Search results for: language learning strategies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14157

Search results for: language learning strategies

6957 Islamic Education System: Implementation of Curriculum Kuttab Al-Fatih Semarang

Authors: Basyir Yaman, Fades Br. Gultom

Abstract:

The picture and pattern of Islamic education in the Prophet's period in Mecca and Medina is the history of the past that we need to bring back. The Basic Education Institute called Kuttab. Kuttab or Maktab comes from the word kataba which means to write. The popular Kuttab in the Prophet’s period aims to resolve the illiteracy in the Arab community. In Indonesia, this Institution has 25 branches; one of them is located in Semarang (i.e. Kuttab Al-Fatih). Kuttab Al-Fatih as a non-formal institution of Islamic education is reserved for children aged 5-12 years. The independently designed curriculum is a distinctive feature that distinguishes between Kuttab Al-Fatih curriculum and the formal institutional curriculum in Indonesia. The curriculum includes the faith and the Qur’an. Kuttab Al-Fatih has been licensed as a Community Activity Learning Center under the direct supervision and guidance of the National Education Department. Here, we focus to describe the implementation of curriculum Kuttab Al-Fatih Semarang (i.e. faith and al-Qur’an). After that, we determine the relevance between the implementation of the Kuttab Al-Fatih education system with the formal education system in Indonesia. This research uses literature review and field research qualitative methods. We obtained the data from the head of Kuttab Al-Fatih Semarang, vice curriculum, faith coordinator, al-Qur’an coordinator, as well as the guardians of learners and the learners. The result of this research is the relevance of education system in Kuttab Al-Fatih Semarang about education system in Indonesia. Kuttab Al-Fatih Semarang emphasizes character building through a curriculum designed in such a way and combines thematic learning models in modules.

Keywords: Islamic education system, implementation of curriculum, Kuttab Al-Fatih Semarang, formal education system, Indonesia

Procedia PDF Downloads 337
6956 Innovations in International Trauma Education: An Evaluation of Learning Outcomes and Community Impact of a Guyanese trauma Training Graduate Program

Authors: Jeffrey Ansloos

Abstract:

International trauma education in low and emerging economies requires innovative methods for capacity building in existing social service infrastructures. This study details the findings of a program evaluation used to assess the learning outcomes and community impact of an international trauma-focused graduate degree program in Guyana. Through a collaborative partnership between Lesley University, the Government of Guyana, and UNICEF, a 2-year low-residency masters degree graduate program in trauma-focused assessment, intervention, and treatment was piloted with a cohort of Guyanese mental health professionals. Through an analytical review of the program development, as well as qualitative data analysis of participant interviews and focus-groups, this study will address the efficacy of the programming in terms of preparedness of professionals to understand, evaluate and implement trauma-informed practices across various child, youth, and family mental health service settings. Strengths and limitations of this international trauma-education delivery model will be discussed with particular emphasis on the role of capacity-building interventions, community-based participatory curriculum development, innovative technological delivery platforms, and interdisciplinary education. Implications for further research and subsequent program development will be discussed.

Keywords: mental health promotion, global health promotion, trauma education, innovations in education, child, youth, mental health education

Procedia PDF Downloads 371
6955 Course Perceiving Differences among College Science Students from Various Cultures: A Case Study in the US

Authors: Yuanyuan Song

Abstract:

Background: As we all know, culture plays a pivotal role in the realm of education, influencing study perceptions and outcomes. Nevertheless, there remains a need to delve into how culture specifically impacts the perception of courses. Therefore, the impact of culture on students' perceptions and academic performance is explored in this study. Drawing from cultural constructionism and conflict theories, it is posited that when students hailing from diverse cultures and backgrounds converge in the same classroom, their perceptions of course content may diverge significantly. This study seeks to unravel the tangible disparities and ascertain how cultural nuances shape students' perceptions of classroom content when encountering diverse cultural contexts within the same learning environment. Methodology: Given the diverse cultural backgrounds of students within the US, this study draws upon data collected from a course offered by a US college. In pursuit of answers to these inquiries, a qualitative approach was employed, involving semi-structured interviews conducted in a college-level science class in the US during 2023. The interviews encompassed approximately nine questions, spanning demographic particulars, cultural backgrounds, science learning experiences, academic outcomes, and more. Participants were exclusively drawn from science-related majors, with each student originating from a distinct cultural context. All participants were undergraduates, and most of them were from eighteen to twenty-five years old, totaling six students who attended the class and willingly participated in the interviews. The duration of each interview was approximately twenty minutes. Results: The findings gleaned from the interview data underscore the notable impact of varying cultural contexts on students' perceptions. This study argues that female science students, for instance, are influenced by gender dynamics due to the predominant male presence in science majors, creating an environment where female students feel reticent about expressing themselves in public. Students of East Asian origin exhibit a stronger belief in the efficacy of personal efforts when contrasted with their North American counterparts. Minority students indicated that they grapple with integration into the predominantly white mainstream society, influencing their eagerness to engage in classroom activities that are conducted by white professors. All of them emphasized the importance of learning science.

