.Keywords: architectural planning solutions, functional zoning, nuclear medicine, PET/CT scan, production of radiopharmaceuticals, radiotherapy
Procedia PDF Downloads 891116 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1071115 Humans Trust Building in Robots with the Help of Explanations
Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel
Abstract:
The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.Keywords: explanation interface, adversaries, partial observability, trust building
Procedia PDF Downloads 2011114 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 2691113 Evidence Based Policy Studies: Examining Alternative Policy Practice towards Improving Enrolment to Higher Education in Nigeria
Authors: Muftahu Jibirin Salihu, Hazri Jamil
Abstract:
The persisting challenge of access and enrolment to higher education in commonwealth countries has been reported in several studies, including reports of the international organization such as World Bank, UNESCO among others however from the macro perspective. The overarching aim of this study is to examine alternative policy practices towards improving access to university education in Nigeria at meso level of policy practice from evidence base policy studies using one university as a case. The study adopted a qualitative approach to gain insightful understanding on the issue of the study employing a semi-structure interview and policy documents as the means for obtaining the data and other relevant information for the study. The participants of the study were purposively chosen which comprise of a number of individuals from the selected university and other related organization which responsible for the policies development and implementation of Nigerian higher education system. From the findings of the study, several initiatives have been taken at meso level to address this challenge including the introduction of the University Matriculation Program as an alternative route for enhancing to access to the university education. However, the study further provided a number of recommendations which aimed at improving access to university education such as improving the entry requirements, society orientation on university education and the issue of ranking of certificate among the Nigerian higher institutions of learning.Keywords: policy practice, access, enrolment, university, education, Nigeria
Procedia PDF Downloads 2691112 “It Takes a Community to Save a Child”: A Qualitative Analysis of Child Trafficking Interventions from Practitioner Perspectives
Authors: Crispin Rakibu Mbamba
Abstract:
Twenty-two years after the adoption of the United Nation Trafficking Protocol, evidence suggest that child trafficking continues to rise. Community level factors, like poverty which creates the conditions for children’s vulnerability is key to the rise in trafficking cases in Ghana. Albeit, growing evidence suggestthat despite the vulnerabilities, communities have the capacity to prevent and address child trafficking issues. This study contributes to this positive agenda by exploring the ways in which communities (and the key actors) in Ghana contribute to child trafficking interventions.The study objective is explored through in-depth interviews with practitioners (including social workers) from an organization working in trafficking hotspots in Ghana. Interviews wereanalyzed thematically with the help of HyperRESEARCH software. From the in-depth interviews, three themes were identified as the ways in which communities are involved in child trafficking interventions: 1) engagement of community leaders, 2) community-led anti-trafficking committees and 3) knowledge about trafficking. Albeit the cultural differences, evidence on the instrumental role of community chiefs and leaders provide important learning on how to harness trafficking intervention measures and ensure better child protection practices. Based on the findings, we recommend the need to intensify trafficking awareness campaigns in rural communities where education is lacking to contribute to United Nations (UN) promoting Just, Peaceful and Inclusive societies’ mandate.Keywords: child trafficking, community interventions, knowledge on trafficking, human trafficking intervention
Procedia PDF Downloads 1151111 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4041110 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 981109 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement
Authors: Sai Sankalp Vemavarapu
Abstract:
This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation
Procedia PDF Downloads 1641108 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 2581107 Opportunities and Challenges in Midwifery Education: A Literature Review
Authors: Abeer M. Orabi
Abstract:
