Search results for: capacity building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7602

Search results for: capacity building

432 Impact of Experiential Learning on Executive Function, Language Development, and Quality of Life for Adults with Intellectual and Developmental Disabilities (IDD)

Authors: Mary Deyo, Zmara Harrison

Abstract:

This study reports the outcomes of an 8-week experiential learning program for 6 adults with Intellectual and Developmental Disabilities (IDD) at a day habilitation program. The intervention foci for this program include executive function, language learning in the domains of expressive, receptive, and pragmatic language, and quality of life. The interprofessional collaboration aimed at supporting adults with IDD to reach person-centered, functional goals across skill domains is critical. This study is a significant addition to the speech-language pathology literature in that it examines a therapy method that potentially meets this need while targeting domains within the speech-language pathology scope of practice. Communication therapy was provided during highly valued and meaningful hands-on learning experiences, referred to as the Garden Club, which incorporated all aspects of planting and caring for a garden as well as related journaling, sensory, cooking, art, and technology-based activities. Direct care staff and an undergraduate research assistant were trained by SLP to be impactful language guides during their interactions with participants in the Garden Club. SLP also provided direct therapy and modeling during Garden Club. Research methods used in this study included a mixed methods analysis of a literature review, a quasi-experimental implementation of communication therapy in the context of experiential learning activities, Quality of Life participant surveys, quantitative pre- post- data collection and linear mixed model analysis, qualitative data collection with qualitative content analysis and coding for themes. Outcomes indicated overall positive changes in expressive vocabulary, following multi-step directions, sequencing, problem-solving, planning, skills for building and maintaining meaningful social relationships, and participant perception of the Garden Project’s impact on their own quality of life. Implementation of this project also highlighted supports and barriers that must be taken into consideration when planning similar projects. Overall findings support the use of experiential learning projects in day habilitation programs for adults with IDD, as well as additional research to deepen understanding of best practices, supports, and barriers for implementation of experiential learning with this population. This research provides an important contribution to research in the fields of speech-language pathology and other professions serving adults with IDD by describing an interprofessional experiential learning program with positive outcomes for executive function, language learning, and quality of life.

Keywords: experiential learning, adults, intellectual and developmental disabilities, expressive language, receptive language, pragmatic language, executive function, communication therapy, day habilitation, interprofessionalism, quality of life

Procedia PDF Downloads 98
431 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 104
430 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions

Authors: Siba Soren, Purnendu Parhi

Abstract:

Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.

Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene

Procedia PDF Downloads 166
429 Effect of Ion Irradiation on the Microstructure and Properties of Chromium Coatings on Zircaloy-4 Substrate

Authors: Alexia Wu, Joel Ribis, Jean-Christophe Brachet, Emmanuel Clouet, Benoit Arnal, Elodie Rouesne, Stéphane Urvoy, Justine Roubaud, Yves Serruys, Frederic Lepretre

Abstract:

To enhance the safety of Light Water Reactor, accident tolerant fuel (ATF) claddings materials are under development. In the framework of CEA-AREVA-EDF collaborative program on ATF cladding materials, CEA has engaged specific studies on chromium coated zirconium alloys. Especially for Loss-of-Coolant-Accident situations, chromium coated claddings have shown some additional 'coping' time before achieving full embrittlement of the oxidized cladding, when compared to uncoated references – both tested in steam environment up to 1300°C. Nevertheless, the behavior of chromium coatings and the stability of the Zr-Cr interface under neutron irradiation remain unknown. Two main points are addressed: 1. Bulk Cr behavior under irradiation: Due to its BCC crystallographic structure, Cr is prone to Ductile-to-Brittle-Transition at quite high temperature. Irradiation could be responsible for a significant additional DBTT shift towards higher temperatures. 2. Zircaloy/Cr interface behavior under irradiation: Preliminary TEM examinations of un-irradiated samples revealed a singular Zircaloy-4/Cr interface with nanometric intermetallic phase layers. Such particular interfaces highlight questions of how they would behave under irradiation - intermetallic zirconium phases are known to be more or less stable under irradiations. Another concern is a potential enhancement of chromium diffusion into the zirconium-alpha based substrate. The purpose of this study is then to determine the behavior of such coatings after ion irradiations, as a surrogate to neutron irradiation. Ion irradiations were performed at the Jannus-Saclay facility (France). 20 MeV Kr8+ ions at 400°C with a flux of 2.8x1011 ions.cm-2.s-1 were used to irradiate chromium coatings of 1-2 µm thick on Zircaloy-4 sheets substrate. At the interface, the calculated damage is close to 10 dpa (SRIM, Quick Calculation Damage mode). Thin foil samples were prepared with FIB for both as-received and irradiated coated samples. Transmission Electron Microscopy (TEM) and in-situ tensile tests in a Scanning Electron Microscope are being used to characterize the un-irradiated and irradiated materials. High Resolution TEM highlights a great complexity of the interface before irradiation since it is formed of an alternation of intermetallic phases – C14 and C15. The interfaces formed by these intermetallic phases with chromium and zirconium show semi-coherency. Chemical analysis performed before irradiation shows some iron enrichment at the interface. The chromium coating bulk microstructures and properties are also studied before and after irradiation. On-going in-situ tensile tests focus on the capacity of chromium coatings to sustain some plastic deformation when tested up to 350°C. The stability of the Cr/Zr interface is shown after ion irradiation up to 10 dpa. This observation constitutes the first result after irradiation on these new coated claddings materials.

