Search results for: illustrates model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17139

Search results for: illustrates model

9879 Assessing Future Isoprene Emissions in Southeast Asia: Climate Change Implications

Authors: Justin Sentian, Franky Herman, Maggie Chel Gee Ooi, Vivian Kong WAN Yee, Teo You Rou, Chin Jia Hui

Abstract:

Isoprene emission is known to depend heavily on temperature and radiation. Considering these environmental factors together is crucial for a comprehensive understanding of the impact of climate change on isoprene emissions and atmospheric chemistry. Therefore, the aim of this study is to investigate how isoprene emission responds to changing climate scenarios in Southeast Asia (SEA). Two climate change scenarios, RCP4.5 and RCP8.5, were used to simulate climate change using the Weather Research Forecasting (WRF v3.9.1) model in three different time periods: near-future (2030-2039), mid-century (2050-2059), and far future (2090-2099), with 2010 (2005-2014) as the baseline period. The output from WRF was then used to investigate how isoprene emission changes under a changing climate by using the Model Emission of Gases and Aerosol from Nature (MEGAN v2.1). The results show that the overall isoprene emissions during the baseline period are 1.41 tons hr-1 during DJF and 1.64 tons hr-1 during JJA. The overall emissions for both RCPs slightly increase during DJF, ranging from 0.03 to 0.06 tons hr-1 in the near future, 0.11 to 0.19 tons hr-1 in the mid-century, and 0.24 to 0.52 tons hr-1 in the far future. During JJA season, environmental conditions often favour higher emission rates in MEGAN due to their optimal state. Isoprene emissions also show a strong positive correlation (0.81 – 1.00) with temperature and photosynthetic active radiation (PAR). The future emission rate of isoprene is strongly modulated by both temperature and PAR, as indicated by a strong positive correlation (0.81 - 1.00). This relationship underscores the fact that future warming will not be the sole driver impacting isoprene emissions. Therefore, it is essential to consider the multifaceted effect of climate change in shaping the levels of isoprene in the future.

Keywords: isoprene, climate change, Southeast Asia, WRF, MEGAN.

Procedia PDF Downloads 32
9878 Moral Identity and Moral Attentiveness as Predictors of Ethical Leadership in Financial Sector

Authors: Pilar Gamarra Gamarra, Michele Girotto

Abstract:

In the expanding field of leaders’ ethical behavior research, little attention has been paid to the association between finance leaders’ ethical traits (beyond personality) and ethical leadership, and more importantly, how these ethical characteristics can be predictors of ethical behavior at the leadership level in the financial sector. In this study, we tested a theoretical model based on uponsocial cognitive theory (Bandura, 1986) and the cognitive-developmental model (Piaget, 1932) to examine leaders’ moral identity and moral attentiveness as antecedents of ethical leadership. After the 2008 economic crisis, the marketplace has awakened to the potential dangers of unethical behavior. The unethical behavior of the leaders of the financial sector was identified as guilty of this economic catastrophe. For that reason, it seems increasingly prudent for organizations to have leaders who are cognitively inclined toward ethical behavior. This evidence suggests that moral attentiveness and moral identity is perhaps one way of identifying those kinds of leaders. For leaders who are morally attentive and have a high moral identity, themes of ethics interventions are consistent with their way of seeing the word. As a result, these leaders could become critical components of change in organizations and could provide the energy and skills necessary for these efforts to be successful. Ethical behavior of leader from the financial sector and marketing sectors must be joined to manage the change. In this study, a leader’s moral identity, leader’s moral attentiveness, and self-importance of Ethical Leadership are measured for financial and marketing leaders to be compared to determine the relationship between the three variables in each sector. Other conclusion related to gender, educational level or generation are obtained.

