Search results for: teaching learning model
15974 Boundary Feedback Stabilization of an Overhead Crane Model
Authors: Abdelhadi Elharfi
Abstract:
A problem of boundary feedback (exponential) stabilization of an overhead crane model represented by a PDE is considered. For any $r>0$, the exponential stability at the desired decay rate $r$ is solved in semi group setting by a collocated-type stabiliser of a target system combined with a term involving the solution of an appropriate PDE.Keywords: feedback stabilization, semi group and generator, overhead crane system
Procedia PDF Downloads 40615973 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework
Authors: Nicola Rubino
Abstract:
This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points
Procedia PDF Downloads 27815972 Reimagining the Learning Management System as a “Third” Space
Authors: Christina Van Wingerden
Abstract:
This paper focuses on a sense of belonging, isolation, and the use of a learning management system as a “third space” for connection and community. Given student use of learning management systems (LMS) for courses on campuses, moderate to high use of social media and hand-held devices, the author explores the possibilities of LMS as a third space. The COVID-19 pandemic has exacerbated student experiences of isolation, and research indicates that students who experience a sense of belonging have a greater likelihood for academic retention and success. The impacts on students of an LMS designed for student employee orientation and training were examined through a mixed methods approach, including a survey, individual interviews, and focus groups. The sample involved 250-450 undergraduate student employees at a US northwestern university. The goal of the study was to find out the efficiency and effectiveness of the orientation information for a wide range of student employees from multiple student affairs departments. And unexpected finding emerged within the study in 2015 and was noted again as a finding in the 2017 study. Students reported feeling like they individually connected to the department, and further to the university because of the LMS orientation. They stated they could see themselves as part of the university community and like they belonged. The orientation, through the LMS, was designed for and occurred online (asynchronous), prior to students traveling and beginning university life for the academic year. The students indicated connection and belonging resulting from some of the design features. With the onset of COVID-19 and prolonged sheltering in place in North America, as well as other parts of the world, students have been precluded from physically gathering to educate and learn. COVID-19 essentially paused face-to-face education in 2020. Media, governments, and higher education outlets have been reporting on widespread college student stress, isolation, loneliness, and sadness. In this context, the author conducted a current mixed methods study (online survey, online interviews) of students in advanced degree programs, like Ph.D. and Ed.D. specifically investigating isolation and sense of belonging. As a part of the study a prototype of a Canvas site was experienced by student interviewees for their reaction of this Canvas site prototype as a “third” space. Some preliminary findings of this study are presented. Doctoral students in the study affirmed the potential of LMS as a third space for community and social academic connection.Keywords: COVID-19, isolation, learning management system, sense of belonging
Procedia PDF Downloads 11215971 Indigenous Pre-Service Teacher Education: Developing, Facilitating, and Maintaining Opportunities for Retention and Graduation
Authors: Karen Trimmer, Raelene Ward, Linda Wondunna-Foley
Abstract:
Within Australian tertiary institutions, the subject of Aboriginal and Torres Strait Islander education has been a major concern for many years. Aboriginal and Torres Strait Islander teachers are significantly under-represented in Australian schools and universities. High attrition rates in teacher education and in the teaching industry have contributed to a minimal growth rate in the numbers of Aboriginal and Torres Strait Islander teachers in previous years. There was an increase of 500 Indigenous teachers between 2001 and 2008 but these numbers still only account for one percent of teaching staff in government schools who identified as Aboriginal and Torres Strait Islander Australians (Ministerial Council for Education, Early Childhood Development and Youth Affairs 2010). Aboriginal and Torres Strait Islander teachers are paramount in fostering student engagement and improving educational outcomes for Indigenous students. Increasing the numbers of Aboriginal and Torres Strait Islander teachers is also a key factor in enabling all students to develop understanding of and respect for Aboriginal and Torres Strait Islander histories, cultures, and language. An ambitious reform agenda to improve the recruitment and retention of Aboriginal and Torres Strait Islander teachers will be effective only through national