Keywords: accident tolerant fuel, HRTEM, interface, ion-irradiation

Procedia PDF Downloads 347
428 Emphasis on Difference: Ethnic and National Cultural Heritage Identities and Issues in East Asia Focusing on Korea Cases

Authors: Hyuk-Jin Lee

Abstract:

Even though 23 years have passed in the 21st century, nation-state and nationality-centered cultural identities are still the sentiments and ideologies that dominate the world. Nevertheless, as seen in many cases in Europe, a new perspective is needed to recognize mutual exchanges and influences and to view them as natural cultural exchanges between countries. The situation in East Asia is completely different from Europe. This is presumed to be from the long tradition of having an ethnocentric state concept for at least hundreds of years, quite different from Europe, where the concept of a nation-state was established relatively recently. In other words, unlike Europe, where active exchanges took place, the problem stems from the unique characteristics of East Asia, which has a strong tradition of finding its identity in 'difference'. Thus, it would not be hard to find cultural studies or news of the three East Asian countries emphasizing differences among one another. This applies to all cultural areas, including traditional architecture. For example, in the Korean traditional architecture field, buildings with effects from neighboring countries tend to be ignored, even if they are traditional Korean architecture. In addition to this, in the case of Korea, there seems to be one more cultural harmful aftereffect caused by the 36 years of Japanese colonial rule in the early 20th century; the obsessive filtering concept of 'it must be different from Japan'. In other words, the implicit ideological coercion that the definition of 'Korean cultural heritage' should not be influenced by exchanges with Japan may be found throughout Korean studies. The architectural and cultural aspects of the vast period of time, from the Three Kingdoms era to the beginning of Joseon, which was a period in which cultural influence exchanges with neighboring countries were relatively strong compared to the late Joseon Dynasty, also reflect the 'distorted filtering' caused by finding a repulsive identity against the Japanese colonial period. It is important to look the cultural heritage and traditions as they are inductively, not deductively. If not, we may often ignore or limit our own precious cultural heritage. Conversely, If Baekje, the ancient Korean Kingdom, helped Japan in construction and craftsmen played a big role in building the ancient temple, it would be a healthier perspective to view it as a cultural exchange rather than proudly seeing it as a cultural owner's perspective because this point of view is a proper reconstruction of our ancient and medieval Asian culture (strictly speaking, the color common to East Asia at the time). In particular, this study will examine this topic by giving specific examples from each field of Korean cultural studies. In the search for cultural identity, it would be more helpful for healthy relations between countries and collaborative research in the sensitive part of the interpretation of historical facts as well as cultural circles to minimize excessive meanings on originality and difference.