Keywords: ethical leadership, moral identity, moral attentiveness, financial leaders, marketing leaders, ethical behavior

Procedia PDF Downloads 179
9877 Climate Change in Awash River Basin of Ethiopia: A Projection Study Using Global and Regional Climate Model Simulations

Authors: Mahtsente Tadese, Lalit Kumar, Richard Koech

Abstract:

The aim of this study was to project and analyze climate change in the Awash River Basin (ARB) using bias-corrected Global and Regional Climate Model simulations. The analysis included a baseline period from 1986-2005 and two future scenarios (the 2050s and 2070s) under two representative concentration pathways (RCP4.5 and RCP8.5). Bias correction methods were evaluated using graphical and statistical methods. Following the evaluation of bias correction methods, the Distribution Mapping (DM) and Power Transformation (PT) were used for temperature and precipitation projection, respectively. The 2050s and 2070s RCP4 simulations showed an increase in precipitation during half of the months with 32 and 10%, respectively. Moreover, the 2050s and 2070s RCP8.5 simulation indicated a decrease in precipitation with 18 and 26%, respectively. The 2050s and 2070s RCP8.5 simulation indicated a significant decrease in precipitation in four of the months (February/March to May) with the highest decreasing rate of 34.7%. The 2050s and 2070s RCP4.5 simulation showed an increase of 0.48-2.6 °C in maximum temperature. In the case of RCP8.5, the increase rate reached 3.4 °C and 4.1 °C in the 2050s and 2070s, respectively. The changes in precipitation and temperature might worsen the water stress, flood, and drought in ARB. Moreover, the critical focus should be given to mitigation strategies and management options to reduce the negative impact. The findings of this study provide valuable information on future precipitation and temperature change in ARB, which will help in the planning and design of sustainable mitigation approaches in the basin.

Keywords: variability, climate change, Awash River Basin, precipitation

Procedia PDF Downloads 180
9876 Niftiness of the COLME to Promote Shared Decision-Making in Organizations

Authors: Prakash Singh

Abstract:

The question that arises is whether a theory such as the Collegial Leadership Model of Emancipation (COLME) has the potency to introduce leadership change by empowering and emancipating their employees. It is a fallacy to simply assume that experience alone, in the absence of theory, will contribute to this knowledge base to develop collegial leaders. The focus of this study is to therefore ascertain whether the COLME can serve as a conceptual framework to transform traditional bureaucratic management practices (TBMPs) in order to promote shared decision-making in organizations such as schools. All the respondents in this exploratory qualitative study embraced collegiality to transform TBMPs in their organizations. For the positive effects to be sustained, the collegial practices need to be evolutionary and emancipatory in order to evoke the values of collegial leadership as elucidated by the findings of this study. Interviewees affirmed that the COLME provides an astute framework to develop commendable collegial leadership practices as it clearly outlines procedures to develop and use the leadership potential of all the employees in order to foster joint accountability. They acknowledged that when the principles of collegiality are flexibly applied, they contribute to the creation of a holistic milieu in which all employees are able to express themselves freely, without fear of failure, and thus feel that they are part of the democratic decision-making process. Evidently, a conceptual framework such as the COLME can serve as a benchmark for leadership effectiveness because organizational outcomes need to be measured against standards of excellence in meeting both employee and customer expectations.

Keywords: collegial leadership model, employee empowerment, shared decision-making, traditional bureaucratic management practices

Procedia PDF Downloads 495
9875 Examination of the Self-Expression Model with Reference to Luxury Watches with Particular Regard of the Buying-Reasons

Authors: Christopher Benedikt Jakob

Abstract:

Human beings are intrigued by luxury watches for decades. It is fascinating that customers pay an enormous amount of money for specific wristwatch models. It is fascinating that customers of the luxury watch industry accept a yearly price increase. This behavior increases their desirability even more. Luxury watches are perceived as status symbols, but they are additionally accepted as a currency without the disadvantage of currency fluctuations. It is obvious that the symbolic value is more important as the functional value with reference to the buying-reasons as regards luxury watches. Nowadays human beings do not need a wristwatch to read the time. Tablets, notebooks, smartphones, the watch in the car and watches on public places are used to inform people about the current time. This is one of the reasons why there is a trend that people do not wear wristwatches anymore. Due to these facts, this study has the intention to give answers to the question why people invest an enormous amount of money on the consumption of luxury watches and why those watches are seen as a status symbol. The study examines why the luxury watch industry records significant growth rates. The self-expression model is used as an appropriate methodology to find reasons why human beings purchase specific luxury watches. This evaluative approach further discusses if human beings are aware of their current self and their ideal self and how they express them. Furthermore, the research critically evaluates the people’s social self and their ideal social self. One of the goals is to identify if customers know why they like specific luxury watches and dislike others although they have the same quality and cost comparable prices.

