Search results for: healthcare data security
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27832

Search results for: healthcare data security

20542 Understanding Learning Styles of Hong Kong Tertiary Students for Engineering Education

Authors: K. M. Wong

Abstract:

Engineering education is crucial to technological innovation and advancement worldwide by generating young talents who are able to integrate scientific principles and design practical solutions for real-world problems. Graduates of engineering curriculums are expected to demonstrate an extensive set of learning outcomes as required in international accreditation agreements for engineering academic qualifications, such as the Washington Accord and the Sydney Accord. On the other hand, students have different learning preferences of receiving, processing and internalizing knowledge and skills. If the learning environment is advantageous to the learning styles of the students, there is a higher chance that the students can achieve the intended learning outcomes. With proper identification of the learning styles of the students, corresponding teaching strategies can then be developed for more effective learning. This research was an investigation of learning styles of tertiary students studying higher diploma programmes in Hong Kong. Data from over 200 students in engineering programmes were collected and analysed to identify the learning characteristics of students. A small-scale longitudinal study was then started to gather academic results of the students throughout their two-year engineering studies. Preliminary results suggested that the sample students were reflective, sensing, visual, and sequential learners. Observations from the analysed data not only provided valuable information for teachers to design more effective teaching strategies, but also provided data for further analysis with the students’ academic results. The results generated from the longitudinal study shed light on areas of improvement for more effective engineering curriculum design for better teaching and learning.

Keywords: learning styles, learning characteristics, engineering education, vocational education, Hong Kong

Procedia PDF Downloads 267
20541 Impure CO₂ Solubility Trapping in Deep Saline Aquifers: Role of Operating Conditions

Authors: Seyed Mostafa Jafari Raad, Hassan Hassanzadeh

Abstract:

Injection of impurities along with CO₂ into saline aquifers provides an exceptional prospect for low-cost carbon capture and storage technologies and can potentially accelerate large-scale implementation of geological storage of CO₂. We have conducted linear stability analyses and numerical simulations to investigate the effects of permitted impurities in CO₂ streams on the onset of natural convection and dynamics of subsequent convective mixing. We have shown that the rate of dissolution of an impure CO₂ stream with H₂S highly depends on the operating conditions such as temperature, pressure, and composition of impurity. Contrary to findings of previous studies, our results show that an impurity such as H₂S can potentially reduce the onset time of natural convection and can accelerate the subsequent convective mixing. However, at the later times, the rate of convective dissolution is adversely affected by the impurities. Therefore, the injection of an impure CO₂ stream can be engineered to improve the rate of dissolution of CO₂, which leads to higher storage security and efficiency. Accordingly, we have identified the most favorable CO₂ stream compositions based on the geophysical properties of target aquifers. Information related to the onset of natural convection such as the scaling relations and the most favorable operating conditions for CO₂ storage developed in this study are important in proper design, site screening, characterization and safety of geological storage. This information can be used to either identify future geological candidates for acid gas disposal or reviewing the current operating conditions of licensed injection sites.

Keywords: CO₂ storage, solubility trapping, convective dissolution, storage efficiency

Procedia PDF Downloads 208
20540 The Impact of Business Process Reengineering to the Company Performance through TQM and Enterprise Resource Planning Implementation on Manufacturing Companies in East Java, Indonesia

Authors: Widjojo Suprapto, Zeplin Jiwa Husada Tarigan, Sautma Ronni Basana

Abstract:

Business process reengineering can be conducted by some procedure rationalization for all related departments in a company so that all data and business processes are connected. The changing of any business process is used to set up the working standard so that it gives an impact to the implementation of ERP and the company performance. After collecting and processing the data from 77 manufacturing companies, it is obtained that BPR (Business Process Reengineering) has no direct impact on the implementation of ERP (Enterprise Resource Planning) in the companies and manufacturing performance; however, it influences the implementation of TQM. The implementation of TQM influences directly the implementation of ERP, but it does not influence directly the company performance. The implementation of ERP gives a significant increase in the work performance of the manufacturing companies in East Java.