Keywords: cultural heritage identity, cultural ideology, East Asia, Korea

Procedia PDF Downloads 57
427 A Sustainability Benchmarking Framework Based on the Life Cycle Sustainability Assessment: The Case of the Italian Ceramic District

Authors: A. M. Ferrari, L. Volpi, M. Pini, C. Siligardi, F. E. Garcia Muina, D. Settembre Blundo

Abstract:

A long tradition in the ceramic manufacturing since the 18th century, primarily due to the availability of raw materials and an efficient transport system, let to the birth and development of the Italian ceramic tiles district that nowadays represents a reference point for this sector even at global level. This economic growth has been coupled to attention towards environmental sustainability issues throughout various initiatives undertaken over the years at the level of the production sector, such as certification activities and sustainability policies. In this way, starting from an evaluation of the sustainability in all its aspects, the present work aims to develop a benchmarking helping both producers and consumers. In the present study, throughout the Life Cycle Sustainability Assessment (LCSA) framework, the sustainability has been assessed in all its dimensions: environmental with the Life Cycle Assessment (LCA), economic with the Life Cycle Costing (LCC) and social with the Social Life Cycle Assessment (S-LCA). The annual district production of stoneware tiles during the 2016 reference year has been taken as reference flow for all the three assessments, and the system boundaries cover the entire life cycle of the tiles, except for the LCC for which only the production costs have been considered at the moment. In addition, a preliminary method for the evaluation of local and indoor emissions has been introduced in order to assess the impact due to atmospheric emissions on both people living in the area surrounding the factories and workers. The Life Cycle Assessment results, obtained from IMPACT 2002+ modified assessment method, highlight that the manufacturing process is responsible for the main impact, especially because of atmospheric emissions at a local scale, followed by the distribution to end users, the installation and the ordinary maintenance of the tiles. With regard to the economic evaluation, both the internal and external costs have been considered. For the LCC, primary data from the analysis of the financial statements of Italian ceramic companies show that the higher cost items refer to expenses for goods and services and costs of human resources. The analysis of externalities with the EPS 2015dx method attributes the main damages to the distribution and installation of the tiles. The social dimension has been investigated with a preliminary approach by using the Social Hotspots Database, and the results indicate that the most affected damage categories are health and safety and labor rights and decent work. This study shows the potential of the LCSA framework applied to an industrial sector; in particular, it can be a useful tool for building a comprehensive benchmark for the sustainability of the ceramic industry, and it can help companies to actively integrate sustainability principles into their business models.

Keywords: benchmarking, Italian ceramic industry, life cycle sustainability assessment, porcelain stoneware tiles

Procedia PDF Downloads 108
426 Evaluation of Housing Quality in the Urban Fringes of Ibadan, Nigeria

Authors: Amao Funmilayo Lanrewaju

Abstract:

The study examined the socio-economic characteristics of the residents in selected urban fringes of Ibadan; identified and examined the housing and neighbourhood characteristics and evaluated housing quality in the study area. It analysed the relationship between the socio-economic characteristics of the residents, housing and neighbourhood characteristics as well as housing quality in the study area. This was with a view to providing information that would enhance the housing quality in urban fringes of Ibadan. Primary and secondary data were used for the study. A survey of eleven purposively selected communities from Oluyole and Egbeda local government areas in the urban fringes was conducted through a questionnaire administration and expert rating by five independent assessors (Qualified Architects) using penalty scoring within similar time-frames. The study employed a random sampling method to select a sample size of 480 houses representing 5% of the sampling frame of 9600 houses. Respondent in the first house was selected randomly and subsequently every 20th house in the streets involved was systematically selected for questionnaire administration, usually a household-head per building. The structured questionnaire elicited information on socio-economic characteristics of the residents, housing and neighbourhood characteristics, factors affecting housing quality and housing quality in the study area. Secondary data obtained for the study included the land-use plan of Ibadan from previous publications, housing demographics, population figures from relevant institutions and other published materials. The data collected were analysed using descriptive and inferential statistics such as frequency distribution, Cross tabulation, Correlation Analysis, Analysis of Variance (ANOVA) and Relative Importance Index (RII). The result of the survey revealed that respondents from the Yoruba ethnic group constituted the majority, comprising 439 (91.5%) of the 480 respondents from the two local government areas selected. It also revealed that the type of tenure status of majority of the respondents in the two local government areas was self-ownership (234, 48.8%), while 44.0% of the respondents acquired their houses through personal savings. Cross tabulation indicated that majority (67.1%, 322 out of 480) of the respondents were low-income earners. The study showed that both housing and neighbourhood services were not adequately provided across neighbourhoods in the study area. Correlation analysis indicated a significant relationship between respondents’ socio–economic status and their general housing quality (r=0.46; p-value of 0.01< 0.05). The ANOVA indicated that the relationship between socio-economic characteristics of the residents, housing and neighbourhood characteristics in the study area was significant (F=18.289, p=0.00; the coefficient of determination R2= 0.192). The findings from the study however revealed that there was no significant difference in the results obtained from users based evaluation and expert rating. The study concluded that housing quality in the urban fringes of Ibadan is generally poor and the socio-economic status of the residents significantly influenced the housing quality.