Keywords: luxury watch, brand awareness, buying-behaviour, consumer, self-expression

Procedia PDF Downloads 164
9874 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 41
9873 Formulation and Test of a Model to explain the Complexity of Road Accident Events in South Africa

Authors: Dimakatso Machetele, Kowiyou Yessoufou

Abstract:

Whilst several studies indicated that road accident events might be more complex than thought, we have a limited scientific understanding of this complexity in South Africa. The present project proposes and tests a more comprehensive metamodel that integrates multiple causality relationships among variables previously linked to road accidents. This was done by fitting a structural equation model (SEM) to the data collected from various sources. The study also fitted the GARCH Model (Generalized Auto-Regressive Conditional Heteroskedasticity) to predict the future of road accidents in the country. The analysis shows that the number of road accidents has been increasing since 1935. The road fatality rate follows a polynomial shape following the equation: y = -0.0114x²+1.2378x-2.2627 (R²=0.76) with y = death rate and x = year. This trend results in an average death rate of 23.14 deaths per 100,000 people. Furthermore, the analysis shows that the number of crashes could be significantly explained by the total number of vehicles (P < 0.001), number of registered vehicles (P < 0.001), number of unregistered vehicles (P = 0.003) and the population of the country (P < 0.001). As opposed to expectation, the number of driver licenses issued and total distance traveled by vehicles do not correlate significantly with the number of crashes (P > 0.05). Furthermore, the analysis reveals that the number of casualties could be linked significantly to the number of registered vehicles (P < 0.001) and total distance traveled by vehicles (P = 0.03). As for the number of fatal crashes, the analysis reveals that the total number of vehicles (P < 0.001), number of registered (P < 0.001) and unregistered vehicles (P < 0.001), the population of the country (P < 0.001) and the total distance traveled by vehicles (P < 0.001) correlate significantly with the number of fatal crashes. However, the number of casualties and again the number of driver licenses do not seem to determine the number of fatal crashes (P > 0.05). Finally, the number of crashes is predicted to be roughly constant overtime at 617,253 accidents for the next 10 years, with the worse scenario suggesting that this number may reach 1 896 667. The number of casualties was also predicted to be roughly constant at 93 531 overtime, although this number may reach 661 531 in the worst-case scenario. However, although the number of fatal crashes may decrease over time, it is forecasted to reach 11 241 fatal crashes within the next 10 years, with the worse scenario estimated at 19 034 within the same period. Finally, the number of fatalities is also predicted to be roughly constant at 14 739 but may also reach 172 784 in the worse scenario. Overall, the present study reveals the complexity of road accidents and allows us to propose several recommendations aimed to reduce the trend of road accidents, casualties, fatal crashes, and death in South Africa.

Keywords: road accidents, South Africa, statistical modelling, trends

Procedia PDF Downloads 164
9872 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method

Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey

Abstract:

Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.

Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear

Procedia PDF Downloads 133
9871 Hope as a Predictor for Complicated Grief and Anxiety: A Bayesian Structural Equational Modeling Study

Authors: Bo Yan, Amy Y. M. Chow

Abstract:

Bereavement is recognized as a universal challenging experience. It is important to gather research evidence on protective factors in bereavement. Hope is considered as one of the protective factors in previous coping studies. The present study aims to add knowledge by investigating hope at the first month after death to predict psychological symptoms altogether including complicated grief (CG), anxiety, and depressive symptoms at the seventh month. The data were collected via one-on-one interview survey in a longitudinal project with Hong Kong hospice users (sample size 105). Most participants were at their middle age (49-year-old on average), female (72%), with no religious affiliation (58%). Bayesian Structural Equation Modeling (BSEM) analysis was conducted on the longitudinal dataset. The BSEM findings show that hope at the first month of bereavement negatively predicts both CG and anxiety symptoms at the seventh month but not for depressive symptoms. Age and gender are controlled in the model. The overall model fit is good. The current study findings suggest assessing hope at the first month of bereavement. Hope at the first month after the loss is identified as an excellent predictor for complicated grief and anxiety symptoms at the seventh month. The result from this sample is clear, so it encourages cross-cultural research on replicated modeling and development of further clinical application. Particularly, practical consideration for early intervention to increase the level of hope has the potential to reduce the psychological symptoms and thus to improve the bereaved persons’ wellbeing in the long run.