Keywords: multiculture education, educational sociology, educational equality, STEM education

Procedia PDF Downloads 64
6954 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 89
6953 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 141
6952 Predictors of Recent Work-Related Injury in a Rapidly Developing Country: Results from a Worker Survey in Qatar

Authors: Ruben Peralta, Sam Thomas, Nazia Hirani, Ayman El-Menyar, Hassan Al-Thani, Mohammed Al-Thani, Mohammed Al-Hajjaj, Rafael Consunji

Abstract:

Moderate to severe work-related injuries [WRI's] are a leading cause of trauma admission in Qatar but information on risk factors for their incidence are lacking. This study aims to document and analyze the predictive characteristics for WRI to inform the creation of targeted interventions to improve worker safety in Qatar. This study was conducted as part of the NPRP grant # 7 - 1120 - 3 - 288, titled "A Unified Registry for Occupational Injury Prevention in Qatar”. 266 workers were interviewed using a standard questionnaire, during ‘World Day for Safety and Health at Work’, a Ministry of Public Health event, none refused interview. Nurses and doctors from the Hamad Trauma Center conducted the interviews. Questions were translated into the worker’s native language when it was deemed necessary. Standard information on epidemiologic characteristics and incidence of work-related injury were collected and compared between nationalities and those injured versus those not injured. 262 males and 4 females were interviewed. 17 [6.4%] reported a WRI in the last 24 months. More than half of the injured worked in construction [59%] followed by water supply [11.8%]. Factors significantly associated with recent injury were: Working for a company with > 500 employees and speaking Hindi. Protective characteristics included: Being from the Philippines or Sri Lanka, speaking Arabic, working in healthcare, an office or trading and company size between 100-500 employees. Years of schooling and working in Qatar were not predictive factor for WRI. The findings from this survey should guide future research that will better define worker populations at an increased risk for WRI and inform recruiters and sending countries. A focus on worker language skills, interventions in the construction industry and occupational safety in large companies is needed.

Keywords: occupational injury, prevention, safety, trauma, work related injury

Procedia PDF Downloads 328
6951 Diagnosing and Treating Breast Cancer during Pregnancy: Neonatal Outcomes after Chemotherapy

Authors: Elyce Cardonick, Shistri Dhar, Linsdey Seidman

Abstract:

Background: When breast cancer is diagnosed during pregnancy, the prognosis is comparable to non-pregnant women matched for prognostic indicators when pregnant women receive treatment without delay. Chemotherapy, including taxanes, can be given during pregnancy with normal neonatal development in exposed fetuses. Methods: Cases of primary breast cancer were extracted from the Cancer and Pregnancy Registry and longitudinal study at Cooper Medical School, which collects cases of pregnant women diagnosed and treated for cancer into a single database. Obstetrical, oncology and pediatric records were reviewed, including annual neonatal developmental, behavioral and medical assessments. Results: 270 pregnant women were diagnosed with primary breast cancer at a mean gestational age of 14.7+9weeks. Mean maternal age at diagnosis 34.5+4.5 years. Receptor status is comparable to non-pregnant women of reproductive age. Forty-nine women were advised to terminate. Two hundred two women underwent surgery;244 women received chemotherapy in pregnancy after the first trimester; the majority of Doxorubucin/Cytoxan; 81 of the cases included a taxane. At a mean of 90 months, follow up obtained on 255 newborns.192/255 newborns are meeting developmental milestones. Respiratory illnesses, including asthma, and bronchiolitis, were reported in 64 newborns, the most common medical condition reported. Thirty-one children are undergoing treatment for GERD, 11 for urinary tract infections, and 7 are undergoing treatment for anemia. Twenty-six children with expressive or articulation language delays, 21/26 are mild. Eleven children with gross/ 7 with fine motor delays. Eight children are treated for ADHD, 4 for anxiety and 4 have social skill impairment. The majority of children with developmental, language or motor delays were born preterm. Conclusion: After chemotherapy exposure in utero for breast cancer, the majority of newborns are meeting developmental milestones and are medically healthy. The goal for treating pregnant women with breast cancer is to aim for delivery close to the term.