Keywords: enterprise resources planning, business process reengineering, TQM, company performance

Procedia PDF Downloads 212
20539 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 88
20538 Means of Securing Graves in the Egyptian Kingdom Era

Authors: Haitham Nabil Zaghlol Hasan

Abstract:

This research aims to study the means of securing graves in the Egyptian kingdom era, and revolves around many basic ideas used by the ancient Egyptian to protect his graves from thieves, which included architectural characteristics, which gave it importance only others. The most important of which was the choice of the place of the grave, which chose a kohl place in the desert to protect the graves, which is the valley of kings, and whether the choice of that place had an impact in protecting the grave or not, in addition to other elements followed in the architectural planning, which was in the valley of kings. The multiplicity of the tomb, the construction of the well chamber to deceive the thieves by the end of the graves suddenly, the construction of the wells of the tombs, which contained the burial chamber at the bottom of the main well and the effect of all these factors on the graves, and this shows the importance of the graves to the ancient Egyptian and his belief in resurrection and immortality. The Egyptian resorted to the elements of protection and was a religious worker by The protector gods and special texts to protect the deceased from any danger to protect the tomb. As for the human factor of securing the tomb through human guards (police) and security teams based on the guard and the words indicating the protection and the guard teams and the teams of the majai. The most important developments that arose on the cemetery from Tamit entrance, corridors, chambers, burial chamber and coffin, and the use of sand to close the well after from one cemetery to another and from time to time where it was built in the late period inside the temple campus to be under the attention of the priests and their protection, as the study dealt with an analytical study For the means of securing graves in the Egyptian kingdom period.

Keywords: Egypt, archaeology, civilization, Egyptian

Procedia PDF Downloads 83
20537 A Multi-Model Approach to Assess Atlantic Bonito (Sarda Sarda, Bloch 1793) in the Eastern Atlantic Ocean: A Case Study of the Senegalese Exclusive Economic Zone

Authors: Ousmane Sarr

Abstract:

The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean.

Keywords: multi-model approach, stock assessment, atlantic bonito, healthy stock, sustainable, SEEZ, temporary management measures

Procedia PDF Downloads 64
20536 Evaluation of Environmental Disclosures on Financial Performance of Quoted Industrial Goods Manufacturing Sectors in Nigeria (2011 – 2020)

Authors: C. C. Chima, C. J. M. Anumaka

Abstract:

This study evaluates environmental disclosures on the financial performance of quoted industrial goods manufacturing sectors in Nigeria. The study employed a quasi-experimental research design to establish the relationship that exists between the environmental disclosure index and financial performance indices (return on assets - ROA, return on equity - ROE, and earnings per share - EPS). A purposeful sampling technique was employed to select five (5) industrial goods manufacturing sectors quoted on the Nigerian Stock Exchange. Secondary data covering 2011 to 2020 financial years were extracted from annual reports of the study sectors using a content analysis method. The data were analyzed using SPSS, Version 23. Panel Ordinary Least Squares (OLS) regression method was employed in estimating the unknown parameters in the study’s regression model after conducting diagnostic and preliminary tests to ascertain that the data set are reliable and not misleading. Empirical results show that there is an insignificant negative relationship between the environmental disclosure index (EDI) and the performance indices (ROA, ROE, and EPS) of the industrial goods manufacturing sectors in Nigeria. The study recommends that: only relevant information which increases the performance indices should appear on the disclosure checklist; environmental disclosure practices should be country-specific; and company executives in Nigeria should increase and monitor the level of investment (resources, time, and energy) in order to ensure that environmental disclosure has a significant impact on financial performance.

Keywords: earnings per share, environmental disclosures, return on assets, return on equity

Procedia PDF Downloads 91
20535 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 26
20534 Fashion and Soft War: Analysis of Iran's Regulatory Measures for Fashion Industry

Authors: Leili Nekounazar

Abstract:

Since 2009, when the Green movement, Iran’s most significant political uprising in post-Islamic revolution materialized, the term 'soft war' has become an integral part of the Iranian regime’s lexicon when addressing the media propaganda waged by the west and the regime’s so-called 'enemies'. Iran’s authorities describe soft war as a western campaign aiming at undermining the revolutionary values by covert activities, deploying cultural tools and purposeful dissemination of information. With this respect, Internet and in particular, the social media networks, and oppositional radio-television broadcasts have been considered as the west’s soft war conduits. With the rising of the underground fashion industry in the past couple of years that does not conform to the compulsory dress codes prescribed by the state, the Islamic regime expands the soft war narrative to include any undesired fashion-related activities and frames the rising fashion industry as a cultural war intoxicating the Iranian-Islamic identity. Accordingly, fashion products created by the Iranian fashion intermediators have been attributed to the westerners and outsiders and are regarded as the matter of national security. This study examines the reactive and proactive measures deployed by the Iranian regime to control the rise of fashion industry. It further puts under the scrutiny how the state as a part of its proactive measure shapes the narrative of 'soft war' in relation to fashion in Iran and explores how the notion of soft war has been articulated in relation to the modeling and fashion in the state’s political rhetoric. Through conducting a content analysis of the authorities’ statements, it describes how the narrative of soft war assists the state policing the fashion industry.

Keywords: censorship, fashion, Iran, soft war

Procedia PDF Downloads 348
20533 Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake

Authors: Naohiro Nakamura, Takuya Kinoshita, Hiroshi Fukuyama

Abstract:

The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration.

Keywords: ARX model, response analysis, SRC building, the 2011 off the Pacific Coast of Tohoku Earthquake

Procedia PDF Downloads 167
20532 Improving the Detection of Depression in Sri Lanka: Cross-Sectional Study Evaluating the Efficacy of a 2-Question Screen for Depression

Authors: Prasad Urvashi, Wynn Yezarni, Williams Shehan, Ravindran Arun

Abstract:

Introduction: Primary health services are often the first point of contact that patients with mental illness have with the healthcare system. A number of tools have been developed to increase detection of depression in the context of primary care. However, one challenge amongst many includes utilizing these tools within the limited primary care consultation timeframe. Therefore, short questionnaires that screen for depression that are just as effective as more comprehensive diagnostic tools may be beneficial in improving detection rates of patients visiting a primary care setting. Objective: To develop and determine the sensitivity and specificity of a 2-Question Questionnaire (2-QQ) to screen for depression in in a suburban primary care clinic in Ragama, Sri Lanka. The purpose is to develop a short screening tool for depression that is culturally adapted in order to increase the detection of depression in the Sri Lankan patient population. Methods: This was a cross-sectional study involving two steps. Step one: verbal administration of 2-QQ to patients by their primary care physician. Step two: completion of the Peradeniya Depression Scale, a validated diagnostic tool for depression, the patient after their consultation with the primary care physician. The results from the PDS were then correlated to the results from the 2-QQ for each patient to determine sensitivity and specificity of the 2-QQ. Results: A score of 1/+ on the 2-QQ was most sensitive but least specific. Thus, setting the threshold at this level is effective for correctly identifying depressed patients, but also inaccurately captures patients who are not depressed. A score of 6 on the 2-QQ was most specific but least sensitive. Setting the threshold at this level is effective for correctly identifying patients without depression, but not very effective at capturing patients with depression. Discussion: In the context of primary care, it may be worthwhile setting the 2-QQ screen at a lower threshold for positivity (such as a score of 1 or above). This would generate a high test sensitivity and thus capture the majority of patients that have depression. On the other hand, by setting a low threshold for positivity, patients who do not have depression but score higher than 1 on the 2-QQ will also be falsely identified as testing positive for depression. However, the benefits of identifying patients who present with depression may outweigh the harms of falsely identifying a non-depressed patient. It is our hope that the 2-QQ will serve as a quick primary screen for depression in the primary care setting and serve as a catalyst to identify and treat individuals with depression.

Keywords: depression, primary care, screening tool, Sri Lanka

Procedia PDF Downloads 261
20531 Online Learning Management System for Teaching

Authors: Somchai Buaroong

Abstract:

This research aims to investigating strong points and challenges in application of an online learning management system to an English course. Data were collected from observation, learners’ oral and written reports, and the teacher’s journals. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The findings show that the system was an additional channel to enhance English language learning through written class assignments that were digitally accessible by any group members, and through communication between the teacher and learners and among learners themselves. Thus, the learning management system could be a promising tool for foreign language teachers. Also revealed in the study were difficulties in its use. The article ends with discussions of findings of the system for foreign language classes in association to pedagogy are also included and in the level of signification.