Keywords: anxiety, complicated grief, depressive symptoms, hope, structural equational modeling

Procedia PDF Downloads 208
9870 Use of Magnetically Separable Molecular Imprinted Polymers for Determination of Pesticides in Food Samples

Authors: Sabir Khan, Sajjad Hussain, Ademar Wong, Maria Del Pilar Taboada Sotomayor

Abstract:

The present work aims to develop magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high-performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first-order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo-first-order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32 and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 469
9869 Comparative Assessment of the Potential Impact of Joining the World Trade Organization and African Continental Free Trade Area on the Ethiopia Economy

Authors: Agidew Abay, Nobuhiro Hosoe

Abstract:

Ethiopia signed the AfCFTA in 2018 and is in ongoing negotiations to join the WTO. To assess the potential impacts of joining these trade agreements on Ethiopia's trade, output, and welfare, we conducted a comprehensive analysis using a world trade computable general equilibrium (CGE) model. The results of our policy experiment, which include scenarios involving the reduction of tariff and non-tariff measures, indicate that AfCFTA and WTO accession would positively affect Ethiopia's welfare, with WTO membership expected to bring more significant benefits. On the one hand, AfCFTA membership would significantly increase Ethiopian imports from AfCFTA regions while decreasing imports from non-AfCFTA regions. Conversely, it would boost Ethiopian exports to Southern Africa while showing minimal change to other AfCFTA and non-AfCFTA regions. By contrast, WTO membership would significantly increase Ethiopia’s imports from Asia and North Africa and decrease those from Europe, the rest of the world, and East Africa. It would increase exports to all regions, especially Europe, Asia, and the rest of the world. In terms of industrial output, while these two trade deals would largely favor agriculture and the meat and livestock sector and harm many manufacturing sectors (especially the light manufacturing sector), the impact of WTO accession on the Ethiopian economy would be overwhelmingly more significant than that of AfCFTA.

Keywords: trade liberalization, AfCFTA, WTO, computable general equilibrium model, tariff, non-tariff measures

Procedia PDF Downloads 17
9868 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 103
9867 Comparison of Parametric and Bayesian Survival Regression Models in Simulated and HIV Patient Antiretroviral Therapy Data: Case Study of Alamata Hospital, North Ethiopia

Authors: Zeytu G. Asfaw, Serkalem K. Abrha, Demisew G. Degefu

Abstract:

Background: HIV/AIDS remains a major public health problem in Ethiopia and heavily affecting people of productive and reproductive age. We aimed to compare the performance of Parametric Survival Analysis and Bayesian Survival Analysis using simulations and in a real dataset application focused on determining predictors of HIV patient survival. Methods: A Parametric Survival Models - Exponential, Weibull, Log-normal, Log-logistic, Gompertz and Generalized gamma distributions were considered. Simulation study was carried out with two different algorithms that were informative and noninformative priors. A retrospective cohort study was implemented for HIV infected patients under Highly Active Antiretroviral Therapy in Alamata General Hospital, North Ethiopia. Results: A total of 320 HIV patients were included in the study where 52.19% females and 47.81% males. According to Kaplan-Meier survival estimates for the two sex groups, females has shown better survival time in comparison with their male counterparts. The median survival time of HIV patients was 79 months. During the follow-up period 89 (27.81%) deaths and 231 (72.19%) censored individuals registered. The average baseline cluster of differentiation 4 (CD4) cells count for HIV/AIDS patients were 126.01 but after a three-year antiretroviral therapy follow-up the average cluster of differentiation 4 (CD4) cells counts were 305.74, which was quite encouraging. Age, functional status, tuberculosis screen, past opportunistic infection, baseline cluster of differentiation 4 (CD4) cells, World Health Organization clinical stage, sex, marital status, employment status, occupation type, baseline weight were found statistically significant factors for longer survival of HIV patients. The standard error of all covariate in Bayesian log-normal survival model is less than the classical one. Hence, Bayesian survival analysis showed better performance than classical parametric survival analysis, when subjective data analysis was performed by considering expert opinions and historical knowledge about the parameters. Conclusions: Thus, HIV/AIDS patient mortality rate could be reduced through timely antiretroviral therapy with special care on the potential factors. Moreover, Bayesian log-normal survival model was preferable than the classical log-normal survival model for determining predictors of HIV patients survival.