Keywords: breast cancer, pregnancy, chemotherapy, newborn

Procedia PDF Downloads 121
6950 Biomechanical Analysis and Interpretation of Pitching Sequences for Enhanced Performance Programming

Authors: Corey F. Fitzgerald

Abstract:

This study provides a comprehensive examination of the biomechanical sequencing inherent in pitching motions, coupled with an advanced methodology for interpreting gathered data to inform programming strategies. The analysis is conducted utilizing state-of-the-art biomechanical laboratory equipment capable of detecting subtle changes and deviations, facilitating highly informed decision-making processes. Through this presentation, the intricate dynamics of pitching sequences are meticulously discussed to highlight the complex movement patterns accessible and actionable for performance enhancement purposes in the weight room.

Keywords: sport science, applied biomechanics, strength and conditioning, applied research

Procedia PDF Downloads 73
6949 Communicating Meaning through Translanguaging: The Case of Multilingual Interactions of Algerians on Facebook

Authors: F. Abdelhamid

Abstract:

Algeria is a multilingual speech community where individuals constantly mix between codes in spoken discourse. Code is used as a cover term to refer to the existing languages and language varieties which include, among others, the mother tongue of the majority Algerian Arabic, the official language Modern Standard Arabic and the foreign languages French and English. The present study explores whether Algerians mix between these codes in online communication as well. Facebook is the selected platform from which data is collected because it is the preferred social media site for most Algerians and it is the most used one. Adopting the notion of translanguaging, this study attempts explaining how users of Facebook use multilingual messages to communicate meaning. Accordingly, multilingual interactions are not approached from a pejorative perspective but rather as a creative linguistic behavior that multilingual utilize to achieve intended meanings. The study is intended as a contribution to the research on multilingualism online because although an extensive literature has investigated multilingualism in spoken discourse, limited research investigated it in the online one. Its aim is two-fold. First, it aims at ensuring that the selected platform for analysis, namely Facebook, could be a source for multilingual data to enable the qualitative analysis. This is done by measuring frequency rates of multilingual instances. Second, when enough multilingual instances are encountered, it aims at describing and interpreting some selected ones. 120 posts and 16335 comments were collected from two Facebook pages. Analysis revealed that third of the collected data are multilingual messages. Users of Facebook mixed between the four mentioned codes in writing their messages. The most frequent cases are mixing between Algerian Arabic and French and between Algerian Arabic and Modern Standard Arabic. A focused qualitative analysis followed where some examples are interpreted and explained. It seems that Algerians mix between codes when communicating online despite the fact that it is a conscious type of communication. This suggests that such behavior is not a random and corrupted way of communicating but rather an intentional and natural one.

Keywords: Algerian speech community, computer mediated communication, languages in contact, multilingualism, translanguaging

Procedia PDF Downloads 135
6948 Project Management Framework and Influencing Factors

Authors: Mehrnoosh Askarizadeh

Abstract:

The increasing variations of the business world correspond with a high diversity of theoretical perspectives used in project management research. This diversity is reflected by a variety of influencing factors, which have been the subject of empirical studies. This article aims to systemize the different streams of research on the basis of a literature review and at developing a research framework influencing factors. We will identify fundamental elements of a project management theory. The framework consists of three dimensions: design, context, and goal. Its purpose is to support the combination of different perspectives and the development of strategies for further research.

Keywords: project, goal, project management, influencing factors

Procedia PDF Downloads 549
6947 Factors Impacting Science and Mathematics Teachers’ Competencies in TPACK in STEM Context

Authors: Nasser Mansour, Ziad Said, Abdullah Abu-Tineh

Abstract:

STEM teachers face the challenge of possessing expertise not only in their subject disciplines but also in the pedagogical knowledge required for integrated STEM lessons. However, research reveals a lack of pedagogical competencies related to project-based learning (PBL) in the STEM context. To bridge this gap, the study examines teachers' competencies and self-efficacy in TPACK (Technological Pedagogical Content Knowledge) and its specific integration with PBL and STEM content. Data from 245 specialized science and math teachers were collected using a questionnaire. The study emphasizes the importance of addressing gender disparities, supporting formal teacher education, and recognizing the expertise and experiences of STEM teachers in effective technology integration. The findings indicate that gender plays a role in self-efficacy beliefs, with females exhibiting higher confidence in pedagogical knowledge and males demonstrating higher confidence in technological knowledge. Teaching experience and workload factors have a limited impact on teachers' Technological Pedagogical Content Knowledge (TPACK). These findings enhance our understanding of contextual factors impacting science and math teachers' self-efficacy in utilizing TPACK for STEM and PBL. They inform the development of targeted interventions, professional development programs, and support systems to enhance teachers' competencies and self-efficacy in TPACK for teaching science and Mathematics through STEM and PBL.