collaborative action and co-investment by schools and school authorities, university schools of education, professional associations, and Indigenous leaders and community networks. Whilst the University of Southern Queensland currently attracts Indigenous students to its teacher education programs (61 students in 2013 with an average of 48 enrollments each year since 2010) there is significant attrition during pre-service training. The annual rate of exiting before graduation remains high at 22% in 2012 and was 39% for the previous two years. These participation and retention rates are consistent with other universities across Australia. Whilst aspirations for a growing number of Indigenous people to be trained as teachers is present, there is a significant loss of students during their pre-service training and within the first five years of employment as a teacher. These trends also reflect the situation where Aboriginal and Torres Strait Islander teachers are significantly under-represented, making up less than 1% of teachers in schools across Australia. Through a project conducted as part the nationally funded More Aboriginal and Torres Strait Islander Teachers Initiative (MATSITI) we aim to gain an insight into the reasons that impact Aboriginal and Torres Strait Islander student’s decisions to exit their program. Through the conduct of focus groups and interviews with two graduating cohorts of self-identified Aboriginal and Torres Strait Islander students, rich data has been gathered to gain an understanding of the barriers and enhancers to the completion of pre-service qualification and transition to teaching. Having a greater understanding of these reasons then allows the development of collaborative processes and procedures to increase retention and completion rates of new Indigenous teachers. Analysis of factors impacting on exit decisions and transitions has provided evidence to support change of practice, redesign and enhancement of relevant courses and development of policy/procedures to address identified issues.Keywords: graduation, indigenous, pre-service teacher education, retention
Procedia PDF Downloads 47115970 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production
Authors: Jason West
Abstract:
Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems
Procedia PDF Downloads 7715969 Cultural Awareness, Intercultural Communication Competence and Academic Performance of Foreign Students Towards an Education ASEAN Integration in Global Education
Authors: Rizalito B. Javier
Abstract:
Research has shown that foreign students with higher levels of cultural awareness and intercultural communication competence tend to have better academic performance outcomes. This study aimed to find out the cultural awareness, intercultural communication competence, and academic performance of foreign students and its relationships among variables. Methods used were descriptive-comparative and correlational research design, quota purposive sampling technique while frequency counts and percentages, mean and standard deviation, T, and F-test and chi-square were utilized to analyze the data. The results revealed that the majority of the respondents were under the age bracket of 21-25 years old, mostly males, all single, and mostly citizens of Papua New Guinea, Angolan, Vanuatu, Tanzanian, Nigerian, Korean, Rwanda, and Myanmar. Most language spoken was English, many of them were born again Christians, the majority took BS business management degree program, their studies mainly supported by their parents, they had stayed in the Philippines for 3-4 years, and most of them attended five to six times of cultural awareness/competence workshop-seminars, majority of their parent’s occupations were family own business, and had been earning a family monthly income of P61,0000 and above. The respondents were highly aware of their culture in terms of clients’ issues. The intercultural communication competence of the respondents was slightly aware in terms of intercultural awareness, while the foreign students performed good remarks in their average academic performance. However, the profiles of the participants in terms of age, gender, civil status, nationality, course/degree program taken, support to the study, length of stay, workshop attended, and parents’ occupation have significant differences in the academic performance except for the type of family, language spoken, religion and family monthly income. Moreover, cultural awareness was significantly related to intercultural communication competence, and both were not related to academic performance. It is recommended that foreign students be provided with cultural orientation programs, offered language support services, promoted intercultural exchange activities, and implemented inclusive teaching practices to allow students to effectively navigate and interact with people from different cultural backgrounds, fostering a more inclusive and collaborative learning environment.Keywords: cultural competence, communication competence, intercultural competence, and culture-academic performance.
