Search results for: differential constitutive models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8341

Search results for: differential constitutive models

1141 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 160
1140 Collaboration-Based Islamic Financial Services: Case Study of Islamic Fintech in Indonesia

Authors: Erika Takidah, Salina Kassim

Abstract:

Digital transformation has accelerated in the new millennium. It is reshaping the financial services industry from a traditional system to financial technology. Moreover, the number of financial inclusion rates in Indonesia is less than 60%. An innovative model needed to elucidate this national problem. On the other hand, the Islamic financial service industry and financial technology grow fast as a new aspire in economic development. An Islamic bank, takaful, Islamic microfinance, Islamic financial technology and Islamic social finance institution could collaborate to intensify the financial inclusion number in Indonesia. The primary motive of this paper is to examine the strategy of collaboration-based Islamic financial services to enhance financial inclusion in Indonesia, particularly facing the digital era. The fundamental findings for the main problems are the foundations and key ecosystems aspect involved in the development of collaboration-based Islamic financial services. By using the Interpretive Structural Model (ISM) approach, the core problems faced in the development of the models have lacked policy instruments guarding the collaboration-based Islamic financial services with fintech work process and availability of human resources for fintech. The core strategies or foundations that are needed in the framework of collaboration-based Islamic financial services are the ability to manage and analyze data in the big data era. For the aspects of the Ecosystem or actors involved in the development of this model, the important actor is government or regulator, educational institutions, and also existing industries (Islamic financial services). The outcome of the study designates that strategy collaboration of Islamic financial services institution supported by robust technology, a legal and regulatory commitment of the regulators and policymakers of the Islamic financial institutions, extensive public awareness of financial inclusion in Indonesia. The study limited itself to realize financial inclusion, particularly in Islamic finance development in Indonesia. The study will have an inference for the concerned professional bodies, regulators, policymakers, stakeholders, and practitioners of Islamic financial service institutions.

Keywords: collaboration, financial inclusion, Islamic financial services, Islamic fintech

Procedia PDF Downloads 142
1139 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics

Authors: Titus A. Beu

Abstract:

Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.

Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.

Procedia PDF Downloads 116
1138 The Anti-Bladder Cancer Effects Exerted by Hyaluronan Nanoparticles Encapsulated Heteronemin Isolated from Hippospongia Sp.

Authors: Kuan Yin Hsiao, Shyh Ming Kuo, Yi Jhen Wu, Chin Wen Chuang, Chuen-Fu Lin, Wei-qing Yang, Han Hsiang Huang

Abstract:

Anti-tumor effects of natural products, like compounds from marine sponges and soft corals, have been investigated for decades. Polymeric nanoparticles prepared from biodegradable and biocompatible molecules, such as Hyaluronan (HA), Chitosan (CHI) and gelatin have been widely studied. Encapsulation of anti-cancer therapies by the biopolymeric nanoparticles in drug delivery system is potentially capable of improving the therapeutic effects and attenuating their toxicity. In the current study, the anti-bladder cancer effects of heteronemin extracted from the sponge Hippospongia sp. with or without HA and CHI nanoparticle encapsulation were assessed and evaluated in vitro. Results showed that IC50 (half maximal inhibitory concentration) of heteronemin toward T24 human bladder cancer cell viability is approximately 0.18 µg/mL. Both plain and HA nanoparticles-encapsulated heteronemin at 0.2 and 0.4 µg/mL significantly reduced T24 cell viability (P<0.001) while HA nanoparticles-encapsulated heteronemin showed weaker viability-inhibitory effects on L929 fibroblasts compared with plain heteronemin at the identical concentrations. HA and CHI nanoparticles-encapsulated heteronemin exhibited significantly stronger inhibitory effects against migration of T24 human bladder cancer cell than those exerted by plain heteronemin at the same concentrations (P<0.001). The flow cytometric results showed that 0.2 µg/mL HA and CHI nanoparticles-encapsulated heteronemin induced higher early apoptosis rate than that induced by plain heteronemin at the same concentration. These results show that HA and CHI nanoparticle encapsulation is able to elevate anti-migratory and apoptosis-inducing effects exerted by heteronemin against bladder cancer cells in vitro. The in vivo anti-bladder cancer effects of the compound with or without HA/CHI nanoparticle encapsulation will be further investigated and examined using murine tumor models. The data obtained from this study will extensively evaluate of the anti-bladder cancer effects of heteronemin as well as HA/CHI-encapsulated heteronemin and pave a way to develop potential bladder cancer treatment.