Keywords: technological pedagogical content knowledge, TPACK, STEM, project-based learning, PBL, self-efficacy, mathematics, science

Procedia PDF Downloads 66
6946 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 362
6945 Learning with Music: The Effects of Musical Tension on Long-Term Declarative Memory Formation

Authors: Nawras Kurzom, Avi Mendelsohn

Abstract:

The effects of background music on learning and memory are inconsistent, partly due to the intrinsic complexity and variety of music and partly to individual differences in music perception and preference. A prominent musical feature that is known to elicit strong emotional responses is musical tension. Musical tension can be brought about by building anticipation of rhythm, harmony, melody, and dynamics. Delaying the resolution of dominant-to-tonic chord progressions, as well as using dissonant harmonics, can elicit feelings of tension, which can, in turn, affect memory formation of concomitant information. The aim of the presented studies was to explore how forming declarative memory is influenced by musical tension, brought about within continuous music as well as in the form of isolated chords with varying degrees of dissonance/consonance. The effects of musical tension on long-term memory of declarative information were studied in two ways: 1) by evoking tension within continuous music pieces by delaying the release of harmonic progressions from dominant to tonic chords, and 2) by using isolated single complex chords with various degrees of dissonance/roughness. Musical tension was validated through subjective reports of tension, as well as physiological measurements of skin conductance response (SCR) and pupil dilation responses to the chords. In addition, music information retrieval (MIR) was used to quantify musical properties associated with tension and its release. Each experiment included an encoding phase, wherein individuals studied stimuli (words or images) with different musical conditions. Memory for the studied stimuli was tested 24 hours later via recognition tasks. In three separate experiments, we found positive relationships between tension perception and physiological measurements of SCR and pupil dilation. As for memory performance, we found that background music, in general, led to superior memory performance as compared to silence. We detected a trade-off effect between tension perception and memory, such that individuals who perceived musical tension as such displayed reduced memory performance for images encoded during musical tension, whereas tense music benefited memory for those who were less sensitive to the perception of musical tension. Musical tension exerts complex interactions with perception, emotional responses, and cognitive performance on individuals with and without musical training. Delineating the conditions and mechanisms that underlie the interactions between musical tension and memory can benefit our understanding of musical perception at large and the diverse effects that music has on ongoing processing of declarative information.

Keywords: musical tension, declarative memory, learning and memory, musical perception

Procedia PDF Downloads 102
6944 Female Frontline Health Workers in High-Risk Workplaces: Legal Protection in Bangladesh amid the Covid-19 Pandemic

Authors: Nabila Farhin, Israt Jahan

Abstract:

Despite the feminisation of the global health force, women mostly engage in nursing, midwifery and community health workers (HWs), and the posts like surgeons, doctors, and specialists are generally male-dominated. It is also prominent in Bangladesh, where female HWs witness systematic workplace inequalities, discrimination, and underpayment. The Covid-19 pandemic put unsurmountable pressure on HWs as they had to serve in high-risk workplaces as frontliners. The already disadvantaged female HWs shouldered the same burden, were overworked without adequate occupational health and safety measures (OSH) and risked their lives. Acknowledging their vulnerable workplace conditions, the World Health Organization (WHO) and International Labour Organization (ILO) circulated a few specialised guidelines amid the peril. Bangladesh tried to adhere to international guidelines while formulating pandemic management strategies. In reality, the already weak and understaffed health sector collapsed with the patient influx and many HWs got infected and died in the line of duty, exposing the high-risk nature of the work. Unfortunately, the gender-segregated data of infected HWs are absent. This qualitative research investigates whether the existing laws of Bangladesh are adequate in protecting female HWs as frontliners in high-risk workplaces during the Covid-19 pandemic. The paper first examines international labour laws safeguarding female frontline HWs. It also analyses the specialised Covid-19 pandemic guidelines protecting their interests. Finally, the research investigates the compliance of Bangladesh as per international legal guidance during the pandemic. In doing so, it explores the domestic laws, professional guidelines for HWs and pandemic response strategies. The paper critically examines the primary sources like international and national statutes, rules, regulations and guidelines. Secondary sources like authoritative journal articles, books and newspaper reports are contextually analysed in line with the objective of the paper. The definition of HW is ambiguous in the labour laws of Bangladesh. It leads to confusion regarding the extent of legal protection rendered to female HWs at private hospitals in high-risk situations. The labour laws are not applicable in Public hospitals, as the employees follow the public service rules. Unfortunately, the country has no specialised law to protect HWs in high-risk workplaces, and the professional guidelines for HWs also remain inadequate in this regard. Even though the pandemic management strategies highlight some protective measures in high-risk situations, they only deal with HWs who are pregnant or have underlying health issues. No specialised protective guidelines can be found for female HWs as frontliners. Therefore, the laws are insufficient and failed to render adequate legal protection to female frontline HWs during the pandemic. The country also lacks comprehensive health legislation and uniform institutional and professional guidelines, preventing them from accessing grievance mechanisms. Hence, the female HWs felt victimised while duty-bound to serve in high-risk workplaces without adequate safeguards. Bangladesh should clarify the definition of HWs and standardise the service rules for providing medical care in high-risk workplaces. The research also recommends adequate health legislation and specialised legal protection to safeguard female HWs in future emergencies.