Keywords: antiretroviral therapy (ART), Bayesian analysis, HIV, log-normal, parametric survival models

Procedia PDF Downloads 200
9866 Study of the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration Using Microfluidics

Authors: Nishanth Venugopal Menon, Chuah Yon Jin, Samantha Phey, Wu Yingnan, Zhang Ying, Vincent Chan, Kang Yuejun

Abstract:

Cell Migration is a vital phenomenon that the cells undergo in various physiological processes like wound healing, disease progression, embryogenesis, etc. Cell migration depends primarily on the chemical and physical cues available in the cellular environment. The chemical cue involves the chemokines secreted and gradients generated in the environment while physical cues indicate the impact of matrix properties like nanotopography and stiffness on the cells. Mesenchymal Stem Cells (MSCs) have been shown to have a role wound healing in vivo and its migration to the site of the wound has been shown to have a therapeutic effect. In the field of stem cell based tissue regeneration of bones and cartilage, one approach has been to introduce scaffold laden with MSCs into the site of injury to enable tissue regeneration. In this work, we have studied the combinatorial impact of the substrate physical properties on MSC migration. A microfluidic in vitro model was created to perform the migration studies. The microfluidic model used is a three compartment device consisting of two cell seeding compartments and one migration compartment. Four different PDMS substrates with varying substrate roughness, stiffness and hydrophobicity were created. Its surface roughness and stiffness was measured using Atomic Force Microscopy (AFM) while its hydrphobicity was measured from the water contact angle using an optical tensiometer. These PDMS substrates are sealed to the microfluidic chip following which the MSCs are seeded and the cell migration is studied over the period of a week. Cell migration was quantified using fluorescence imaging of the cytoskeleton (F-actin) to find out the area covered by the cells inside the migration compartment. The impact of adhesion proteins on cell migration was also quantified using a real-time polymerase chain reaction (qRT PCR). These results suggested that the optimal substrate for cell migration would be one with an intermediate level of roughness, stiffness and hydrophobicity. A higher or lower value of these properties affected cell migration negatively. These observations have helped us in understanding that different substrate properties need to be considered in tandem, especially while designing scaffolds for tissue regeneration as cell migration is normally impacted by the combinatorial impact of the matrix. These observations may lead us to scaffold optimization in future tissue regeneration applications.

Keywords: cell migration, microfluidics, in vitro model, stem cell migration, scaffold, substrate properties

Procedia PDF Downloads 559
9865 Seismic Impact and Design on Buried Pipelines

Authors: T. Schmitt, J. Rosin, C. Butenweg

Abstract:

Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.

Keywords: buried pipeline, earthquake, seismic impact, transient displacement

Procedia PDF Downloads 189
9864 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement

Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini

Abstract:

Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.

Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis

Procedia PDF Downloads 143
9863 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 268
9862 Sustainability Assessment of Food Delivery with Last-Mile Delivery Droids, A Case Study at the European Commission's JRC Ispra Site

Authors: Ada Garus

Abstract:

This paper presents the outcomes of the sustainability assessment of food delivery with a last-mile delivery service introduced in a real-world case study. The methodology used in the sustainability assessment integrates multi-criteria decision-making analysis, sustainability pillars, and scenario analysis to best reflect the conflicting needs of stakeholders involved in the last mile delivery system. The case study provides an application of the framework to the food delivery system of the Joint Research Centre of the European Commission where three alternative solutions were analyzed I) the existent state in which individuals frequent the local cantine or pick up their food, using their preferred mode of transport II) the hypothetical scenario in which individuals can only order their food using the delivery droid system III) a scenario in which the food delivery droid based system is introduced as a supplement to the current system. The environmental indices are calculated using a simulation study in which decision regarding the food delivery is predicted using a multinomial logit model. The vehicle dynamics model is used to predict the fuel consumption of the regular combustion engines vehicles used by the cantine goers and the electricity consumption of the droid. The sustainability assessment allows for the evaluation of the economic, environmental, and social aspects of food delivery, making it an apt input for policymakers. Moreover, the assessment is one of the first studies to investigate automated delivery droids, which could become a frequent addition to the urban landscape in the near future.