Keywords: heteronemin, nanoparticles, hyaluronan, chitosan, bladder cancer

Procedia PDF Downloads 455
1137 Investigating the Motion of a Viscous Droplet in Natural Convection Using the Level Set Method

Authors: Isadora Bugarin, Taygoara F. de Oliveira

Abstract:

Binary fluids and emulsions, in general, are present in a vast range of industrial, medical, and scientific applications, showing complex behaviors responsible for defining the flow dynamics and the system operation. However, the literature describing those highlighted fluids in non-isothermal models is currently still limited. The present work brings a detailed investigation on droplet migration due to natural convection in square enclosure, aiming to clarify the effects of drop viscosity on the flow dynamics by showing how distinct viscosity ratios (droplet/ambient fluid) influence the drop motion and the final movement pattern kept on stationary regimes. The analysis was taken by observing distinct combinations of Rayleigh number, drop initial position, and viscosity ratios. The Navier-Stokes and Energy equations were solved considering the Boussinesq approximation in a laminar flow using the finite differences method combined with the Level Set method for binary flow solution. Previous results collected by the authors showed that the Rayleigh number and the drop initial position affect drastically the motion pattern of the droplet. For Ra ≥ 10⁴, two very marked behaviors were observed accordingly with the initial position: the drop can travel either a helical path towards the center or a cyclic circular path resulting in a closed cycle on the stationary regime. The variation of viscosity ratio showed a significant alteration of pattern, exposing a large influence on the droplet path, capable of modifying the flow’s behavior. Analyses on viscosity effects on the flow’s unsteady Nusselt number were also performed. Among the relevant contributions proposed in this work is the potential use of the flow initial conditions as a mechanism to control the droplet migration inside the enclosure.

Keywords: binary fluids, droplet motion, level set method, natural convection, viscosity

Procedia PDF Downloads 117
1136 Biomechanics of Atalantoaxial Complex for Various Posterior Fixation Techniques

Authors: Arun C. O., Shrijith M. B., Thakur Rajesh Singh

Abstract:

The study aims to analyze and understand the biomechanical stability of the atlantoaxial complex under different posterior fixation techniques using the finite element method in the Indian context. The conventional cadaveric studies performed show heterogeneity in biomechanical properties. The finite element method being a versatile numerical tool, is being wisely used for biomechanics analysis of atlantoaxial complex. However, the biomechanics of posterior fixation techniques for an Indian subject is missing in the literature. It is essential to study in this context as the bone density and geometry of vertebrae vary from region to region, thereby requiring different screw lengths and it can affect the range of motion(ROM), stresses generated. The current study uses CT images for developing a 3D finite element model with C1-C2 geometry without ligaments. Instrumentation is added to this geometry to develop four models for four fixation techniques, namely C1-C2 TA, C1LM-C2PS, C1LM-C2Pars, C1LM-C2TL. To simulate Flexion, extension, lateral bending, axial rotation, 1.5 Nm is applied to C1 while the bottom nodes of C2 are fixed. Then Range of Motion (ROM) is compared with the unstable model(without ligaments). All the fixation techniques showed more than 97 percent reduction in the Range of Motion. The von-mises stresses developed in the screw constructs are obtained. From the studies, it is observed that Transarticular technique is most stable in Lateral Bending, C1LM-C2 Translaminar is found most stable in Flexion/extension. The Von-Mises stresses developed minimum in Trasarticular technique in lateral bending and axial rotation, whereas stress developed in C2 pars construct minimum in Flexion/ Extension. On average, the TA technique is stable in all motions and also stresses in constructs are less in TA. Tarnsarticular technique is found to be the best fixation technique for Indian subjects among the 4 methods.

Keywords: biomechanics, cervical spine, finite element model, posterior fixation

Procedia PDF Downloads 142
1135 A Review of Hypnosis Uses for Anxiety and Phobias Treatment

Authors: Fleura Shkëmbi, Sevim Mustafa, Naim Fanaj

Abstract:

Hypnosis, often known as cognitive therapy, is a sort of mind-body psychotherapy. A professional and certified hypnotist or hypnotherapist guides the patient into this extreme level of focus and relaxation during the session by utilizing verbal cues, repetition, and imagery. In recent years, hypnotherapy has gained popularity in the treatment of a variety of disorders, including anxiety and particular phobias. The term "phobia" is commonly used to define fear of a certain trigger. When faced with potentially hazardous situations, the brain naturally experiences dread. While a little dread here and there may keep us safe, phobias can drastically reduce our quality of life. In summary, persons who suffer from anxiety are considered to see particular environmental situations as dangerous, but those who do not suffer from anxiety do not. Hypnosis is essential in the treatment of anxiety disorders. Hypnosis can help patients minimize their anxiety symptoms. This broad concept has aided in the development of models and therapies for anxiety disorders such as generalized anxiety disorder, panic attacks, hypochondria, and obsessional disorders. Hypnosis techniques are supposed to be attentive and mental pictures, which is conceivable; this is why they're associated with improved working memory and visuospatial abilities. In this sense, the purpose of this study is to determine how effectively specific therapeutic methods perform in treating persons with anxiety and phobias. In addition to cognitive-behavioral therapy and other therapies, the approaches emphasized the use of therapeutic hypnosis. This study looks at the use of hypnosis and related psychotherapy procedures in the treatment of anxiety disorders. Following a discussion of the evolution of hypnosis as a therapeutic tool, neurobiological research is used to demonstrate the influence of hypnosis on the change of perception in the brain. The use of hypnosis in the treatment of phobias, stressful situations, and posttraumatic stress disorder is examined, as well as similarities between the hypnotic state and dissociative reactions to trauma. Through an extensive literature evaluation, this study will introduce hypnotherapy procedures that result in more successful anxiety and phobia treatment.

Keywords: anxiety, hypnosis, hypnotherapy, phobia, technique, state

Procedia PDF Downloads 118
1134 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads

Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo

Abstract:

Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.

Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads

Procedia PDF Downloads 241
1133 Aerial Photogrammetry-Based Techniques to Rebuild the 30-Years Landform Changes of a Landslide-Dominated Watershed in Taiwan

Authors: Yichin Chen

Abstract:

Taiwan is an island characterized by an active tectonics and high erosion rates. Monitoring the dynamic landscape of Taiwan is an important issue for disaster mitigation, geomorphological research, and watershed management. Long-term and high spatiotemporal landform data is essential for quantifying and simulating the geomorphological processes and developing warning systems. Recently, the advances in unmanned aerial vehicle (UAV) and computational photogrammetry technology have provided an effective way to rebuild and monitor the topography changes in high spatio-temporal resolutions. This study rebuilds the 30-years landform change in the Aiyuzi watershed in 1986-2017 by using the aerial photogrammetry-based techniques. The Aiyuzi watershed, located in central Taiwan and has an area of 3.99 Km², is famous for its frequent landslide and debris flow disasters. This study took the aerial photos by using UAV and collected multi-temporal historical, stereo photographs, taken by the Aerial Survey Office of Taiwan’s Forestry Bureau. To rebuild the orthoimages and digital surface models (DSMs), Pix4DMapper, a photogrammetry software, was used. Furthermore, to control model accuracy, a set of ground control points was surveyed by using eGPS. The results show that the generated DSMs have the ground sampling distance (GSD) of ~10 cm and ~0.3 cm from the UAV’s and historical photographs, respectively, and vertical error of ~1 m. By comparing the DSMs, there are many deep-seated landslides (with depth over 20 m) occurred on the upstream in the Aiyuzi watershed. Even though a large amount of sediment is delivered from the landslides, the steep main channel has sufficient capacity to transport sediment from the channel and to erode the river bed to ~20 m in depth. Most sediments are transported to the outlet of watershed and deposits on the downstream channel. This case study shows that UAV and photogrammetry technology are useful for topography change monitoring effectively.

Keywords: aerial photogrammetry, landslide, landform change, Taiwan

Procedia PDF Downloads 155
1132 Lateral Torsional Buckling: Tests on Glued Laminated Timber Beams

Authors: Vera Wilden, Benno Hoffmeister, Markus Feldmann

Abstract:

Glued laminated timber (glulam) is a preferred choice for long span girders, e.g., for gyms or storage halls. While the material provides sufficient strength to resist the bending moments, large spans lead to increased slenderness of such members and to a higher susceptibility to stability issues, in particular to lateral torsional buckling (LTB). Rules for the determination of the ultimate LTB resistance are provided by Eurocode 5. The verifications of the resistance may be performed using the so called equivalent member method or by means of theory 2nd order calculations (direct method), considering equivalent imperfections. Both methods have significant limitations concerning their applicability; the equivalent member method is limited to rather simple cases; the direct method is missing detailed provisions regarding imperfections and requirements for numerical modeling. In this paper, the results of a test series on slender glulam beams in three- and four-point bending are presented. The tests were performed in an innovative, newly developed testing rig, allowing for a very precise definition of loading and boundary conditions. The load was introduced by a hydraulic jack, which follows the lateral deformation of the beam by means of a servo-controller, coupled with the tested member and keeping the load direction vertically. The deformation-controlled tests allowed for the identification of the ultimate limit state (governed by elastic stability) and the corresponding deformations. Prior to the tests, the structural and geometrical imperfections were determined and used later in the numerical models. After the stability tests, the nearly undamaged members were tested again in pure bending until reaching the ultimate moment resistance of the cross-section. These results, accompanied by numerical studies, were compared to resistance values obtained using both methods according to Eurocode 5.