Keywords: housing quality, urban fringes, economic status, poverty

Procedia PDF Downloads 427
425 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane

Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu

Abstract:

In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).

Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy

Procedia PDF Downloads 215
424 Investigating the Strategies for Managing On-plot Sanitation Systems’ Faecal Waste in Developing Regions: The Case of Ogun State, Nigeria

Authors: Olasunkanmi Olapeju

Abstract:

A large chunk of global population are not yet connected to water borne faecal management systems that rely on flush mechanisms and sewers networks that are linked with a central treatment plant. Only about 10% of sub-Saharan African countries are connected to central sewage systems. In Nigeria, majority of the population do not only depend on on-plot sanitation systems, a huge chunk do not also have access to safe and improved toilets. Apart from the organizational challenges and technical capacity, the other major factors that account for why faecal waste management is yet unimproved in developing countries are faulty planning frameworks that fail to maintain balance between urbanization dynamics and infrastructures, and misconceptions about what modern sanitation is all about. In most cases, the quest to implement developmental patterns that integrate modern sewers based sanitation systems have huge financial and political costs. Faecal waste management in poor countries largely lacks the needed political attention and budgetary prioritization. Yet, the on-plot sanitation systems being mainly relied upon the need to be managed in a manner that is sustainable and healthy, pending when development would embrace a more sustainable off-site central sewage system. This study is aimed at investigating existing strategies for managing on-plot sanitation systems’ faecal waste in Ogun state, Nigeria, with the aim of recommending sustainable sanitation management systems. The study adopted the convergent parallel variant of the mixed-mode technique, which involves the adoption of both quantitative and qualitative method of data collection. Adopting a four-level multi-stage approach, which is inclusive of all political divisions in the study area, a total of 330 questionnaires were respectively administered in the study area. Moreover, the qualitative data adopted the purposive approach in scoping down to 33 key informants. SPSS software (Version 22.0) was employed for descriptively analysis. The study shows that about 52% of households adopt the non-recovery management (NRM) means of burying their latrines with sand sludge shrinkage with chemicals such as carbides. The dominance of the non-recovery management means seriously constrains the quest for faecal resource recovery. Essentially, the management techniques adopted by households depend largely on the technology of their sanitary containments, emptying means available, the ability of households to pay for the cost of emptying, and the social acceptability of the reusability of faecal waste, which determines faecal resource recoverability. The study suggests that there is a need for municipal authorities in the study area to urgently intervene in the sanitation sector and consider it a key element of the planning process. There is a need for a comprehensive plan that would ensure a seamless transition to the adoption of a modern sanitation management system.

Keywords: faecal, management, planning, waste, sanitation, sustainability

Procedia PDF Downloads 87
423 An Early Intervention Framework for Supporting Students’ Mathematical Development in the Transition to University STEM Programmes

Authors: Richard Harrison

Abstract:

Developing competency in mathematics and related critical thinking skills is essential to the education of undergraduate students of Science, Technology, Engineering and Mathematics (STEM). Recently, the HE sector has been impacted by a seemingly widening disconnect between the mathematical competency of incoming first-year STEM students and their entrance qualification tariffs. Despite relatively high grades in A-Level Mathematics, students may initially lack fundamental skills in key areas such as algebraic manipulation and have limited capacity to apply problem solving strategies. Compounded by compensatory measures applied to entrance qualifications during the pandemic, there has been an associated decline in student performance on introductory university mathematics modules. In the UK, a number of online resources have been developed to help scaffold the transition to university mathematics. However, in general, these do not offer a structured learning journey focused on individual developmental needs, nor do they offer an experience coherent with the teaching and learning characteristics of the destination institution. In order to address some of these issues, a bespoke framework has been designed and implemented on our VLE in the Faculty of Engineering & Physical Sciences (FEPS) at the University of Surrey. Called the FEPS Maths Support Framework, it was conceived to scaffold the mathematical development of individuals prior to entering the university and during the early stages of their transition to undergraduate studies. More than 90% of our incoming STEM students voluntarily participate in the process. Students complete a set of initial diagnostic questions in the late summer. Based on their performance and feedback on these questions, they are subsequently guided to self-select specific mathematical topic areas for review using our proprietary resources. This further assists students in preparing for discipline related diagnostic tests. The framework helps to identify students who are mathematically weak and facilitates early intervention to support students according to their specific developmental needs. This paper presents a summary of results from a rich data set captured from the framework over a 3-year period. Quantitative data provides evidence that students have engaged and developed during the process. This is further supported by process evaluation feedback from the students. Ranked performance data associated with seven key mathematical topic areas and eight engineering and science discipline areas reveals interesting patterns which can be used to identify more generic relative capabilities of the discipline area cohorts. In turn, this facilitates evidence based management of the mathematical development of the new cohort, informing any associated adjustments to teaching and learning at a more holistic level. Evidence is presented establishing our framework as an effective early intervention strategy for addressing the sector-wide issue of supporting the mathematical development of STEM students transitioning to HE

Keywords: competency, development, intervention, scaffolding

Procedia PDF Downloads 50
422 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 198
421 Lignin Valorization: Techno-Economic Analysis of Three Lignin Conversion Routes

Authors: Iris Vural Gursel, Andrea Ramirez

Abstract:

Effective utilization of lignin is an important mean for developing economically profitable biorefineries. Current literature suggests that large amounts of lignin will become available in second generation biorefineries. New conversion technologies will, therefore, be needed to carry lignin transformation well beyond combustion to produce energy, but towards high-value products such as chemicals and transportation fuels. In recent years, significant progress on catalysis has been made to improve transformation of lignin, and new catalytic processes are emerging. In this work, a techno-economic assessment of two of these novel conversion routes and comparison with more established lignin pyrolysis route were made. The aim is to provide insights into the potential performance and potential hotspots in order to guide the experimental research and ease the commercialization by early identifying cost drivers, strengths, and challenges. The lignin conversion routes selected for detailed assessment were: (non-catalytic) lignin pyrolysis as the benchmark, direct hydrodeoxygenation (HDO) of lignin and hydrothermal lignin depolymerisation. Products generated were mixed oxygenated aromatic monomers (MOAMON), light organics, heavy organics, and char. For the technical assessment, a basis design followed by process modelling in Aspen was done using experimental yields. A design capacity of 200 kt/year lignin feed was chosen that is equivalent to a 1 Mt/y scale lignocellulosic biorefinery. The downstream equipment was modelled to achieve the separation of the product streams defined. For determining external utility requirement, heat integration was considered and when possible gasses were combusted to cover heating demand. The models made were used in generating necessary data on material and energy flows. Next, an economic assessment was carried out by estimating operating and capital costs. Return on investment (ROI) and payback period (PBP) were used as indicators. The results of the process modelling indicate that series of separation steps are required. The downstream processing was found especially demanding in the hydrothermal upgrading process due to the presence of significant amount of unconverted lignin (34%) and water. Also, external utility requirements were found to be high. Due to the complex separations, hydrothermal upgrading process showed the highest capital cost (50 M€ more than benchmark). Whereas operating costs were found the highest for the direct HDO process (20 M€/year more than benchmark) due to the use of hydrogen. Because of high yields to valuable heavy organics (32%) and MOAMON (24%), direct HDO process showed the highest ROI (12%) and the shortest PBP (5 years). This process is found feasible with a positive net present value. However, it is very sensitive to the prices used in the calculation. The assessments at this stage are associated with large uncertainties. Nevertheless, they are useful for comparing alternatives and identifying whether a certain process should be given further consideration. Among the three processes investigated here, the direct HDO process was seen to be the most promising.