Keywords: innovations in transportation technologies, behavioural change and mobility, urban freight logistics, innovative transportation systems

Procedia PDF Downloads 196
9861 Exchange Rate, Market Size and Human Capital Nexus Foreign Direct Investment: A Bound Testing Approach for Pakistan

Authors: Naveed Iqbal Chaudhry, Mian Saqib Mehmood, Asif Mehmood

Abstract:

This study investigates the motivators of foreign direct investment (FDI) which will provide a panacea tool and ground breaking results related to it in case of Pakistan. The study considers exchange rate, market size and human capital as the motivators for attracting FDI. In this regard, time series data on annual basis has been collected for the period 1985–2010 and an Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests are utilized to determine the stationarity of the variables. A bound testing approach to co-integration was applied because the variables included in the model are at I(1) – first level stationary. The empirical findings of this study confirm the long run relationship among the variables. However, market size and human capital have strong positive and significant impact, in short and long-run, for attracting FDI but exchange rate shows negative impact in this regard. The significant negative coefficient of the ECM indicates that it converges towards equilibrium. CUSUM and CUSUMSQ tests plots are with in the lines of critical value, which indicates the stability of the estimated parameters. However, this model can be used by Pakistan in policy and decision making. For achieving higher economic growth and economies of scale, the country should concentrate on the ingredients of this study so that it could attract more FDI as compared to the other countries.

Keywords: ARDL, CUSUM and CUSUMSQ tests, ECM, exchange rate, FDI, human capital, market size, Pakistan

Procedia PDF Downloads 396
9860 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 108
9859 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method

Authors: Arwa Alzughaibi

Abstract:

Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.

Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization

Procedia PDF Downloads 262
9858 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods

Authors: Shima Nabinejad, Holger Schüttrumpf

Abstract:

Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.

Keywords: crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges

Procedia PDF Downloads 258
9857 'Go Baby Go'; Community-Based Integrated Early Childhood and Maternal Child Health Model Improving Early Childhood Stimulation, Care Practices and Developmental Outcomes in Armenia: A Quasi-Experimental Study

Authors: Viktorya Sargsyan, Arax Hovhannesyan, Karine Abelyan

Abstract:

Introduction: During the last decade, scientific studies have proven the importance of Early Childhood Development (ECD) interventions. These interventions are shown to create strong foundations for children’s intellectual, emotional and physical well-being, as well as the impact they have on learning and economic outcomes for children as they mature into adulthood. Many children in rural Armenia fail to reach their full development potential due to lack of early brain stimulation (playing, singing, reading, etc.) from their parents, and lack of community tools and services to follow-up children’s neurocognitive development. This is exacerbated by high rates of stunting and anemia among children under 3(CU3). This research study tested the effectiveness of an integrated ECD and Maternal, Newborn and Childhood Health (MNCH) model, called “Go Baby, Go!” (GBG), against the traditional (MNCH) strategy which focuses solely on preventive health and nutrition interventions. The hypothesis of this quasi-experimental study was: Children exposed to GBG will have better neurocognitive and nutrition outcomes compared to those receiving only the MNCH intervention. The secondary objective was to assess the effect of GBG on parental child care and nutrition practices. Methodology: The 14 month long study, targeted all 1,300 children aged 0 to 23 months, living in 43 study communities the in Gavar and Vardenis regions (Gegharkunik province, Armenia). Twenty-three intervention communities, 680 children, received GBG, and 20 control communities, 630 children, received MCHN interventions only. Baseline and evaluation data on child development, nutrition status and parental child care and nutrition practices were collected (caregiver interview, direct child assessment). In the intervention sites, in addition to MNCH (maternity schools, supportive supervision for Health Care Providers (HCP), the trained GBG facilitators conducted six interactive group sessions for mothers (key messages, information, group discussions, role playing, video-watching, toys/books preparation, according to GBG curriculum), and two sessions (condensed GBG) for adult family members (husbands, grandmothers). The trained HCPs received quality supervision for ECD counseling and screening. Findings: The GBG model proved to be effective in improving ECD outcomes. Children in the intervention sites had 83% higher odd of total ECD composite score (cognitive, language, motor) compared to children in the control sites (aOR 1.83; 95 percent CI: 1.08-3.09; p=0.025). Caregivers also demonstrated better child care and nutrition practices (minimum dietary diversity in intervention site is 55 percent higher compared to control (aOR=1.55, 95 percent CI 1.10-2.19, p =0.013); support for learning and disciplining practices (aOR=2.22, 95 percent CI 1.19-4.16, p=0.012)). However, there was no evidence of stunting reduction in either study arm. he effect of the integrated model was more prominent in Vardenis, a community which is characterised by high food insecurity and limited knowledge of positive parenting skills. Conclusion: The GBG model is effective and could be applied in target areas with the greatest economic disadvantages and parenting challenges to improve ECD, care practices and developmental outcomes. Longitudinal studies are needed to view the long-term effects of GBG on learning and school readiness.