Procedia PDF Downloads 1915968 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 15515967 Project Time Prediction Model: A Case Study of Construction Projects in Sindh, Pakistan
Authors: Tauha Hussain Ali, Shabir Hussain Khahro, Nafees Ahmed Memon
Abstract:
Accurate prediction of project time for planning and bid preparation stage should contain realistic dates. Constructors use their experience to estimate the project duration for the new projects, which is based on intuitions. It has been a constant concern to both researchers and constructors to analyze the accurate prediction of project duration for bid preparation stage. In Pakistan, such study for time cost relationship has been lacked to predict duration performance for the construction projects. This study is an attempt to explore the time cost relationship that would conclude with a mathematical model to predict the time for the drainage rehabilitation projects in the province of Sindh, Pakistan. The data has been collected from National Engineering Services (NESPAK), Pakistan and regression analysis has been carried out for the analysis of results. Significant relationship has been found between time and cost of the construction projects in Sindh and the generated mathematical model can be used by the constructors to predict the project duration for the upcoming projects of same nature. This study also provides the professionals with a requisite knowledge to make decisions regarding project duration, which is significantly important to win the projects at the bid stage.Keywords: BTC Model, project time, relationship of time cost, regression
Procedia PDF Downloads 38215966 Using Peer Instruction in Physics of Waves for Pre-Service Science Teacher
Authors: Sumalee Tientongdee
Abstract:
In this study, it was aimed to investigate Physics achievement of the pre-service science teacher studying in general science program at Suan Sunandha Rajabhat University, Bangkok, Thailand. The program has provided the new curriculum that focuses on 21st-century skills development. Active learning approaches are used to teach in all subjects. One of the active learning approaches Peer Instruction, or PI was used in this study to teach physics of waves as a compulsory course. It was conducted in the second semester from January to May of 2017. The concept test was given to evaluate pre-service science teachers’ understanding in concept of waves. Problem-solving assessment form was used to evaluate their problem-solving skill. The results indicated that after they had learned through Peer Instruction in physics of waves course, their concepts in physics of waves was significantly higher at 0.05 confident levels. Their problem-solving skill from the whole class was at the highest level. Based on the group interview on the opinions of using Peer Instruction in Physics class, they mostly felt that it was very useful and helping them understand more about physics, especially for female students.Keywords: peer instruction, physics of waves, pre-service science teacher, Suan Sunandha Rajabhat university
Procedia PDF Downloads 34615965 Numerical Investigation of Aerodynamic Analysis on Passenger Vehicle
Authors: Cafer Görkem Pınar, İlker Coşar, Serkan Uzun, Atahan Çelebi, Mehmet Ali Ersoy, Ali Pınarbaşı
Abstract:
In this study, it was numerically investigated that a 1:1 scale model of the Renault Clio MK4 SW brand vehicle aerodynamic analysis was performed in the commercial computational fluid dynamics (CFD) package program of ANSYS CFX 2021 R1 under steady, subsonic, and 3-D conditions. The model of vehicle used for the analysis was made independent of the number of mesh elements, and the k-epsilon turbulence model was applied during the analysis. Results were interpreted as streamlines, pressure gradient, and turbulent kinetic energy contours around the vehicle at 50 km/h and 100 km/h speeds. In addition, the validity of the analysis was decided by comparing the drag coefficient of the vehicle with the values in the literature. As a result, the pressure gradient contours of the taillight of the Renault Clio MK4 SW vehicle were examined, and the behavior of the total force at speeds of 50 km/h and 100 km/h was interpreted.Keywords: CFD, k-epsilon, aerodynamics, drag coefficient, taillight
Procedia PDF Downloads 14315964 Diffusion Dynamics of Leech-Heart Inter-Neuron Model
Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay
Abstract:
We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis
Procedia PDF Downloads 22215963 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning
Authors: Yong Chen
Abstract:
To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference
Procedia PDF Downloads 12015962 Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software
Authors: Marine Segui, Ruxandra Mihaela Botez
Abstract:
OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study.Keywords: aerodynamic, coefficient, cruise, improving, longitudinal, openVSP, solver, time
Procedia PDF Downloads 23515961 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary
Authors: Mark Watson, J.-F. Bousquet, Adam Forget
Abstract:
A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.Keywords: magnetic induction, FDTD, underwater communication, Sommerfeld
Procedia PDF Downloads 12515960 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response
Abstract:
After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue
Procedia PDF Downloads 9315959 Selecting Special Education as a Career: A Qualitative Study of Motivating Factors for Special Education Teachers
Authors: Jennifer Duffy, Liz Fleming
Abstract:
Teacher shortage in special education is an American educational problem. Due to the implementation of The No Child Left Behind Act (2001) and The Individuals with Disabilities Education Improvement Act (2004), there has been an increase in the number of students requiring special education services. Consequently, there has been an influx to hire more special education teachers. However, the historic challenge of hiring certified special education teachers has been intensified with this the profession’s increasing demand of positions to fill. Efforts to improve recruitment and entry into the field must be informed by an understanding of the factors that initially inspire special education teachers to choose this career pathway. Hence, an understanding of reasons why teachers select special education as a profession is needed. The purpose of this study was to explore personal, academic, and professional motivations that lead to the selection of special education as a career choice. Using the grounded theory approach, this research investigation examined the factors that were most instrumental in influencing applicants to select special education as a career choice. Over one hundred de-identified graduate school applications to Bay Path University’s Graduate Special Education Programs from 2014- 2017 were qualitatively analyzed. Grounded coding was used to discover themes that emerged in applicants’ admissions essays explaining why he/she was pursuing a career in special education. The central themes that were most influential in applicants’ selection of special education as a career trajectory were (a) personal/familial connections to disability, (b) meaningful paraprofessional experiences working with disabled children, (c) aptitudes for teaching, and (d) finding personal rewards and professional fulfillment by advocating for vulnerable children. Implications from these findings include educating family members of children with disabilities about possible career tracks in special education, designing programs for paraprofessionals to become certified teachers, exposing prospective teacher candidates to the field of special education, and recruiting professionals from the human services field who seek to improve the quality of life and educational opportunities for children with special needs.Keywords: career choice, professional pathways to teaching children with disabilities, special education, teacher recruitment
Procedia PDF Downloads 29515958 Lexico-semantic and Morphosyntactic Analyses of Student-generated Paraphrased Academic Texts
Authors: Hazel P. Atilano
Abstract:
In this age of AI-assisted teaching and learning, there seems to be a dearth of research literature on the linguistic analysis of English as a Second Language (ESL) student-generated paraphrased academic texts. This study sought to examine the lexico-semantic, morphosyntactic features of paraphrased academic texts generated by ESL students. Employing a descriptive qualitative design, specifically linguistic analysis, the study involved a total of 85 students from senior high school, college, and graduate school enrolled in research courses. Data collection consisted of a 60-minute real-time, on-site paraphrasing practice exercise using excerpts from discipline-specific literature reviews of 150 to 200 words. A focus group discussion (FGD) was conducted to probe into the challenges experienced by the participants. The writing exercise yielded a total of 516 paraphrase pairs. A total of 176 paraphrase units (PUs) and 340 non-paraphrase pairs (NPPs) were detected. Findings from the linguistic analysis of PUs reveal that the modifications made to the original texts are predominantly syntax-based (Diathesis Alterations and Coordination Changes) and a combination of Miscellaneous Changes (Change of Order, Change of Format, and Addition/Deletion). Results of the analysis of paraphrase extremes (PE) show that Identical Structures resulting from the use of synonymous substitutions, with no significant change in the structural features of the original, is the most frequently occurring instance of PE. The analysis of paraphrase errors reveals that synonymous substitutions resulting in identical structures are the most frequently occurring error that leads to PE. Another type of paraphrasing error involves semantic and content loss resulting from the deletion or addition of meaning-altering content. Three major themes emerged from the FGD: (1) The Challenge of Preserving Semantic Content and Fidelity; (2) The Best Words in the Best Order: Grappling with the Lexico-semantic and Morphosyntactic Demands of Paraphrasing; and (3) Contending with Limited Vocabulary, Poor Comprehension, and Lack of Practice. A pedagogical paradigm was designed based on the major findings of the study for a sustainable instructional intervention.Keywords: academic text, lexico-semantic analysis, linguistic analysis, morphosyntactic analysis, paraphrasing
Procedia PDF Downloads 6715957 Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria
Authors: Adeniyi G. Adeogun, Bolaji F. Sule, Adebayo W. Salami, Michael O. Daramola