Keywords: english course, foreign language system, online learning management system, teacher’s journals

Procedia PDF Downloads 286
20530 Unlocking E-commerce: Analyzing User Behavior and Segmenting Customers for Strategic Insights

Authors: Aditya Patil, Arun Patil, Vaishali Patil, Sudhir Chitnis, Anjum Patel

Abstract:

Rapid growth has given e-commerce platforms a lot of client behavior and spending data. To maximize their strategy, businesses must understand how customers utilize online shopping platforms and what influences their purchases. Our research focuses on e-commerce user behavior and purchasing trends. This extensive study examines spending and user behavior. Regression and grouping disclose relevant data from the dataset. We can understand user spending trends via multilevel regression. We can analyze how pricing, user demographics, and product categories affect customer purchase decisions with this technique. Clustering groups consumers by spending. Important information was found. Purchase habits vary by user group. Our analysis illuminates the complex world of e-commerce consumer behavior and purchase trends. Understanding user behavior helps create effective e-commerce marketing strategies. This market can benefit from K-means clustering. This study focuses on tailoring strategies to user groups and improving product and price effectiveness. Customer buying behaviors across categories were shown via K-means clusters. Average spending is highest in Cluster 4 and lowest in Cluster 3. Clothing is less popular than gadgets and appliances around the holidays. Cluster spending distribution is examined using average variables. Our research enhances e-commerce analytics. Companies can improve customer service and decision-making with this data.

Keywords: e-commerce, regression, clustering, k-means

Procedia PDF Downloads 28
20529 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation

Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy

Abstract:

A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.

Keywords: cognitive activity, EEG, machine learning, personalized recovery

Procedia PDF Downloads 223
20528 The Impact of Employee's Perception of Corporate Social Responsibility on Job Satisfaction: Corporate Sector of Pakistan

Authors: Binish Ahmed

Abstract:

Corporate Social Responsibility (CSR) is regarded as voluntary behaviors that contribute to the social welfare based on the concept of sustainable development. The corporations should not only stress on their economic and business outcomes but also pay attention to their effect on the society and environment. It could attract investors and customers, as well as maintain a positive interaction with the government. In spite of the broad diffusion, and its potential significance to employees' perspective, CSR is now examined and has built-in Organizational Behavior (OB), and Human Resource Management (HRM) look into the broad structure of relationship between employees' perspective, work attitudes and behavior to improve the research on CSR. The purpose of this research is to investigate the impact of employees’ perception of CSR on work attitudes and behaviors of employees. A conceptual framework is proposed, based on the literature and practices. The research would conduct the primary data survey of convenient sampling from the employees and managers-using detailed questionnaire- to address the following questions. The survey of 180 respondents of age greater than 20 having at least six-month experience from companies based in Karachi are source of data. The application of professional empirical models for data analysis and interpretation are source to draw the conclusion. 1. What are the dynamics of CSR in an organization? Why is it important to have a CSR department? What sort of business approach are CSR activities practiced? Do CSR activities improve the quality of life of workplace? And, how it linked with welfare of society? 2. How the positive job attitude and behavior does encourage the employees about the perception of CSR? How is it linked with the job satisfaction? What is the relationship between employees’ perception of CSR and job satisfaction?

Keywords: corporate social responsibility, job satisfaction, organizational commitment, work behaviors

Procedia PDF Downloads 183
20527 Productivity, Labour Flexibility, and Migrant Workers in Hotels: An Establishment and Departmental Level Analysis

Authors: Natina Yaduma, Allan Williams, Sangwon Park, Andrew Lockwood

Abstract:

This paper analyses flexible working, and the employment of migrants, as determinants of productivity in hotels. Controlling for the institutional environment, by focussing on a single firm, it analyses data on actual hours worked and outputs, on a weekly basis, over an 8 year period. The unusually disaggregated data allows the paper to examine not only inter-establishment, but also intra-establishment (departmental) variations in productivity, and to compare financial versus physical measures. The findings emphasise the complexity of productivity findings, sometimes contrasting evidence for establishments versus departments, and the positive but scale and measure-specific contributions of both the employment of migrants and flexible working, especially the utilisation of zero hours contracts.