Keywords: biorefinery, economic assessment, lignin conversion, process design

Procedia PDF Downloads 248
420 Abuse against Elderly Widows in India and Selected States: An Exploration

Authors: Rasmita Mishra, Chander Shekher

Abstract:

Background: Population ageing is an inevitable outcome of demographic transition. Due to increased life expectancy, the old age population in India and worldwide has increased, and it will continue to grow more alarmingly in the near future. There are redundant austerity that has been bestowed upon the widows, thus, the life of widows is never been easy in India. The loss of spouse along with other disadvantaged socioeconomic intermediaries like illiteracy and poverty often make the life of widows more difficult to live. Methodology: Ethical statement: The study used secondary data available in the public domain for its wider use in social research. Thus, there was no requirement of ethical consent in the present study. Data source: Building a Knowledge Base on Population Aging in India (BKPAI), 2011 dataset is used to fulfill the objectives of this study. It was carried out in seven states – Himachal Pradesh, Kerala, Maharashtra, Odisha, Punjab, Tamil Nadu, and West Bengal – having a higher percentage of the population in the age group 60 years and above compared to the national average. Statistical analysis: Descriptive and inferential statistics were used to understand the level of elderly widows and incidence of abuse against them in India and selected states. Bivariate and Trivariate analysis were carried out to check the pattern of abuse by selected covariates. Chi-Square test is used to verify the significance of the association. Further, Discriminant Analysis (DA) is carried out to understand which factor can separate out group of neglect and non-neglect elderly. Result: With the addition of 27 million from 2001 to 2011, the total elderly population in India is more than 100 million. Elderly females aged 60+ were more widows than their counterpart elderly males. This pattern was observed across selected states and at national level. At national level, more than one tenth (12 percent) of elderly experienced abuse in their lifetime. Incidence of abuse against elderly widows within family was considerably higher than the outside the family. This pattern was observed across the selected place and abuse in the study. In discriminant analysis, the significant difference between neglected and non-neglected elderly on each of the independent variables was examined using group mean and ANOVA. Discussion: The study is the first of its kind to assess the incidence of abuse against elderly widows using large-scale survey data. Another novelty of this study is that it has assessed for those states in India whereby the proportion of elderly is higher than the national average. Place and perpetrators involved in the abuse against elderly widows certainly envisaged the safeness in the present living arrangement of elderly widows. Conclusion: Due to the increasing life expectancy it is expected that the number of elderly will increase much faster than before. As biologically women live longer than men, there will be more women elderly than men. With respect to the living arrangement, after the demise of the spouse, elderly widows are more likely to live with their children who emerged as the main perpetrator of abuse.

Keywords: elderly abuse, emotional abuse physical abuse, material abuse, psychological abuse, quality of life

Procedia PDF Downloads 397
419 Training During Emergency Response to Build Resiliency in Water, Sanitation, and Hygiene

Authors: Lee Boudreau, Ash Kumar Khaitu, Laura A. S. MacDonald

Abstract:

In April 2015, a magnitude 7.8 earthquake struck Nepal, killing, injuring, and displacing thousands of people. The earthquake also damaged water and sanitation service networks, leading to a high risk of diarrheal disease and the associated negative health impacts. In response to the disaster, the Environment and Public Health Organization (ENPHO), a Kathmandu-based non-governmental organization, worked with the Centre for Affordable Water and Sanitation Technology (CAWST), a Canadian education, training and consulting organization, to develop two training programs to educate volunteers on water, sanitation, and hygiene (WASH) needs. The first training program was intended for acute response, with the second focusing on longer term recovery. A key focus was to equip the volunteers with the knowledge and skills to formulate useful WASH advice in the unanticipated circumstances they would encounter when working in affected areas. Within the first two weeks of the disaster, a two-day acute response training was developed, which focused on enabling volunteers to educate those affected by the disaster about local WASH issues, their link to health, and their increased importance immediately following emergency situations. Between March and October 2015, a total of 19 training events took place, with over 470 volunteers trained. The trained volunteers distributed hygiene kits and liquid chlorine for household water treatment. They also facilitated health messaging and WASH awareness activities in affected communities. A three-day recovery phase training was also developed and has been delivered to volunteers in Nepal since October 2015. This training focused on WASH issues during the recovery and reconstruction phases. The interventions and recommendations in the recovery phase training focus on long-term WASH solutions, and so form a link between emergency relief strategies and long-term development goals. ENPHO has trained 226 volunteers during the recovery phase, with training ongoing as of April 2016. In the aftermath of the earthquake, ENPHO found that its existing pool of volunteers were more than willing to help those in their communities who were more in need. By training these and new volunteers, ENPHO was able to reach many more communities in the immediate aftermath of the disaster; together they reached 11 of the 14 earthquake-affected districts. The collaboration between ENPHO and CAWST in developing the training materials was a highly collaborative and iterative process, which enabled the training materials to be developed within a short response time. By training volunteers on basic WASH topics during both the immediate response and the recovery phase, ENPHO and CAWST have been able to link immediate emergency relief to long-term developmental goals. While the recovery phase training continues in Nepal, CAWST is planning to decontextualize the training used in both phases so that it can be applied to other emergency situations in the future. The training materials will become part of the open content materials available on CAWST’s WASH Resources website.