Abstract:
Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria.Keywords: GIS, modeling, sensitivity analysis, SWAT, water yield, watershed level
Procedia PDF Downloads 43915956 A Multi-Objective Optimization Tool for Dual-Mode Operating Active Magnetic Regenerator Model
Authors: Anna Ouskova Leonteva, Michel Risser, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet
Abstract:
This paper proposes an efficient optimization tool for an active magnetic regenerator (AMR) model, operating in two modes: magnetic refrigeration system (MRS) and thermo-magnetic generator (TMG). The aim of this optimizer is to improve the design of the AMR by applying a multi-physics multi-scales numerical model as a core of evaluation functions to achieve industrial requirements for refrigeration and energy conservation systems. Based on the multi-objective non-dominated sorting genetic algorithm 3 (NSGA3), it maximizes four different objectives: efficiency and power density for MRS and TMG. The main contribution of this work is in the simultaneously application of a CPU-parallel NSGA3 version to the AMR model in both modes for studying impact of control and design parameters on the performance. The parametric study of the optimization results are presented. The main conclusion is that the common (for TMG and MRS modes) optimal parameters can be found by the proposed tool.Keywords: ecological refrigeration systems, active magnetic regenerator, thermo-magnetic generator, multi-objective evolutionary optimization, industrial optimization problem, real-world application
Procedia PDF Downloads 11415955 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand
Authors: Fazlul Karim, Esa Al-Islam
Abstract:
Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method
Procedia PDF Downloads 44115954 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks
Procedia PDF Downloads 22315953 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 12115952 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning
Authors: Juan Harold Sosa-Arnao, Daniel José de Oliveira Ferreira, Caice Guarato Santos, Justo Emílio Alvarez, Leonardo Paes Rangel, Song Won Park
Abstract:
A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.Keywords: comprehensive CFD model, sugar-cane bagasse combustion, swirl burner, contributions
Procedia PDF Downloads 44015951 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake
Authors: Daniel S. Brox
Abstract:
Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.Keywords: seismic activation, statistical physics, geodynamics, signal processing
Procedia PDF Downloads 1815950 Being a Teacher in Higher Education: Techne or Praxis
Authors: Thi V. S. Nguyen, Kevin Laws
Abstract:
This study investigates the construction of higher education teachers’ roles from the perspectives of participants in a compulsory teachers’ professional development for Vietnamese higher education teachers. Constructivist grounded theory was used as methodology and analysis of the study. Fifteen program participants were semi-structured interviewed before they started the professional development program for higher education teachers. Five trainers of the program were interviewed and documents related to teachers’ standards in Vietnam were analysed to supplement participants’ perspectives. Standards and roles of higher education teachers emerged as two categories grounded from data. Standard category involves moral and professional criteria, whereas roles of higher education teachers category consists of specific roles related to guiding student learning, and advising their academic, moral and social activities. A model of higher education teachers’ conceptions of their roles in a Vietnamese context addressing both professional (techne) and moral (praxis) responsibilities is constructed from this study. A discussion on teachers’ roles in higher education is put forward and insightful implications for the design and possible restructure of teachers’ professional development for early career higher education teachers is suggested.Keywords: higher education teachers' roles and standards, moral roles, teachers' professional development, teachers' conceptions of their roles
Procedia PDF Downloads 39415949 Flushing Model for Artificial Islands in the Persian Gulf
Authors: Sawsan Eissa, Momen Gharib, Omnia Kabbany
Abstract:
A flushing numerical study has been performed for intended artificial islands on the Persian Gulf coast in Abu Dhabi, UAE. The island masterplan was tested for flushing using the DELFT 3D hydrodynamic model, and it was found that its residence time exceeds the acceptable PIANC flushing Criteria. Therefore, a number of mitigation measures were applied and tested one by one using the flushing model. Namely, changing the location of the entrance opening, dredging, removing part of the mangrove existing in the near vicinity to create a channel, removing the mangrove altogether, using culverts of different numbers and locations, and pumping at selected points. The pumping option gave the best solution, but it was disregarded due to high capital and running costs. Therefore, it opted for a combination of other solutions, including removing mangroves, introducing culverts, and adjusting island boundaries and types of protection.Keywords: hydrodynamics, flushing, delft 3d, Persian Gulf, artificial islands.