Keywords: labour productivity, physical productivity, financial productivity, numerical flexibility, functional flexibility, migrant employment, cero-contract employment

Procedia PDF Downloads 366
20526 An Estimating Equation for Survival Data with a Possibly Time-Varying Covariates under a Semiparametric Transformation Models

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

An estimating equation technique is an alternative method of the widely used maximum likelihood methods, which enables us to ease some complexity due to the complex characteristics of time-varying covariates. In the situations, when both the time-varying covariates and left-truncation are considered in the model, the maximum likelihood estimation procedures become much more burdensome and complex. To ease the complexity, in this study, the modified estimating equations those have been given high attention and considerations in many researchers under semiparametric transformation model was proposed. The purpose of this article was to develop the modified estimating equation under flexible and general class of semiparametric transformation models for left-truncated and right censored survival data with time-varying covariates. Besides the commonly applied Cox proportional hazards model, such kind of problems can be also analyzed with a general class of semiparametric transformation models to estimate the effect of treatment given possibly time-varying covariates on the survival time. The consistency and asymptotic properties of the estimators were intuitively derived via the expectation-maximization (EM) algorithm. The characteristics of the estimators in the finite sample performance for the proposed model were illustrated via simulation studies and Stanford heart transplant real data examples. To sum up the study, the bias for covariates has been adjusted by estimating density function for the truncation time variable. Then the effect of possibly time-varying covariates was evaluated in some special semiparametric transformation models.

Keywords: EM algorithm, estimating equation, semiparametric transformation models, time-to-event outcomes, time varying covariate

Procedia PDF Downloads 158
20525 Teaching during the Pandemic Using a Feminist Pedagogy: Classroom Conversations and Practices

Authors: T. Northcut, A. Rai, N. Perkins

Abstract:

Background: The COVID-19 pandemic has had a serious impact on academia in general and social work education in particular, changing permanently the way in which we approach educating students. The new reality of the pandemic coupled with the much-needed focus on racism across the country inspired and required educators to get creative with their teaching styles in order to disrupt the power imbalance in the classroom and attend to the multiple layers of needs of diverse students in precarious sociological and economic circumstances. This paper highlights research examining educators with distinctive positionalities and approaches to classroom instruction who use feminist and antiracist pedagogies while adapting to online teaching during the pandemic. Despite being feminist scholars, whose ideologies developed during different waves of feminism, our commitment to having student-led classrooms, liberation, and equity of all, and striving for social change, unified our feminist teaching pedagogies as well as provided interpersonal support. Methodology: Following a narrative qualitative inquiry methodology, the five authors of this paper came together to discuss our pedagogical styles and underlying values using Zoom in a series of six conversations. Narrative inquiry is an appropriate method to use when researchers are bound by common stories or personal experiences. The use of feminist pedagogy in the classroom before and during the pandemic guided the discussions. After six sessions, we reached the point of data saturation. All data from the dialogic process was recorded and transcribed. We used in vivo, narrative, and descriptive coding for the data analytic process. Results: Analysis of the data revealed several themes, which included (1) the influence of our positionalities as an intersection of race, sexual orientation, gender, and years of teaching experience in the classroom, (2) the meaning and variations between different liberatory pedagogical approaches, (3) the tensions between these approaches and institutional policies and practices, (4) the role of self-reflection in everyday teaching, (5) the distinctions between theory and practice and its utility for students, and (6) the challenges of applying a feminist-centered pedagogical approach during the pandemic while utilizing an online platform. As a collective, we discussed several challenges that limited the use of our feminist pedagogical approaches due to instruction through Zoom.