Midwives are being seen as a key factor in returning birth care to a normal physiologic process that is woman-centered. On the other hand, more needs to be done to increase access for every woman to professional midwifery care. Because of the nature of the midwifery specialty, the magnitude of the effect that can result from a lack of knowledge if midwives make a mistake in their care has the potential to affect a large number of the birthing population. So, the development, running, and management of midwifery educational programs should follow international standards and come after a thorough community needs assessment. At the same time, the number of accredited midwifery educational programs needs to be increased so that larger numbers of midwives will be educated and qualified, as well as access to skilled midwifery care will be increased. Indeed, the selection of promising midwives is important for the successful completion of an educational program, achievement of the program goals, and retention of graduates in the field. Further, the number of schooled midwives in midwifery education programs, their background, and their experience constitute some concerns in the higher education industry. Basically, preceptors and clinical sites are major contributors to the midwifery education process, as educational programs rely on them to provide clinical practice opportunities. In this regard, the selection of clinical training sites should be based on certain criteria to ensure their readiness for the intended training experiences. After that, communication, collaboration, and liaison between teaching faculty and field staff should be maintained. However, the shortage of clinical preceptors and the massive reduction in the number of practicing midwives, in addition to unmanageable workloads, act as significant barriers to midwifery education. Moreover, the medicalized approach inherent in the hospital setting makes it difficult to practice the midwifery model of care, such as watchful waiting, non-interference in normal processes, and judicious use of interventions. Furthermore, creating a motivating study environment is crucial for avoiding unnecessary withdrawal and retention in any educational program. It is well understood that research is an essential component of any profession for achieving its optimal goal and providing a foundation and evidence for its practices, and midwifery is no exception. Midwives have been playing an important role in generating their own research. However, the selection of novel, researchable, and sustainable topics considering community health needs is also a challenge. In conclusion, ongoing education and research are the lifeblood of the midwifery profession to offer a highly competent and qualified workforce. However, many challenges are being faced, and barriers are hindering their improvement.Keywords: barriers, challenges, midwifery education, educational programs
Procedia PDF Downloads 1151106 Impact of Keeping Drug-Addicted Mothers and Newborns Together: Enhancing Bonding, Interoception Learning, and Thriving for Newborns with Positive Effects on Attachment and Child Development
Authors: Poteet Frances, Glovinski Ira
Abstract:
INTRODUCTION: The interoceptive nervous system continuously senses chemical and anatomical changes and helps you recognize, understand, and feel what’s going on inside your body so it is important for energy regulation, memory, affect, and sense of self. A newborn needs predictable routines rather than confusion/chaos to make connections between internal experiences and emotions. AIM: Current legal protocols of removing babies from drug-addicted mothers impact the critical window of bonding. The newborn’s brain is social and the attachment process influences a child’s development which begins immediately after birth through nourishment, comfort, and protection. DESCRIPTION: Our project aims to educate drug-addicted mothers, and medical, nursing, and social work professionals on interoceptive concepts and practices to sustain the mother/newborn relationship. A mother’s interoceptive knowledge predicts children’s emotion regulation and social skills in middle childhood. CONCLUSION: When mothers develop an awareness of their inner bodily sensations, they can self-regulate and be emotionally available to co-regulate (support their newborn during distressing emotions and sensations). Our project has enhanced relationship preservation (mothers understand how their presence matters) and the overall mother/newborn connection.Keywords: drug-addiction, interoception, legal, mothers, newborn, self-regulation
Procedia PDF Downloads 611105 Multicenter Baseline Survey to Outline Antimicrobial Prescribing Practices at Six Public Sectortertiary Care Hospitals in a Low Middle Income Country
Authors: N. Khursheed, M. Fatima, S. Jamal, A. Raza, S. Rattani, Q. Ahsan, A. Rasheed, M. Jawed
Abstract:
Introduction: Antibiotics are among the commonly prescribed medicines to treat bacterial infections. Their misuse intensifies resistance, and overuse incurs heavy losses to the healthcare system in terms of increased treatment costs and enhanced disease burden. Studies show that 40% of empirically used antibiotics are irrationally utilized. The objective of this study was to evaluate prescribing pattern of antibiotics at six public sector tertiary care hospitals across Pakistan. Methods: A multicenter cross-sectional point prevalence survey (PPS) was conducted in selected wards of six public sector tertiary care hospitals in Pakistan as part of the Clinical Engagement program by Fleming Fund Country Grant Pakistan in collaboration with Indus Hospital & Health Network (IHHN) from February to March 2021, these included Jinnah Postgraduate Medical Center and Dr. Ruth K. M. Pfau Civil Hospital from Karachi, Sheikh Zayed Hospital Lahore, Nishtar Medical University Hospital Multan, Medical Teaching Institute Hayatabad Medical Complex Peshawar, and Provincial Headquarters Hospital Gilgit. WHO PPS methodology was used for data collection (Hospital, ward, and patient level data was collected). Data was entered into the open-source Kobo Collect application and was analyzed using SPSS (version 22.0). Findings: Medical records of 837 in-patients were surveyed, of which the prevalence of antibiotics use was 78.5%. The most commonly prescribed antimicrobial