Procedia PDF Downloads 6115948 Performants: A Digital Event Manager-Organizer
Authors: Ioannis Andrianakis, Manolis Falelakis, Maria Pavlidou, Konstantinos Papakonstantinou, Ermioni Avramidou, Dimitrios Kalogiannis, Nikolaos Milios, Katerina Bountakidou, Kiriakos Chatzidimitriou, Panagiotis Panagiotopoulos
Abstract:
Artistic events, such as concerts and performances, are challenging to organize because they involve many people with different skill sets. Small and medium venues often struggle to afford the costs and overheads of booking and hosting remote artists, especially if they lack sponsors or subsidies. This limits the opportunities for both venues and artists, especially those outside of big cities. However, more and more research shows that audiences prefer smaller-scale events and concerts, which benefit local economies and communities. To address this challenge, our project “PerformAnts: Digital Event Manager-Organizer” aims to develop a smart digital tool that automates and optimizes the processes and costs of live shows and tours. By using machine learning, applying best practices and training users through workshops, our platform offers a comprehensive solution for a growing market, enhances the mobility of artists and the accessibility of venues and allows professionals to focus on the creative aspects of concert production.Keywords: event organization, creative industries, event promotion, machine learning
Procedia PDF Downloads 8715947 Feminine Gender Identity in Nigerian Music Education: Trends, Challenges and Prospects
Authors: Julius Oluwayomi Oluwadamilare, Michael Olutayo Olatunji
Abstract:
In the African traditional societies, women have always played the role of a teacher, albeit informally. This is evident in the upbringing of their babies. As mothers, they also serve as the first teachers to teach their wards lessons through day-to-day activities. Furthermore, women always play the role of a musician during naming ceremonies, in the singing of lullabies, during initiation rites of adolescent boys and girls into adulthood, and in preparing their children especially daughters (and sons) for marriage. They also perform this role during religious and cultural activities, chieftaincy title/coronation ceremonies, singing of dirges during funeral ceremonies, and so forth. This traditional role of the African/Nigerian women puts them at a vantage point to contribute maximally to the teaching and learning of music at every level of education. The need for more women in the field of music education in Nigeria cannot be overemphasized. Today, gender equality is a major discourse in most countries of the world, Nigeria inclusive. Statistical data in the field of education and music education reveal the high ratio of male teachers/lecturers over their female counterparts in Nigerian tertiary institutions. The percentage is put at 80% Male and a distant 20% Female! This paper, therefore, examines feminine gender in Nigerian music education by tracing the involvement of women in musical practice from the pre-colonial to the post-colonial periods. The study employed both primary and secondary sources of data collection. The primary source included interviews conducted with 19 music lecturers from 8 purposively selected tertiary institutions from 4 geo-political zones of Nigeria. In addition, observation method was employed in the selected institutions. The results show, inter alia, that though there is a remarkable improvement in the rate of admission of female students into the music programme of Nigerian tertiary institutions, there is still an imbalance in the job placement in these institutions especially in the Colleges of Education which is the main focus of this research. Religious and socio-cultural factors are highly traceable to this development. This paper recommends the need for more female music teachers to be employed in the Nigerian tertiary institutions in line with the provisions stated in the Millennium Development Goals (MDGs) of the Federal Republic of Nigeria.Keywords: gender, education, music, women
Procedia PDF Downloads 20715946 Fetal Movement Study Using Biomimics of the Maternal March
Authors: V. Diaz, B. Pardo , D. Villegas
Abstract:
In premature births most babies have complications at birth, these complications can be reduced, if an atmosphere of relaxation is provided and is also similar to intrauterine life, for this, there are programs where their mothers lull and sway them; however, the conditions in which they do so and the way in they do it may not be the indicated. Here we describe an investigation based on the biomimics of the kinematics of human fetal movement, which consists of determining the movements that the fetus experiences and the deformations of the components that surround the fetus during a gentle walk at week 32 of the gestation stage. This research is based on a 3D model that has the anatomical structure of the pelvis, fetus, muscles, uterus and its most important supporting elements (ligaments). Normal load conditions are applied to this model according to the stage of gestation and the kinematics of a gentle walk of a pregnant mother, which focuses on the pelvic bone, this allows to receive a response from the other elements of the model. To accomplish this modeling and subsequent simulation Solidworks software was used. From this analysis, the curves that describe the movement of the fetus at three different points were obtained. Additionally, we could found the deformation of the uterus and the ligaments that support it, showing the characteristics that these tissues can have in the face of the support of the fetus. These data can be used for the construction of artifacts that help the normal development of premature infants.Keywords: simulation, biomimic, uterine model, fetal movement study
Procedia PDF Downloads 16515945 Electricity Load Modeling: An Application to Italian Market
Authors: Giovanni Masala, Stefania Marica
Abstract:
Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression
Procedia PDF Downloads 395