Keywords: feminist, pedagogy, COVID, zoom

Procedia PDF Downloads 48
20524 Determining Antecedents of Employee Turnover: A Study on Blue Collar vs White Collar Workers on Marco Level

Authors: Evy Rombaut, Marie-Anne Guerry

Abstract:

Predicting voluntary turnover of employees is an important topic of study, both in academia and industry. Researchers try to uncover determinants for a broader understanding and possible prevention of turnover. In the current study, we use a data set based approach to reveal determinants for turnover, differing for blue and white collar workers. Our data set based approach made it possible to study actual turnover for more than 500000 employees in 15692 Belgian corporations. We use logistic regression to calculate individual turnover probabilities and test the goodness of our model with the AUC (area under the ROC-curve) method. The results of the study confirm the relationship of known determinants to employee turnover such as age, seniority, pay and work distance. In addition, the study unravels unknown and verifies known differences between blue and white collar workers. It shows opposite relationships to turnover for gender, marital status, the number of children, nationality, and pay.

Keywords: employee turnover, blue collar, white collar, dataset analysis

Procedia PDF Downloads 297
20523 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer

Authors: Xiaoping Su, Gabriel G. Malouf

Abstract:

Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.

Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor

Procedia PDF Downloads 109
20522 Exploration of a Blockchain Assisted Framework for Through Baggage Interlining: Blocklining

Authors: Mary Rose Everan, Michael McCann, Gary Cullen

Abstract:

International travel journeys, by their nature, incorporate elements provided by multiple service providers such as airlines, rail carriers, airports, and ground handlers. Data needs to be stored by and exchanged between these parties in the process of managing the journey. The fragmented nature of this shared management of mutual clients is a limiting factor in the development of a seamless, hassle-free, end-to-end travel experience. Traditional interlining agreements attempt to facilitate many separate aspects of co-operation between service providers, typically between airlines and, to some extent, intermodal travel operators, including schedules, fares, ticketing, through check-in, and baggage handling. These arrangements rely on pre-agreement. The development of Virtual Interlining - that is, interlining facilitated by a third party (often but not always an airport) without formal pre-agreement by the airlines or rail carriers - demonstrates an underlying demand for a better quality end-to-end travel experience. Blockchain solutions are being explored in a number of industries and offer, at first sight, an immutable, single source of truth for this data, avoiding data conflicts and misinterpretation. Combined with Smart Contracts, they seemingly offer a more robust and dynamic platform for multi-stakeholder ventures, and even perhaps the ability to join and leave consortia dynamically. Applying blockchain to the intermodal interlining space – termed Blocklining in this paper - is complex and multi-faceted because of the many aspects of cooperation outlined above. To explore its potential, this paper concentrates on one particular dimension, that of through baggage interlining.

Keywords: aviation, baggage, blocklining, intermodal, interlining

Procedia PDF Downloads 149
20521 Exploring the Landscape of Information Visualization through a Mark Lombardi Lens

Authors: Alon Friedman, Antonio Sanchez Chinchon

Abstract:

This bibliometric study takes an artistic and storytelling approach to explore the term ”information visualization.” Analyzing over 1008 titles collected from databases that specialize in data visualization research, we examine the titles of these publications to report on the characteristics and development trends in the field. Employing a qualitative methodology, we delve into the titles of these publications, extracting leading terms and exploring the cooccurrence of these terms to gain deeper insights. By systematically analyzing the leading terms and their relationships within the titles, we shed light on the prevailing themes that shape the landscape of ”information visualization” by employing the artist Mark Lombardi’s techniques to visualize our findings. By doing so, this study provides valuable insights into bibliometrics visualization while also opening new avenues for leveraging art and storytelling to enhance data representation.

Keywords: bibliometrics analysis, Mark Lombardi design, information visualization, qualitative methodology

Procedia PDF Downloads 94
20520 Multiplayer RC-car Driving System in a Collaborative Augmented Reality Environment

Authors: Kikuo Asai, Yuji Sugimoto

Abstract:

We developed a prototype system for multiplayer RC-car driving in a collaborative Augmented Reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment.

Keywords: multiplayer, RC-car, collaborative environment, augmented reality

Procedia PDF Downloads 292
20519 Crime Prevention with Artificial Intelligence

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.

Keywords: artificial intelligence, criminology, crime, prevention, prediction

Procedia PDF Downloads 82
20518 IoT Based Soil Moisture Monitoring System for Indoor Plants

Authors: Gul Rahim Rahimi

Abstract:

The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.