Keywords: experimental tests, glued laminated timber, lateral torsional buckling, numerical simulation

Procedia PDF Downloads 235
1131 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila , V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest

Procedia PDF Downloads 308
1130 Assessing Carbon Stock and Sequestration of Reforestation Species on Old Mining Sites in Morocco Using the DNDC Model

Authors: Nabil Elkhatri, Mohamed Louay Metougui, Ngonidzashe Chirinda

Abstract:

Mining activities have left a legacy of degraded landscapes, prompting urgent efforts for ecological restoration. Reforestation holds promise as a potent tool to rehabilitate these old mining sites, with the potential to sequester carbon and contribute to climate change mitigation. This study focuses on evaluating the carbon stock and sequestration potential of reforestation species in the context of Morocco's mining areas, employing the DeNitrification-DeComposition (DNDC) model. The research is grounded in recognizing the need to connect theoretical models with practical implementation, ensuring that reforestation efforts are informed by accurate and context-specific data. Field data collection encompasses growth patterns, biomass accumulation, and carbon sequestration rates, establishing an empirical foundation for the study's analyses. By integrating the collected data with the DNDC model, the study aims to provide a comprehensive understanding of carbon dynamics within reforested ecosystems on old mining sites. The major findings reveal varying sequestration rates among different reforestation species, indicating the potential for species-specific optimization of reforestation strategies to enhance carbon capture. This research's significance lies in its potential to contribute to sustainable land management practices and climate change mitigation strategies. By quantifying the carbon stock and sequestration potential of reforestation species, the study serves as a valuable resource for policymakers, land managers, and practitioners involved in ecological restoration and carbon management. Ultimately, the study aligns with global objectives to rejuvenate degraded landscapes while addressing pressing climate challenges.

Keywords: carbon stock, carbon sequestration, DNDC model, ecological restoration, mining sites, Morocco, reforestation, sustainable land management.

Procedia PDF Downloads 75
1129 Artificial Intelligence Impact on Strategic Stability

Authors: Darius Jakimavicius

Abstract:

Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.

Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop

Procedia PDF Downloads 40
1128 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 299
1127 Syntax and Words as Evolutionary Characters in Comparative Linguistics

Authors: Nancy Retzlaff, Sarah J. Berkemer, Trudie Strauss

Abstract:

In the last couple of decades, the advent of digitalization of any kind of data was probably one of the major advances in all fields of study. This paves the way for also analysing these data even though they might come from disciplines where there was no initial computational necessity to do so. Especially in linguistics, one can find a rather manual tradition. Still when considering studies that involve the history of language families it is hard to overlook the striking similarities to bioinformatics (phylogenetic) approaches. Alignments of words are such a fairly well studied example of an application of bioinformatics methods to historical linguistics. In this paper we will not only consider alignments of strings, i.e., words in this case, but also alignments of syntax trees of selected Indo-European languages. Based on initial, crude alignments, a sophisticated scoring model is trained on both letters and syntactic features. The aim is to gain a better understanding on which features in two languages are related, i.e., most likely to have the same root. Initially, all words in two languages are pre-aligned with a basic scoring model that primarily selects consonants and adjusts them before fitting in the vowels. Mixture models are subsequently used to filter ‘good’ alignments depending on the alignment length and the number of inserted gaps. Using these selected word alignments it is possible to perform tree alignments of the given syntax trees and consequently find sentences that correspond rather well to each other across languages. The syntax alignments are then filtered for meaningful scores—’good’ scores contain evolutionary information and are therefore used to train the sophisticated scoring model. Further iterations of alignments and training steps are performed until the scoring model saturates, i.e., barely changes anymore. A better evaluation of the trained scoring model and its function in containing evolutionary meaningful information will be given. An assessment of sentence alignment compared to possible phrase structure will also be provided. The method described here may have its flaws because of limited prior information. This, however, may offer a good starting point to study languages where only little prior knowledge is available and a detailed, unbiased study is needed.