Keywords: female health workers (HWs), high-risk workplaces, Covid-19 pandemic, Bangladesh

Procedia PDF Downloads 84
6943 Student Experiences in Online Doctoral Programs: A Critical Review of the Literature

Authors: Nicole A. Alford

Abstract:

The study of online graduate education started just 30 years ago, with the first online graduate program in the 1990s. Institutions are looking for ways to increase retention and support the needs of students with the rapid expansion of online higher education due to the global pandemic. Online education provides access and opportunities to those who otherwise would be unable to pursue an advanced degree for logistical reasons. Thus, the objective of the critical literature review is to survey current research of student experiences given the expanding role of online doctoral programs. The guiding research questions are: What are the personal, professional, and student life practices of graduate students who enrolled in a fully online university doctoral program or course? and How do graduate students who enrolled in a fully online doctoral program or course describe the factors that contributed to their continued study? The systematic literature review was conducted employing a variety of databases to locate articles using key Boolean terms and synonyms within three categories of the e-learning, doctoral education, and student perspectives. Inclusion criteria for the literature review consisted of empirical peer-reviewed studies with original data sources that focused on doctoral programs and courses within a fully online environment and centered around student experiences. A total of 16 articles were selected based on the inclusion criteria and systemically analyzed through coding using the Boote and Beile criteria. Major findings suggest that doctoral students face stressors related to social and emotional wellbeing in the online environment. A lack of social connection, isolation, and burnout were the main challenges experienced by students. Students found support from their colleagues, advisors, and faculty to persist. Communities and cohorts of online doctoral students were found to guard against these challenges. Moreover, in the methods section of the articles, there was a lack of specificity related to student demographics, general student information, and insufficient detail about the online doctoral program. Additionally, descriptions regarding the experiences of cohorts and communities in the online environment were vague and not easily replicable with the given details. This literature review reveals that doctoral students face social and emotional challenges related to isolation and the rigor of the academic process and lean on others for support to continue in their studies. Given the lack of current knowledge about online doctoral students, it proves to be a challenge to identify effective practices and create high-retention doctoral programs in online environments. The paucity of information combined with the dramatic transition to e-learning due to the global pandemic can provide a perfect storm for attrition in these programs. Several higher education institutions have transitioned graduate studies online, thus providing an opportunity for further exploration. Given the new necessity of online learning, this work provides insight into examining current practices in online doctoral programs that have moved to this modality during the pandemic. The significance of the literature review provides a springboard for research into online doctoral programs as the solution to continue advanced education amongst a global pandemic.

Keywords: e-learning, experiences, higher education, literature review

Procedia PDF Downloads 117
6942 Foundations for Global Interactions: The Theoretical Underpinnings of Understanding Others

Authors: Randall E. Osborne

Abstract:

In a course on International Psychology, 8 theoretical perspectives (Critical Psychology, Liberation Psychology, Post-Modernism, Social Constructivism, Social Identity Theory, Social Reduction Theory, Symbolic Interactionism, and Vygotsky’s Sociocultural Theory) are used as a framework for getting students to understand the concept of and need for Globalization. One of critical psychology's main criticisms of conventional psychology is that it fails to consider or deliberately ignores the way power differences between social classes and groups can impact the mental and physical well-being of individuals or groups of people. Liberation psychology, also known as liberation social psychology or psicología social de la liberación, is an approach to psychological science that aims to understand the psychology of oppressed and impoverished communities by addressing the oppressive sociopolitical structure in which they exist. Postmodernism is largely a reaction to the assumed certainty of scientific, or objective, efforts to explain reality. It stems from a recognition that reality is not simply mirrored in human understanding of it, but rather, is constructed as the mind tries to understand its own particular and personal reality. Lev Vygotsky argued that all cognitive functions originate in, and must therefore be explained as products of social interactions and that learning was not simply the assimilation and accommodation of new knowledge by learners. Social Identity Theory discusses the implications of social identity for human interactions with and assumptions about other people. Social Identification Theory suggests people: (1) categorize—people find it helpful (humans might be perceived as having a need) to place people and objects into categories, (2) identify—people align themselves with groups and gain identity and self-esteem from it, and (3) compare—people compare self to others. Social reductionism argues that all behavior and experiences can be explained simply by the affect of groups on the individual. Symbolic interaction theory focuses attention on the way that people interact through symbols: words, gestures, rules, and roles. Meaning evolves from human their interactions in their environment and with people. Vygotsky’s sociocultural theory of human learning describes learning as a social process and the origination of human intelligence in society or culture. The major theme of Vygotsky’s theoretical framework is that social interaction plays a fundamental role in the development of cognition. This presentation will discuss how these theoretical perspectives are incorporated into a course on International Psychology, a course on the Politics of Hate, and a course on the Psychology of Prejudice, Discrimination and Hate to promote student thinking in a more ‘global’ manner.