Keywords: IoT-based, soil moisture monitoring, indoor plants, water management

Procedia PDF Downloads 56
20517 Barriers to Sports Participation as a Means of Achieving Sustainable Development in Michael Otedola College of Primary Education

Authors: Osifeko Olalekan Remigious, Osifeko Christiana Osikorede, Folarin Bolanle Eunice, Olugbenga Adebola Shodiya

Abstract:

In this period of economic problem, nations are looking for avenues to improve their economy, preserve their environment and socio-political environment, educational institutions are not left out as there is the need for them to increase their economy and preserve their socio political environment. Sports is one of the ways through which sustainable development can be achieved. The purpose of this study was to examine the barriers to sports participation. A total of 1025 students were purposively selected from all the five schools in the College. A questionnaire which has a reliability coefficient of 0.71 was used for data collection. Data collected were subjected to the descriptive survey research design. Findings showed that facilities, funds and lectures schedule were significant barriers to sports participation. It was recommended that sports facilities should be provided by the Lagos State government.

Keywords: MOCPED sports, sustainable development, sports participation, state government

Procedia PDF Downloads 331
20516 Supporting 'vulnerable' Students to Complete Their Studies During the Economic Crisis in Greece: The Umbrella Program of International Hellenic University

Authors: Rigas Kotsakis, Nikolaos Tsigilis, Vasilis Grammatikopoulos, Evridiki Zachopoulou

Abstract:

During the last decade, Greece has faced an unprecedented financial crisis, affecting various aspects and functionalities of Higher Education. Besides the restricted funding of academic institutions, the students and their families encountered economical difficulties that undoubtedly influenced the effective completion of their studies. In this context, a fairly large number of students in Alexander campus of International Hellenic University (IHU) delay, interrupt, or even abandon their studies, especially when they come from low-income families, belong to sensitive social or special needs groups, they have different cultural origins, etc. For this reason, a European project, named “Umbrella”, was initiated aiming at providing the necessary psychological support and counseling, especially to disadvantaged students, towards the completion of their studies. To this end, a network of various academic members (academic staff and students) from IHU, namely iMentor, were implicated in different roles. Specifically, experienced academic staff trained students to serve as intermediate links for the integration and educational support of students that fall into the aforementioned sensitive social groups and face problems for the completion of their studies. The main idea of the project is held upon its person-centered character, which facilitates direct student-to-student communication without the intervention of the teaching staff. The backbone of the iMentors network are senior students that face no problem in their academic life and volunteered for this project. It should be noted that there is a provision from the Umbrella structure for substantial and ethical rewards for their engagement. In this context, a well-defined, stringent methodology was implemented for the evaluation of the extent of the problem in IHU and the detection of the profile of the “candidate” disadvantaged students. The first phase included two steps, (a) data collection and (b) data cleansing/ preprocessing. The first step involved the data collection process from the Secretary Services of all Schools in IHU, from 1980 to 2019, which resulted in 96.418 records. The data set included the School name, the semester of studies, a student enrolling criteria, the nationality, the graduation year or the current, up-to-date academic state (still studying, delayed, dropped off, etc.). The second step of the employed methodology involved the data cleansing/preprocessing because of the existence of “noisy” data, missing and erroneous values, etc. Furthermore, several assumptions and grouping actions were imposed to achieve data homogeneity and an easy-to-interpret subsequent statistical analysis. Specifically, the duration of 40 years recording was limited to the last 15 years (2004-2019). In 2004 the Greek Technological Institutions were evolved into Higher Education Universities, leading into a stable and unified frame of graduate studies. In addition, the data concerning active students were excluded from the analysis since the initial processing effort was focused on the detection of factors/variables that differentiated graduate and deleted students. The final working dataset included 21.432 records with only two categories of students, those that have a degree and those who abandoned their studies. Findings of the first phase are presented across faculties and further discussed.