Keywords: alignments, bioinformatics, comparative linguistics, historical linguistics, statistical methods

Procedia PDF Downloads 152
1126 The Development of an Accident Causation Model Specific to Agriculture: The Irish Farm Accident Causation Model

Authors: Carolyn Scott, Rachel Nugent

Abstract:

The agricultural industry in Ireland and worldwide is one of the most dangerous occupations with respect to occupational health and safety accidents and fatalities. Many accident causation models have been developed in safety research to understand the underlying and contributory factors that lead to the occurrence of an accident. Due to the uniqueness of the agricultural sector, current accident causation theories cannot be applied. This paper presents an accident causation model named the Irish Farm Accident Causation Model (IFACM) which has been specifically tailored to the needs of Irish farms. The IFACM is a theoretical and practical model of accident causation that arranges the causal factors into a graphic representation of originating, shaping, and contributory factors that lead to accidents when unsafe acts and conditions are created that are not rectified by control measures. Causes of farm accidents were assimilated by means of a thorough literature review and were collated to form a graphical representation of the underlying causes of a farm accident. The IFACM was validated retrospectively through case study analysis and peer review. Participants in the case study (n=10) identified causes that led to a farm accident in which they were involved. A root cause analysis was conducted to understand the contributory factors surrounding the farm accident, traced back to the ‘root cause’. Experts relevant to farm safety accident causation in the agricultural industry have peer reviewed the IFACM. The accident causation process is complex. Accident prevention requires a comprehensive understanding of this complex process because to prevent the occurrence of accidents, the causes of accidents must be known. There is little research on the key causes and contributory factors of unsafe behaviours and accidents on Irish farms. The focus of this research is to gain a deep understanding of the causality of accidents on Irish farms. The results suggest that the IFACM framework is helpful for the analysis of the causes of accidents within the agricultural industry in Ireland. The research also suggests that there may be international applicability if further research is carried out. Furthermore, significant learning can be obtained from considering the underlying causes of accidents.

Keywords: farm safety, farm accidents, accident causation, root cause analysis

Procedia PDF Downloads 76
1125 Model of Application of Blockchain Technology in Public Finances

Authors: M. Vlahovic

Abstract:

This paper presents a model of public finances, which combines three concepts: participatory budgeting, crowdfunding and blockchain technology. Participatory budgeting is defined as a process in which community members decide how to spend a part of community’s budget. Crowdfunding is a practice of funding a project by collecting small monetary contributions from a large number of people via an Internet platform. Blockchain technology is a distributed ledger that enables efficient and reliable transactions that are secure and transparent. In this hypothetical model, the government or authorities on local/regional level would set up a platform where they would propose public projects to citizens. Citizens would browse through projects and support or vote for those which they consider justified and necessary. In return, they would be entitled to a tax relief in the amount of their monetary contribution. Since the blockchain technology enables tracking of transactions, it can be used to mitigate corruption, money laundering and lack of transparency in public finances. Models of its application have already been created for e-voting, health records or land registries. By presenting a model of application of blockchain technology in public finances, this paper takes into consideration the potential of blockchain technology to disrupt governments and make processes more democratic, secure, transparent and efficient. The framework for this paper consists of multiple streams of research, including key concepts of direct democracy, public finance (especially the voluntary theory of public finance), information and communication technology, especially blockchain technology and crowdfunding. The framework defines rules of the game, basic conditions for the implementation of the model, benefits, potential problems and development perspectives. As an oversimplified map of a new form of public finances, the proposed model identifies primary factors, that influence the possibility of implementation of the model, and that could be tracked, measured and controlled in case of experimentation with the model.

Keywords: blockchain technology, distributed ledger, participatory budgeting, crowdfunding, direct democracy, internet platform, e-government, public finance

Procedia PDF Downloads 148
1124 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City

Authors: Emejeamara Francis

Abstract:

The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.

Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content

Procedia PDF Downloads 273
1123 Eco-Products in Day-to-Day Life: A Catalyst for Achieving Sustainability

Authors: Rani Fernandez

Abstract:

As global concerns regarding environmental degradation and climate change intensify, the imperative for sustainable living has never been more critical. This research delves into the role of eco-products in everyday life as a pivotal strategy for achieving sustainability. The study investigates the awareness, adoption, and impact of eco-friendly products on individual and community levels. The research employs a mixed-methods approach, combining surveys, interviews, and case studies to explore consumer perceptions, behaviours, and motivations surrounding the use of eco-products. Additionally, life cycle assessments are conducted to evaluate the environmental footprint of selected eco-products, shedding light on their tangible contributions to sustainability. The findings reveal the diverse range of eco-products available in the market, from biodegradable packaging to energy-efficient appliances, and the extent to which consumers integrate these products into their daily routines. Moreover, the research examines the challenges and opportunities associated with widespread adoption, considering factors such as cost, accessibility, and efficacy. In addition to individual consumption patterns, the study investigates the broader societal impact of eco-product integration. It explores the potential for eco-products to drive systemic change by influencing supply chains, corporate practices, and government policies. The research highlights successful case studies of communities or businesses that have effectively incorporated eco-products, providing valuable insights into scalable models for sustainability. Ultimately, this research contributes to the discourse on sustainable living by elucidating the pivotal role of eco-products in shaping environmentally conscious behaviours. By understanding the dynamics of eco-product adoption, policymakers, businesses, and individuals can collaboratively work towards a more sustainable future. The implications of this study extend beyond academia, informing practical strategies for fostering a global shift towards sustainable consumption and production.