was Ceftriaxone (21.7%) which is categorized in the Watch group of WHO AWaRe Classification, followed by Metronidazole (17.3%), Cefoperazone/Sulbactam (8.4%), Co-Amoxiclav (6.3%) and Piperacillin/Tazobactam (5.9%). The antibiotics were prescribed largely for surgical prophylaxis (36.7%), followed by community-acquired infections (24.7%). One antibiotic was prescribed to 46.7%, two to 39.9%, and three or more to 12.5 %. Two of six (30%) hospitals had functional drug and therapeutic committees, three (50%) had infection prevention and control committees, and one facility had an antibiotic formulary. Conclusion: Findings demonstrate high consumption of broad-spectrum antimicrobials and emphasizes the importance of expanding the antimicrobial stewardship program. Mentoring clinical teams will help to rationalize antimicrobial use.Keywords: antimicrobial resistance, antimicrobial stewardship, point prevalence survey, antibiotics
Procedia PDF Downloads 1051104 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text
Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni
Abstract:
The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance
Procedia PDF Downloads 1541103 The Degree Project-Course in Swedish Teacher Education – Deliberative and Transformative Perspectives on the Formative Assessment Practice
Authors: Per Blomqvist
Abstract:
The overall aim of this study is to highlight how the degree project-course in teacher education has developed over time at Swedish universities, above all regarding changes in the formative assessment practices in relation to student's opportunities to take part in writing processes that can develop both their independent critical thinking, subject knowledge, and academic writing skills. Theoretically, the study is based on deliberative and transformative perspectives of teaching academic writing in higher education. The deliberative perspective is motivated by the fact that it is the universities and their departments' responsibility to give the students opportunities to develop their academic writing skills, while there is little guidance on how this can be implemented. The transformative perspective is motivated by the fact that education needs to be adapted to the student's prior knowledge and developed in relation to the student group. Given the academisation of education and the new student groups, this is a necessity. The empirical data consists of video recordings of teacher groups' conversations at three Swedish universities. The conversations were conducted as so-called collective remembering interviews, a method to stimulate the participants' memory through social interaction, and focused on addressing issues on how the degree project-course in teacher education has changed over time. Topic analysis was used to analyze the conversations in order to identify common descriptions and expressions among the teachers. The result highlights great similarities in how the degree project-course has changed over time, both from a deliberative and a transformative perspective. The course is characterized by a “strong framing,” where the teachers have great control over the work through detailed instructions for the writing process and detailed templates for the text. This is justified by the fact that the education has been adapted based on the student teachers' lack of prior subject knowledge. The strong framing places high demands on continuous discussions between teachers about, for example, which tools the students have with them and which linguistic and textual tools are offered in the education. The teachers describe that such governance often leads to conflicts between teachers from different departments because reading and writing are always part of cultural contexts and are linked to different knowledge, traditions, and values. The problem that is made visible in this study raises questions about how students' opportunities to develop independence and make critical judgments in academic writing are affected if the writing becomes too controlled and if passing students becomes the main goal of education.Keywords: formative assessment, academic writing, degree project, higher education, deliberative perspective, transformative perspective
Procedia PDF Downloads 651102 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies
Authors: Rashmi Gupta
Abstract:
Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.Keywords: attention, distractors, motivational salience, valence
Procedia PDF Downloads 2201101 Academic, Socio-Cultural and Psychological Satisfaction of International Higher Degree Research Students (IRHD) in Australia
Authors: Baohua Yu
Abstract:
In line with wider tends in the expansion of international student mobility, the number of international higher degree research students has grown at a significant rate in recent years. In particular, Australia has become a hub for attracting international higher degree research students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in adapting to their new environment. Moreover, this can have a significant bearing on their levels of satisfaction with their studies. This paper outlines the findings of a mixed method study exploring the experiences and perceptions of international higher degree research students in Australia. Findings revealed that IRHD students’ overall and academic satisfaction in Australia were highly related to each other, and they were strongly influenced by their learning and research, moderately influenced by co-national support and intercultural contact ability. Socio-cultural satisfaction seemed to belong to a different domain from academic satisfaction because it was explained by a different set of variables such as living and adaptation and intercultural contact ability. In addition, the most important issues in terms of satisfaction were not directly related to academic studies. Instead, factors such as integration into the community, interacting with other students, relationships with supervisors, and the provision of adequate desk space were often given the greatest weight. Implications for how university policy can better support international doctoral students are discussed.Keywords: international higher degree research students, academic adaptation, socio-cultural adaptation, student satisfaction