Keywords: higher education, students support, economic crisis, mentoring

Procedia PDF Downloads 119
20515 Factors Influencing Household Expenditure Patterns on Cereal Grains in Nasarawa State, Nigeria

Authors: E. A. Ojoko, G. B. Umbugadu

Abstract:

This study aims at describing the expenditure pattern of households on millet, maize and sorghum across income groups in Nasarawa State. A multi-stage sampling technique was used to select a sample size of 316 respondents for the study. The Almost Ideal Demand System (AIDS) model was adopted in this study. Results from the study shows that the average household size was five persons with dependency ratio of 52 %, which plays an important role on the household’s expenditure pattern by increasing the household budget share. On the average 82 % were male headed households with an average age of 49 years and 13 years of formal education. Results on expenditure share show that maize has the highest expenditure share of 38 % across the three income groups and that most of the price effects are significantly different from zero at 5 % significant level. This shows that the low price of maize increased its demand as compared to other cereals. Household size and age of household members are major factors affecting the demand for cereals in the study. This agrees with the fact that increased household population (size) will bring about increase consumption. The results on factors influencing preferences for cereal grains reveals that cooking quality and appearance (65.7 %) were the most important factors affecting the demand for maize in the study area. This study recommends that cereal crop production should be prioritized in government policies and farming activities that help to boost food security and alleviate poverty should be subsidized.

Keywords: expenditure pattern, AIDS model, budget share, price cereal grains and consumption

Procedia PDF Downloads 198
20514 Premarital Sex, HIV and Use of Condom among Youths in Nigeria

Authors: Okechukwu Odinaka Ajaegbu

Abstract:

In the recent past, discussing about sex among children and youths was frowned at by traditional norms and as such sexual discussions and behavior were approached with great respect. Things are actually falling apart with the increasing number of young people that engage in premarital sex. Due to lack of experience and sex education, many young people are becoming increasingly exposed to the risk of HIV infection. In the light of the above, this study discussed premarital sex, HIV and use of condom among youths in Nigeria. Data for this study came from 2013 Nigeria Demographic and Health Survey and other secondary data. The survey revealed that only 18.5 percent of young women that had sex in the 12 months preceding the survey used condom. Out of 3306 never-married sexually active men and women, 1728 representing 52 percent live in urban areas and 43 percent of them did not use condom during sexual intercourse in the 12 months preceding the survey. This study concludes that for there to be reduction in prevalence of HIV/AIDS among Nigerian youths, there is need for concerted effort to be made towards educating youths on the expedient of the use of condom during sexual intercourse.

Keywords: condom, HIV, Nigeria, premarital sex, youths

Procedia PDF Downloads 251
20513 The Effect of Organizational Virtuousness on Nurses' Organizational Identification Level and Performance: The Mediating Role of Perceived Organizational Support

Authors: Feride Eskin Bacaksiz, Aytolan Yildirim

Abstract:

Practices voluntarily performed by organizations for their employees well-being, create an emotional imperative for employees in accordance with reciprocity norm. Changes in desired course occur in organizational outputs and attitudes towards organization among employees perceiving their organizations as virtuous and supportive. The aim of this study was to examine the effect of organizational virtuousness on performance and organizational identification levels of employees and mediating role of perceived organizational support in this relationship. The data of this descriptive and methodological study were collected from 336 nurses working in a public university hospital in 2015. Participant information form, Organizational Virtuousness, Perceived Organizational Support, Organizational Identification, and Employee Performance scales were used to collect the data. Descriptive, correlative, psychometric analyses and Structural Equation Modeling were performed for the data analysis. Most of the participants were female, under 30 years of age, graduated degrees and staff nurse. Mean scores obtained by the participants from scales were calculated as 3.43(SD=.99) for organizational virtuousness, 2.99 (SD=1.16) for perceived organizational support, 3.18 (SD=1.03) for organizational identification and 3.84 (SD=0.66) for employee performance. It was found that correlation between organizational virtuousness and employee performance regressed from r=0.64 to r=-0.01 and correlation between organizational virtuousness and organizational identification regressed from r=0.55 to r=-0.16 and became statistically non-significant (p < 0.05) via mediating role of perceived organizational support. According to the results, perceived organizational support assumes full mediation on the impact of organizational virtues of employee performance and organizational identification levels. Therefore, organizations, which intend to positively affect employees attitudes towards organization and their performance, should both extend organizational virtuous activities and affect perceptions of employees; whereas, employees should perceive that they are supported by their organization.

Keywords: employee performance, organizational identification, organizational virtuousness, perceived organizational support

Procedia PDF Downloads 369