Keywords: early childhood development, integrated interventions, parental practices, quasi-experimental study

Procedia PDF Downloads 174
9856 The Effect Analysis of Monetary Instruments through Islamic Banking Financing Channel toward Economic Growth in Indonesia, Period January 2008-December 2015

Authors: Sobar M. Johari, Ida Putri Anjarsari

Abstract:

In the transmission of monetary instrument towards real sector of the economy, Bank Indonesia as monetary authority has developed Islamic Bank Indonesia Certificate (abbreviated as SBIS) as an instrument in Islamic open market operation. One of the monetary transmission channels could take place through financing channel from which the fund is used as the source of banking financing. This study aims to analyse the impact of Islamic monetary instrument towards output or economic growth. Data used in this research is taken from Bank Indonesia and Central Board of Statistics for the period of January 2008 until December 2015. The study employs Granger Causality Test, Vector Error Correction Model (VECM), Impulse Response Function (IRF) technique and Forecast Error Variance Decomposition (FEVD) as its analytical methods. The results show that, first, the transmission mechanism of banking financing channel are not linked to output. Second, estimation results of VECM show that SBIS, PUAS, and FIN have significant impact in the long term towards output. When there is monetary shock, output or economic growth could be recovered and stabilized in the short term. FEVD results show that Islamic banking financing contributes 1.33 percent to increase economic growth.

Keywords: Islamic monetary instrument, Islamic banking financing channel, economic growth, Vector Error Correction Model (VECM)

Procedia PDF Downloads 286
9855 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Young Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: environmental industry, separator, CFD, fine aggregate

Procedia PDF Downloads 598
9854 Government Final Consumption Expenditure and Household Consumption Expenditure NPISHS in Nigeria

Authors: Usman A. Usman

Abstract:

Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp (financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.

Keywords: government final consumption expenditure, household consumption expenditure, vector error correction model, cointegration

Procedia PDF Downloads 58
9853 Eco-Hammam Initiative: Replicating the FSAC Model for Sustainable Wastewater Treatment and Resource Reuse in Dar Bouazza, Morocco

Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Halima Jounaid, Fouad Amraoui

Abstract:

In the context of the increasing water resource scarcity in Morocco in recent years, the use of unconventional resources has become imperative. Although efforts have been made in the field of sanitation in urban areas, rural areas, due to their specificities, such as scattered dwellings and limited accessibility, suffer from a lack of basic infrastructure. This work focuses on replicating the Faculty of Sciences Ain Chock (FSAC) model for the treatment and reuse of wastewater from a peri-urban traditional hammam in Casablanca, specifically in the municipality of Dar Bouazza. This initiative is part of the Eco-Hammam project, which aims to minimize the negative impacts of traditional hammams in terms of irrational and uncontrolled consumption of water and wood energy resources. To achieve this, a comprehensive environmental diagnosis of all hammams in the municipality of Dar Bouazza, our study site, has been undertaken. Then, a feasibility study is also conducted to assess the possibility of replicating the FSAC mini-station to treat the wastewater of the selected pilot hammam, namely, My Yacoub II.