Keywords: eco-friendly, sustainablity, environment, climate change

Procedia PDF Downloads 40
1122 Good Practices for Model Structure Development and Managing Structural Uncertainty in Decision Making

Authors: Hossein Afzali

Abstract:

Increasingly, decision analytic models are used to inform decisions about whether or not to publicly fund new health technologies. It is well noted that the accuracy of model predictions is strongly influenced by the appropriateness of model structuring. However, there is relatively inadequate methodological guidance surrounding this issue in guidelines developed by national funding bodies such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC) and The National Institute for Health and Care Excellence (NICE) in the UK. This presentation aims to discuss issues around model structuring within decision making with a focus on (1) the need for a transparent and evidence-based model structuring process to inform the most appropriate set of structural aspects as the base case analysis; (2) the need to characterise structural uncertainty (If there exist alternative plausible structural assumptions (or judgements), there is a need to appropriately characterise the related structural uncertainty). The presentation will provide an opportunity to share ideas and experiences on how the guidelines developed by national funding bodies address the above issues and identify areas for further improvements. First, a review and analysis of the literature and guidelines developed by PBAC and NICE will be provided. Then, it will be discussed how the issues around model structuring (including structural uncertainty) are not handled and justified in a systematic way within the decision-making process, its potential impact on the quality of public funding decisions, and how it should be presented in submissions to national funding bodies. This presentation represents a contribution to the good modelling practice within the decision-making process. Although the presentation focuses on the PBAC and NICE guidelines, the discussion can be applied more widely to many other national funding bodies that use economic evaluation to inform funding decisions but do not transparently address model structuring issues e.g. the Medical Services Advisory Committee (MSAC) in Australia or the Canadian Agency for Drugs and Technologies in Health.

Keywords: decision-making process, economic evaluation, good modelling practice, structural uncertainty

Procedia PDF Downloads 181
1121 Parking Service Effectiveness at Commercial Malls

Authors: Ahmad AlAbdullah, Ali AlQallaf, Mahdi Hussain, Mohammed AlAttar, Salman Ashknani, Magdy Helal

Abstract:

We study the effectiveness of the parking service provided at Kuwaiti commercial malls and explore potential problems and feasible improvements. Commercial malls are important to Kuwaitis as the entertainment and shopping centers due to the lack of other alternatives. The difficulty and relatively long times wasted in finding a parking spot at the mall are real annoyances. We applied queuing analysis to one of the major malls that offer paid-parking (1040 parking spots) in addition to free parking. Patrons of the mall usually complained of the traffic jams and delays at entering the paid parking (average delay to park exceeds 15 min for about 62% of the patrons, while average time spent in the mall is about 2.6 hours). However, the analysis showed acceptable service levels at the check-in gates of the parking garage. Detailed review of the vehicle movement at the gateways indicated that arriving and departing cars both had to share parts of the gateway to the garage, which caused the traffic jams and delays. A simple comparison we made indicated that the largest commercial mall in Kuwait does not suffer such parking issues, while other smaller, yet important malls do, including the one we studied. It was suggested that well-designed inlets and outlets of that gigantic mall permitted smooth parking despite being totally free and mall is the first choice for most people for entertainment and shopping. A simulation model is being developed for further analysis and verification. Simulation can overcome the mathematical difficulty in using non-Poisson queuing models. The simulation model is used to explore potential changes to the parking garage entrance layout. And with the inclusion of the drivers’ behavior inside the parking, effectiveness indicators can be derived to address the economic feasibility of extending the parking capacity and increasing service levels. Outcomes of the study are planned to be generalized as appropriate to other commercial malls in Kuwait

Keywords: commercial malls, parking service, queuing analysis, simulation modeling

Procedia PDF Downloads 339
1120 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning

Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz

Abstract:

Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.

Keywords: crystallinity, electrospinning, PVDF, voltage polarity

Procedia PDF Downloads 130
1119 The Effects of Cardiovascular Risk on Age-Related Cognitive Decline in Healthy Older Adults

Authors: A. Badran, M. Hollocks, H. Markus

Abstract:

Background: Common risk factors for cardiovascular disease are associated with age-related cognitive decline. There has been much interest in treating modifiable cardiovascular risk factors in the hope of reducing cognitive decline. However, there is currently no validated neuropsychological test to assess the subclinical cognitive effects of vascular risk. The Brief Memory and Executive Test (BMET) is a clinical screening tool, which was originally designed to be sensitive and specific to Vascular Cognitive Impairment (VCI), an impairment characterised by decline in frontally-mediated cognitive functions (e.g. Executive Function and Processing Speed). Objective: To cross-sectionally assess the validity of the BMET as a measure of the subclinical effects of vascular risk on cognition, in an otherwise healthy elderly cohort. Methods: Data from 346 participants (57 ± 10 years) without major neurological or psychiatric disorders were included in this study, gathered as part of a previous multicentre validation study for the BMET. Framingham Vascular Age was used as a surrogate measure of vascular risk, incorporating several established risk factors. Principal Components Analysis of the subtests was used to produce common constructs: an index for Memory and another for Executive Function/Processing Speed. Univariate General Linear models were used to relate Vascular Age to performance on Executive Function/Processing Speed and Memory subtests of the BMET, adjusting for Age, Premorbid Intelligence and Ethnicity. Results: Adverse vascular risk was associated with poorer performance on both the Memory and Executive Function/Processing Speed indices, adjusted for Age, Premorbid Intelligence and Ethnicity (p=0.011 and p<0.001, respectively). Conclusions: Performance on the BMET reflects the subclinical effects of vascular risk on cognition, in age-related cognitive decline. Vascular risk is associated with decline in both Executive Function/Processing Speed and Memory groups of subtests. Future studies are needed to explore whether treating vascular risk factors can effectively reduce age-related cognitive decline.

Keywords: age-related cognitive decline, vascular cognitive impairment, subclinical cerebrovascular disease, cognitive aging

Procedia PDF Downloads 465
1118 [Keynote Talk]: Knowledge Codification and Innovation Success within Digital Platforms

Authors: Wissal Ben Arfi, Lubica Hikkerova, Jean-Michel Sahut

Abstract:

This study examines interfirm networks in the digital transformation era, and in particular, how tacit knowledge codification affects innovation success within digital platforms. Hence, one of the most important features of digital transformation and innovation process outcomes is the emergence of digital platforms, as an interfirm network, at the heart of open innovation. This research aims to illuminate how digital platforms influence inter-organizational innovation through virtual team interactions and knowledge sharing practices within an interfirm network. Consequently, it contributes to the respective strategic management literature on new product development (NPD), open innovation, industrial management, and its emerging interfirm networks’ management. The empirical findings show, on the one hand, that knowledge conversion may be enhanced, especially by the socialization which seems to be the most important phase as it has played a crucial role to hold the virtual team members together. On the other hand, in the process of socialization, the tacit knowledge codification is crucial because it provides the structure needed for the interfirm network actors to interact and act to reach common goals which favor the emergence of open innovation. Finally, our results offer several conditions necessary, but not always sufficient, for interfirm managers involved in NPD and innovation concerning strategies to increasingly shape interconnected and borderless markets and business collaborations. In the digital transformation era, the need for adaptive and innovative business models as well as new and flexible network forms is becoming more significant than ever. Supported by technological advancements and digital platforms, companies could benefit from increased market opportunities and creating new markets for their innovations through alliances and collaborative strategies, as a mode of reducing or eliminating uncertainty environments or entry barriers. Consequently, an efficient and well-structured interfirm network is essential to create network capabilities, to ensure tacit knowledge sharing, to enhance organizational learning and to foster open innovation success within digital platforms.

Keywords: interfirm networks, digital platform, virtual teams, open innovation, knowledge sharing

Procedia PDF Downloads 126
1117 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 249
1116 Rapid Formation of Ortho-Boronoimines and Derivatives for Reversible and Dynamic Bioconjugation Under Physiological Conditions

Authors: Nicholas C. Rose, Christopher D. Spicer

Abstract:

The regeneration of damaged or diseased tissues would provide an invaluable therapeutic tool in biological research and medicine. Cells must be provided with a number of different biochemical signals in order to form mature tissue through complex signaling networks that are difficult to recreate in synthetic materials. The ability to attach and detach bioactive proteins from material in an iterative and dynamic manner would therefore present a powerful way to mimic natural biochemical signaling cascades for tissue growth. We propose to reversibly attach these bioactive proteins using ortho-boronoimine (oBI) linkages and related derivatives formed by the reaction of an ortho-boronobenzaldehyde with a nucleophilic amine derivative. To enable the use of oBIs for biomaterial modification, we have studied binding and cleavage processes with precise detail in the context of small molecule models. A panel of oBI complexes has been synthesized and screened using a novel Förster resonance energy transfer (FRET) assay, using a cyanine dye FRET pair (Cy3 and Cy5), to identify the most reactive boron-aldehyde/amine nucleophile pairs. Upon conjugation of the dyes, FRET occurs under Cy3 excitation and the resultant ratio of Cy3:Cy5 emission directly correlates to conversion. Reaction kinetics and equilibria can be accurately quantified for reactive pairs, with dissociation constants of oBI derivatives in water (KD) found to span 9-orders of magnitude (10⁻²-10⁻¹¹ M). These studies have provided us with a better understanding of oBI linkages that we hope to exploit to reversibly attach bioconjugates to materials. The long-term aim of the project is to develop a modular biomaterial platform that can be used to help combat chronic diseases such as osteoarthritis, heart disease, and chronic wounds by providing cells with potent biological stimuli for tissue engineering.