Procedia PDF Downloads 3051100 Knee Pain Reduction: Holistic vs. Traditional
Authors: Renee Moten
Abstract:
Introduction: Knee pain becomes chronic because the therapy used focuses only on the symptoms of knee pain and not the causes of knee pain. Preventing knee injuries is not in the toolbox of the traditional practitioner. This research was done to show that we must reduce the inflammation (holistically), reduce the swelling and regain flexibility before considering any type of exercise. This method of performing the correct exercise stops the bowing of the knee, corrects the walking gait, and starts to relieve knee, hip, back, and shoulder pain. Method: The holistic method that is used to heal knees is called the Knee Pain Recipe. It’s a six step system that only uses alternative medicine methods to reduce, relieve and restore knee joint mobility. The system is low cost, with no hospital bills, no physical therapy, and no painkillers that can cause damage to the kidneys and liver. This method has been tested on 200 women with knee, back, hip, and shoulder pain. Results: All 200 women reduce their knee pain by 50%, some by as much as 90%. Learning about ankle and foot flexibility, along with understanding the kinetic chain, helps improve the walking gait, which takes the pressure off the knee, hip and back. The knee pain recipe also has helped to reduce the need for a cortisone injection, stem cell procedures, to take painkillers, and surgeries. What has also been noted in the research was that if the women's knees were too far gone, the Knee Pain Recipe helped prepare the women for knee replacement surgery. Conclusion: It is believed that the Knee Pain Recipe, when performed by men and women from around the world, will give them a holistic alternative to drugs, injections, and surgeries.Keywords: knee, surgery, healing, holistic
Procedia PDF Downloads 751099 Urban Forest Innovation Lab as a Driver to Boost Forest Bioeconomy
Authors: Carmen Avilés Palacios, Camilo Muñoz Arenas, Joaquín García Alfonso, Jesús González Arteaga, Alberto Alcalde Calonge
Abstract:
There is a need for review of the consumption and production models of industrialized states in accordance with the Paris Agreement and the Sustainable Development Goals (1) (OECD, 2016). This constitutes the basis of the bioeconomy (2) that is focused on striking a balance between economic development, social development and environmental protection. Bioeconomy promotes the adequate use and consumption of renewable natural resources (3) and involves developing new products and services adapted to the principles of circular economy: more sustainable (reusable, biodegradable, renewable and recyclable) and with a lower carbon footprint (4). In this context, Urban Forest Innovation Lab (UFIL) grows, an Urban Laboratory for experimentation focused on promoting entrepreneurship in forest bioeconomy (www.uiacuenca.es). UFIL generates local wellness taking sustainable advantage of an endogenous asset, forests. UFIL boosts forest bioeconomy opening its doors of knowledge to pioneers in this field, giving the opportunity to be an active part of a change in the way of understanding the exploitation of natural resources, discovering business, learning strategies and techniques and incubating business ideas So far now, 100 entrepreneurs are incubating their nearly 30 new business plans. UFIL has promoted an ecosystem to connect the rural-urban world that promotes sustainable rural development around the forest.Keywords: bioeconomy, forestry, innovation, entrepreneurship
Procedia PDF Downloads 1181098 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 171097 Green Windows of Opportunity in Latin American Countries
Authors: Fabianna Bacil, Zenathan Hasannundin, Clovis Freire
Abstract:
The green transition opens green windows of opportunity – temporary moments in which there are lower barriers and shorter learning periods for developing countries to enter emerging technologies and catch-up. However, taking advantage of these windows requires capabilities in national sectoral systems to adopt and develop technologies linked to green sectors as well as strong responses to build the required knowledge, skills, and infrastructure and foster the growth of targeted sectors. This paper uses UNCTAD’s frontier technology readiness index to analyse the current position of Latin America and the Caribbean to use, adopt, and adapt frontier technologies, examining the preconditions in the region to take up windows of opportunity that arise with the green transition. The index highlights the inequality across countries in the region, as well as gaps in capabilities dimensions, especially in terms of R&D. Moving to responses, it highlights industrial policies implemented to foster the growth of green technologies, emphasising the essential role played by the state to build and strengthen capabilities and provide infant industry protection that enables the growth of these sectors. Overall, while there are exceptions, especially in the Brazilian case, countries in Latin America and the Caribbean should focus on strengthening their capabilities to be better positioned, especially in terms of knowledge creation, infrastructure, and financing availability.Keywords: Green technologies, Industrial policy, Latin America, windows of opportunity