Keywords: globalization, international psychology, society and culture, teaching interculturally

Procedia PDF Downloads 257
6941 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled

Authors: Rishabh Ambavanekar

Abstract:

Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.

Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis

Procedia PDF Downloads 122
6940 Mondoc: Informal Lightweight Ontology for Faceted Semantic Classification of Hypernymy

Authors: M. Regina Carreira-Lopez

Abstract:

Lightweight ontologies seek to concrete union relationships between a parent node, and a secondary node, also called "child node". This logic relation (L) can be formally defined as a triple ontological relation (LO) equivalent to LO in ⟨LN, LE, LC⟩, and where LN represents a finite set of nodes (N); LE is a set of entities (E), each of which represents a relationship between nodes to form a rooted tree of ⟨LN, LE⟩; and LC is a finite set of concepts (C), encoded in a formal language (FL). Mondoc enables more refined searches on semantic and classified facets for retrieving specialized knowledge about Atlantic migrations, from the Declaration of Independence of the United States of America (1776) and to the end of the Spanish Civil War (1939). The model looks forward to increasing documentary relevance by applying an inverse frequency of co-ocurrent hypernymy phenomena for a concrete dataset of textual corpora, with RMySQL package. Mondoc profiles archival utilities implementing SQL programming code, and allows data export to XML schemas, for achieving semantic and faceted analysis of speech by analyzing keywords in context (KWIC). The methodology applies random and unrestricted sampling techniques with RMySQL to verify the resonance phenomena of inverse documentary relevance between the number of co-occurrences of the same term (t) in more than two documents of a set of texts (D). Secondly, the research also evidences co-associations between (t) and their corresponding synonyms and antonyms (synsets) are also inverse. The results from grouping facets or polysemic words with synsets in more than two textual corpora within their syntagmatic context (nouns, verbs, adjectives, etc.) state how to proceed with semantic indexing of hypernymy phenomena for subject-heading lists and for authority lists for documentary and archival purposes. Mondoc contributes to the development of web directories and seems to achieve a proper and more selective search of e-documents (classification ontology). It can also foster on-line catalogs production for semantic authorities, or concepts, through XML schemas, because its applications could be used for implementing data models, by a prior adaptation of the based-ontology to structured meta-languages, such as OWL, RDF (descriptive ontology). Mondoc serves to the classification of concepts and applies a semantic indexing approach of facets. It enables information retrieval, as well as quantitative and qualitative data interpretation. The model reproduces a triple tuple ⟨LN, LE, LT, LCF L, BKF⟩ where LN is a set of entities that connect with other nodes to concrete a rooted tree in ⟨LN, LE⟩. LT specifies a set of terms, and LCF acts as a finite set of concepts, encoded in a formal language, L. Mondoc only resolves partial problems of linguistic ambiguity (in case of synonymy and antonymy), but neither the pragmatic dimension of natural language nor the cognitive perspective is addressed. To achieve this goal, forthcoming programming developments should target at oriented meta-languages with structured documents in XML.

Keywords: hypernymy, information retrieval, lightweight ontology, resonance

Procedia PDF Downloads 128
6939 Status of Sensory Profile Score among Children with Autism in Selected Centers of Dhaka City

Authors: Nupur A. D., Miah M. S., Moniruzzaman S. K.