Keywords: water resource scarcity, unconventional resources, sanitation, per-urban areas, rural areas, basic infrastructure, replication, reuse of wastewater, traditional hammam, Casablanca, Municipality of Dar Bouazza, negative impacts, environmental diagnosis, feasibility study, pilot hammam, My Yacoub II

Procedia PDF Downloads 68
9852 Comparative Performance Study of Steel Plate Shear Wall with Reinforced Concrete Shear Wall

Authors: Amit S. Chauhan, S. Mandal

Abstract:

The structural response of shear walls subjected to various types of loads is difficult to predict precisely. They are incorporated in buildings to resist lateral forces and support the gravity loads. The steel plate shear walls (SPSWs) are used as lateral load resisting systems for buildings and acts as an alternative to reinforced concrete shear walls (RCSWs). This paper compares the behavior of SPSW with the RCSW incorporated in a building frame having G+6 storey, located in Zone III, using the technique of Equivalent Static Method (ESM) as per Indian Standard Criteria For Earthquake Resistant Design of Structures IS 1893:2002. This paper intends to evaluate several parameters such as lateral displacement at tip, inter-storey drift, weight of steel and volume of concrete with the alteration of the shear wall with respect to different types viz., SPSW and RCSW. The strip model employed in this study is a widely accepted analytical tool for SPSW analysis. SPSW can be modelled as truss members by using a series of diagonal tension strips positioned at 45-degree angles. In this paper, by replacing the SPSWs with the tension strips, the G+6 building has been analyzed using STAAD.Pro V8i. Based on the present study, it can be concluded that structure with SPSWs is much better then structure with RCSWs.

Keywords: equivalent static method, inter-storey drift, lateral displacement, Steel plate shear wall, strip model

Procedia PDF Downloads 249
9851 Short-Range and Long-Range Ferrimagnetic Order in Fe(Te₁.₅Se₀.₅)O₅Cl

Authors: E. S. Kozlyakova, A. A. Eliseev, A. V. Moskin, A. Y. Akhrorov, P. S. Berdonosov, V. A. Dolgikh, K. N. Denisova, P. Lemmens, B. Rahaman, S. Das, T. Saha-Dasgupta, A. N. Vasiliev, O. S. Volkova

Abstract:

Considerable attention has been paid recently to FeTe₂O₅Cl due to reduced dimensionality and frustration in the magnetic subsystem, succession of phase transitions, and multiferroicity. The efforts to grow its selenite sibling resulted in mixed halide compound, Fe(Te₁.₅Se₀.₅)O₅Cl, which was found crystallizing in a new structural type and possessing properties drastically different from those of a parent system. Hereby we report the studies of magnetization M and specific heat Cₚ, combined with Raman spectroscopy and density functional theory calculations in Fe(Te₁.₅Se₀.₅)O₅Cl. Its magnetic subsystem features weakly coupled Fe³⁺ - Fe³⁺ dimers showing the regime of short-range correlations at TM ~ 70 K and long-range order at TN = 22 K. In a magnetically ordered state, sizable spin-orbital interactions lead to a small canting of Fe³⁺ moments. The density functional theory calculations of leading exchange interactions were found in agreement with measurements of thermodynamic properties and Raman spectroscopy. Besides, because of the relatively large magnetic moment of the Fe³⁺ ion, we found that magnetic dipole-dipole interactions contribute significantly to experimentally observed orientation of magnetization easy axis in ac-plane. As a conclusion, we suggest a model of magnetic subsystem in magnetically ordered state of Fe(Te₁.₅Se₀.₅)O₅Cl based on a model of interacting dimers.

Keywords: dipole-dipole interactions, low dimensional magnetism, selenite, spin canting

Procedia PDF Downloads 169
9850 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements

Authors: Mohamad Molavi Nojumi, Xiaodong Wang

Abstract:

In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.

Keywords: finite element, fracture mechanics, functionally graded materials, graded element

Procedia PDF Downloads 176