Procedia PDF Downloads 641096 Using Multiple Strategies to Improve the Nursing Staff Edwards Lifesciences Hemodynamic Monitoring Correctness of Operation
Authors: Hsin-Yi Lo, Huang-Ju Jiun, Yu-Chiao Chu
Abstract:
Hemodynamic monitoring is an important in the intensive care unit. Advances in medical technology in recent years, more diversification of intensive care equipment, there are many kinds of instruments available for monitoring of hemodynamics, Edwards Lifesciences Hemodynamic Monitoring (FloTrac) is one of them. The recent medical safety incidents in parameters were changed, nurses have not to notify doctor in time, therefore, it is hoped to analyze the current problems and find effective improvement strategies. In August 2021, the survey found that only 74.0% of FloTrac correctness of operation, reasons include lack of education, the operation manual is difficulty read, lack of audit mechanism, nurse doesn't know those numerical changes need to notify doctor, work busy omission, unfamiliar with operation and have many nursing records then omissions. Improvement methods include planning professional nurse education, formulate the secret arts of FloTrac, enacting an audit mechanism, establish FloTrac action learning, make「follow the sun」care map, hold simulated training and establish monitoring data automatically upload nursing records. After improvement, FloTrac correctness of operation increased to 98.8%. The results are good, implement to the ICU of the hospital.Keywords: hemodynamic monitoring, edwards lifesciences hemodynamic monitoring, multiple strategies, intensive care
Procedia PDF Downloads 821095 Assessing Professionalism, Communication, and Collaboration among Emergency Physicians by Implementing a 360-Degree Evaluation
Authors: Ahmed Al Ansari, Khalid Al Khalifa
Abstract:
Objective: Multisource feedback (MSF), also called the 360-Degree evaluation is an evaluation process by which questionnaires are distributed amongst medical peers and colleagues to assess physician performance from different sources other than the attending or the supervising physicians. The aim of this study was to design, implement, and evaluate a 360-Degree process in assessing emergency physicians trainee in the Kingdom of Bahrain. Method: The study was undertaken in Bahrain Defense Force Hospital which is a military teaching hospital in the Kingdom of Bahrain. Thirty emergency physicians (who represent the total population of the emergency physicians in our hospital) were assessed in this study. We developed an instrument modified from the Physician achievement review instrument PAR which was used to assess Physician in Alberta. We focused in our instrument to assess professionalism, communication skills and collaboration only. To achieve face and content validity, table of specification was constructed and a working group was involved in constructing the instrument. Expert opinion was considered as well. The instrument consisted of 39 items; were 15 items to assess professionalism, 13 items to assess communication skills, and 11 items to assess collaboration. Each emergency physicians was evaluated with 3 groups of raters, 4 Medical colleague emergency physicians, 4 medical colleague who are considered referral physicians from different departments, and 4 Coworkers from the emergency department. Independent administrative team was formed to carry on the responsibility of distributing the instruments and collecting them in closed envelopes. Each envelope was consisted of that instrument and a guide for the implementation of the MSF and the purpose of the study. Results: A total of 30 emergency physicians 16 males and 14 females who represent the total number of the emergency physicians in our hospital were assessed. The total collected forms is 269, were 105 surveys from coworkers working in emergency department, 93 surveys from medical colleague emergency physicians, and 116 surveys from referral physicians from different departments. The total mean response rates were 71.2%. The whole instrument was found to be suitable for factor analysis (KMO = 0.967; Bartlett test significant, p<0.00). Factor analysis showed that the data on the questionnaire decomposed into three factors which counted for 72.6% of the total variance: professionalism, collaboration, and communication. Reliability analysis indicated that the instrument full scale had high internal consistency (Cronbach’s α 0.98). The generalizability coefficients (Ep2) were 0.71 for the surveys. Conclusions: Based on the present results, the current instruments and procedures have high reliability, validity, and feasibility in assessing emergency physicians trainee in the emergency room.Keywords: MSF system, emergency, validity, generalizability
Procedia PDF Downloads 3571094 A Palmprint Identification System Based Multi-Layer Perceptron
Authors: David P. Tantua, Abdulkader Helwan
Abstract:
Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator
Procedia PDF Downloads 3721093 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 113