Abstract:

Autism is a neurobiological disorder that affects physical, social, and language skills of a person. A child with autism feels difficulty for processing, integrating, and responding to sensory stimuli. Current estimates have shown that 45% to 96 % of children with Autism Spectrum Disorder demonstrate sensory difficulties. As autism is a worldwide burning issue, it has become a highly prioritized and important service provision in Bangladesh. The sensory deficit does not only hamper the normal development of a child, it also hampers the learning process and functional independency. The purpose of this study was to find out the prevalence of sensory dysfunction among children with autism and recognize common patterns of sensory dysfunction. A cross-sectional study design was chosen to carry out this research work. This study enrolled eighty children with autism and their parents by using the systematic sampling method. In this study, data were collected through the Short Sensory Profile (SSP) assessment tool, which consists of 38 items in the questionnaire, and qualified graduate Occupational Therapists were directly involved in interviewing parents as well as observing child responses to sensory related activities of the children with autism from four selected autism centers in Dhaka, Bangladesh. All item analyses were conducted to identify items yielding or resulting in the highest reported sensory processing dysfunction among those children through using SSP and Statistical Package for Social Sciences (SPSS) version 21.0 for data analysis. This study revealed that almost 78.25% of children with autism had significant sensory processing dysfunction based on their sensory response to relevant activities. Under-responsive sensory seeking and auditory filtering were the least common problems among them. On the other hand, most of them (95%) represented that they had definite to probable differences in sensory processing, including under-response or sensory seeking, auditory filtering, and tactile sensitivity. Besides, the result also shows that the definite difference in sensory processing among 64 children was within 100%; it means those children with autism suffered from sensory difficulties, and thus it drew a great impact on the children’s Daily Living Activities (ADLs) as well as social interaction with others. Almost 95% of children with autism require intervention to overcome or normalize the problem. The result gives insight regarding types of sensory processing dysfunction to consider during diagnosis and ascertaining the treatment. So, early sensory problem identification is very important and thus will help to provide appropriate sensory input to minimize the maladaptive behavior and enhance to reach the normal range of adaptive behavior.

Keywords: autism, sensory processing difficulties, sensory profile, occupational therapy

Procedia PDF Downloads 72
6938 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 415
6937 Thus Spoke the Mouth: Problematizing Dalit Voice in Selected Poems

Authors: Barnali Saha

Abstract:

Dalit writing is the interventionalist voice of the dispossessed subaltern in the cultural economy of the society. As such, Dalit writing, including Dalit poetry, considers the contradictions that permeate the socio-cultural structure historically allocated and religiously sanctioned in the Indian subcontinent. As an epicenter of all Dalit experiences of trauma and violence, the poetics the Dalit body is deeply rooted in the peripheral space socially assigned to it by anachronistic caste-based litigation. An appraisal of Dalit creative-critical work by writers like Sharan Kumar Limbale, Arjun Dangle, Namdeo Dhasal, Om Prakash Valmiki, Muktibodh and others underscore the conjunction of the physical, psychical and the psychological in their interpretation of Dalit consciousness. They put forward the idea that Dalit poetry is begotten by the trauma of societal oppression and therefore, Dalit language and its revitalization are two elements obdurately linked to Dalit poetics. The present research paper seeks to read the problematization of the Dalit agency through the conduit of the Dalit voice wherein the anatomical category of the mouth is closely related to the question of Dalit identity. Theoretically aligned to Heidegger’s notion of language as the house of being and Bachelard’s assertion of a house as an ideal metaphor of poetic imagination and Dylan Trigg’s view of the coeval existence of space and body, the paper examines a series of selected poems by Dalit poetic voices to examine how their distinct Dalit point of view underscores Dalit speech and directs our attention to the historical abstraction of it. The paper further examines how speech as a category in Dalit writing places the Dalit somatic entity as a site of contestation with the ‘Mouth’ as a loaded symbolic category inspiring rebellion and resistance. And as the quintessential purpose of Dalit literature is the unleashing of Dalit voice from the anti-verbal domain of social decrepitude, Dalit poetry needs to be critically read based on the experience of the mouth and the patois.

Keywords: Dalit, poetry, speech, mouth, subaltern, minority, exploitation, space

Procedia PDF Downloads 199
6936 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 68
6935 The Role of Gender in Influencing Public Speaking Anxiety

Authors: Fadil Elmenfi, Ahmed Gaibani

Abstract:

This study investigates the role of gender in influencing public speaking anxiety. Questionnaire survey was administered to the samples of the study. Technique of correlation and descriptive analysis will be further applied to the data collected to determine the relationship between gender and public speaking anxiety. This study could serve as a guide to identify the effects of gender differences on public speaking anxiety and provide necessary advice on how to design a way of coping with or overcoming public speaking anxiety.

Keywords: across culture, communication, English language competence, gender, postgraduate students, speaking anxiety

Procedia PDF Downloads 565
6934 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker

Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro

Abstract:

Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.

Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor

Procedia PDF Downloads 259
6933 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 89
6932 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 295
6931 An Exploratory Factor Analysis Approach to Explore Barriers to Oracy Proficiency among Thai EFL Learners

Authors: Patsawut Sukserm

Abstract:

Oracy proficiency, encompassing both speaking and listening skills, is vital for EFL learners, yet Thai university students often face significant challenges in developing these abilities. This study aims to identify and analyze the barriers that hinder oracy proficiency in EFL learners. To achieve this, a questionnaire was developed based on a comprehensive review of the literature and administered to a large cohort of Thai EFL students. The data were subjected to exploratory factor analysis (EFA) to validate the questionnaire and uncover the underlying factors influencing learners’ performance. The results revealed that the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was 0.912, and Bartlett’s test of sphericity was significant at 2345.423 (p < 0.05), confirming the suitability for factor analysis. There are five main barriers in oracy proficiency, namely Listening and Comprehension Obstacles (LCO), Accent and Speech Understanding (ASU), Speaking Anxiety and Confidence Issues (SACI), Fluency and Expression Issues (FEI), and Grammar and Conversational Understanding (GCU), with eigenvalues ranging from 1.066 to 12.990, explaining 60.305 % of the variance of the 32 variables. These findings highlight the complexity of the challenges faced by Thai EFL learners and emphasize the need for diverse and authentic listening experiences, a supportive classroom environment, or balanced grammar instruction. The findings of the study suggest that educators, curriculum developers, and policy makers should implement evidence-based strategies to address these barriers in order to improve Thai EFL learners’ oral proficiency and enhance their overall academic and professional success. Also, this study will discuss these findings in depth, offering evidence-based strategies for addressing these barriers. Recommendations include integrating diverse and authentic listening experiences, fostering a supportive classroom environment, and providing targeted instruction in both speaking fluency and grammar. The study’s implications extend to educators, curriculum developers, and policymakers, offering practical solutions to enhance learners’ oracy proficiency and support their academic and professional development.

Keywords: exploratory factor analysis, barriers, oracy proficiency, EFL learners

Procedia PDF Downloads 26
6930 Identifying Necessary Words for Understanding Academic Articles in English as a Second or a Foreign Language

Authors: Stephen Wagman

Abstract:

This paper identifies three common structures in English sentences that are important for understanding academic texts, regardless of the characteristics or background of the readers or whether they are reading English as a second or a foreign language. Adapting a model from the Humanities, the explication of texts used in literary studies, the paper analyses sample sentences to reveal structures that enable the reader not only to decide which words are necessary for understanding the main ideas but to make the decision without knowing the meaning of the words. By their very syntax noun structures point to the key word for understanding them. As a rule, the key noun is followed by easily identifiable prepositions, relative pronouns, or verbs and preceded by single adjectives. With few exceptions, the modifiers are unnecessary for understanding the idea of the sentence. In addition, sentences are often structured by lists in which the items frequently consist of parallel groups of words. The principle of a list is that all the items are similar in meaning and it is not necessary to understand all of the items to understand the point of the list. This principle is especially important when the items are long or there is more than one list in the same sentence. The similarity in meaning of these items enables readers to reduce sentences that are hard to grasp to an understandable core without excessive use of a dictionary. Finally, the idea of subordination and the identification of the subordinate parts of sentences through connecting words makes it possible for readers to focus on main ideas without having to sift through the less important and more numerous secondary structures. Sometimes a main idea requires a subordinate one to complete its meaning, but usually, subordinate ideas are unnecessary for understanding the main point of the sentence and its part in the development of the argument from sentence to sentence. Moreover, the connecting words themselves indicate the functions of the subordinate structures. These most frequently show similarity and difference or reasons and results. Recognition of all of these structures can not only enable students to read more efficiently but to focus their attention on the development of the argument and this rather than a multitude of unknown vocabulary items, the repetition in lists, or the subordination in sentences are the one necessary element for comprehension of academic articles.

Keywords: development of the argument, lists, noun structures, subordination

Procedia PDF Downloads 249
6929 Cosmetic Recommendation Approach Using Machine Learning

Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake

Abstract:

The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.

Keywords: content-based filtering, cosmetics, machine learning, recommendation system

Procedia PDF Downloads 138
6928 Formalizing the Sense Relation of Hyponymy from Logical Point of View: A Study of Mathematical Linguistics in Farsi

Authors: Maryam Ramezankhani

Abstract:

The present research tries to study the possibility of formalizing the sense relation of hyponymy. It applied mathematical tools and also uses mathematical logic concepts especially those from propositional logic. In order to do so, firstly, it goes over the definitions of hyponymy presented in linguistic dictionaries and semantic textbooks. Then, it introduces a formal translation of the sense relation of hyponymy. Lastly, it examines the efficiency of the suggested formula by some examples of natural language.

Keywords: sense relations, hyponymy, formalizing, words’ sense relation, formalizing sense relations

Procedia PDF Downloads 243