Keywords: dynamic, bioconjugation, bornoimine, rapid, physiological

Procedia PDF Downloads 96
1115 Insect Diversity Potential in Olive Trees in Two Orchards Differently Managed Under an Arid Climate in the Western Steppe Land, Algeria

Authors: Samir Ali-arous, Mohamed Beddane, Khaled Djelouah

Abstract:

This study investigated the insect diversity of olive (Olea europaea Linnaeus (Oleaceae)) groves grown in an arid climate in Algeria. In this context, several sampling methods were used within two orchards differently managed. Fifty arthropod species belonging to diverse orders and families were recorded. Hymenopteran species were quantitatively the most abundant, followed by species associated with Heteroptera, Aranea, Coleoptera and Homoptera orders. Regarding functional feeding groups, phytophagous species were dominant in the weeded and the unweeded orchard; however, higher abundance was recorded in the weeded site. Predators were ranked second, and pollinators were more frequent in the unweeded olive orchard. Two-factor Anova with repeated measures had revealed high significant effect of the weed management system, measures repetition and interaction with measurement repetition on arthropod’s abundances (P < 0.05). Likewise, generalized linear models showed that N/S ratio varied significantly between the two weed management approaches, in contrast, the remaining diversity indices including the Shannon index H’ had no significant correlation. Moreover, diversity parameters of arthropod’s communities in each agro-system highlighted multiples significant correlations (P <0.05). Rarefaction and extrapolation (R/E) sampling curves, evidenced that the survey and monitoring carried out in both sites had a optimum coverage of entomofauna present including scarce and transient species. Overall, calculated diversity and similarity indices were greater in the unweeded orchard than in the weeded orchard, demonstrating spontaneous flora's key role in entomofaunal diversity. Principal Component Analysis (PCA) has defined correlations between arthropod’s abundances and naturally occurring plants in olive orchards, including beneficials.

Keywords: Algeria, olive, insects, diversity, wild plants

Procedia PDF Downloads 74
1114 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: debonding, dynamic response, finite element modelling, novel FRP beams

Procedia PDF Downloads 116
1113 Application of WHO's Guideline to Evaluating Apps for Smoking Cessation

Authors: Suin Seo, Sung-Il Cho

Abstract:

Background: The use of mobile apps for smoking cessation has grown exponentially in recent years. Yet, there were limited researches which evaluated the quality of smoking cessation apps to our knowledge. In most cases, a clinical practice guideline which is focused on clinical physician was used as an evaluation tool. Objective: The objective of this study was to develop a user-centered measure for quality of mobile smoking cessation apps. Methods: A literature search was conducted to identify articles containing explicit smoking cessation guideline for smoker published until January 2018. WHO’s guide for tobacco users to quit was adopted for evaluation tool which assesses smoker-oriented contents of smoking cessation apps. Compared to the clinical practice guideline, WHO guideline was designed for smokers (non-specialist). On the basis of existing criteria which was developed based on 2008 clinical practice guideline for Treating Tobacco Use and Dependence, evaluation tool was modified and developed by an expert panel. Results: There were five broad categories of criteria that were identified including five objective quality scales: enhancing motivation, assistance with a planning and making quit attempts, preparation for relapse, self-efficacy, connection to smoking. Enhancing motivation and assistance with planning and making quit attempts were similar to contents of clinical practice guideline, but preparation for relapse, self-efficacy and connection to smoking (environment or habit which reminds of smoking) only existed on WHO guideline. WHO guideline had more user-centered elements than clinical guideline. Especially, self-efficacy is the most important determinant of behavior change in accordance with many health behavior change models. With the WHO guideline, it is now possible to analyze the content of the app in the light of a health participant, not a provider. Conclusion: The WHO guideline evaluation tool is a simple, reliable and smoker-centered tool for assessing the quality of mobile smoking cessation apps. It can also be used to provide a checklist for the development of new high-quality smoking cessation apps.

Keywords: smoking cessation, evaluation, mobile application, WHO, guideline

Procedia PDF Downloads 187
1112 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia

Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay

Abstract:

Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.

Keywords: AquaCrop model, calibration, validation, simulation

Procedia PDF Downloads 65