Keywords: water and sanitation, emergency response, education and training, building resilience

Procedia PDF Downloads 292
418 The Study of Mirror Self-Recognition in Wildlife

Authors: Azwan Hamdan, Mohd Qayyum Ab Latip, Hasliza Abu Hassim, Tengku Rinalfi Putra Tengku Azizan, Hafandi Ahmad

Abstract:

Animal cognition provides some evidence for self-recognition, which is described as the ability to recognize oneself as an individual separate from the environment and other individuals. The mirror self-recognition (MSR) or mark test is a behavioral technique to determine whether an animal have the ability of self-recognition or self-awareness in front of the mirror. It also describes the capability for an animal to be aware of and make judgments about its new environment. Thus, the objectives of this study are to measure and to compare the ability of wild and captive wildlife in mirror self-recognition. Wild animals from the Royal Belum Rainforest Malaysia were identified based on the animal trails and salt lick grounds. Acrylic mirrors with wood frame (200 x 250cm) were located near to animal trails. Camera traps (Bushnell, UK) with motion-detection infrared sensor are placed near the animal trails or hiding spot. For captive wildlife, animals such as Malayan sun bear (Helarctos malayanus) and chimpanzee (Pan troglodytes) were selected from Zoo Negara Malaysia. The captive animals were also marked using odorless and non-toxic white paint on its forehead. An acrylic mirror with wood frame (200 x 250cm) and a video camera were placed near the cage. The behavioral data were analyzed using ethogram and classified through four stages of MSR; social responses, physical inspection, repetitive mirror-testing behavior and realization of seeing themselves. Results showed that wild animals such as barking deer (Muntiacus muntjak) and long-tailed macaque (Macaca fascicularis) increased their physical inspection (e.g inspecting the reflected image) and repetitive mirror-testing behavior (e.g rhythmic head and leg movement). This would suggest that the ability to use a mirror is most likely related to learning process and cognitive evolution in wild animals. However, the sun bear’s behaviors were inconsistent and did not clearly undergo four stages of MSR. This result suggests that when keeping Malayan sun bear in captivity, it may promote communication and familiarity between conspecific. Interestingly, chimp has positive social response (e.g manipulating lips) and physical inspection (e.g using hand to inspect part of the face) when they facing a mirror. However, both animals did not show any sign towards the mark due to lost of interest in the mark and realization that the mark is inconsequential. Overall, the results suggest that the capacity for MSR is the beginning of a developmental process of self-awareness and mental state attribution. In addition, our findings show that self-recognition may be based on different complex neurological and level of encephalization in animals. Thus, research on self-recognition in animals will have profound implications in understanding the cognitive ability of an animal as an effort to help animals, such as enhanced management, design of captive individuals’ enclosures and exhibits, and in programs to re-establish populations of endangered or threatened species.

Keywords: mirror self-recognition (MSR), self-recognition, self-awareness, wildlife

Procedia PDF Downloads 251
417 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction

Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer

Abstract:

Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.

Keywords: extraction, MOF, ligand, uranium

Procedia PDF Downloads 143
416 Rotterdam in Transition: A Design Case for a Low-Carbon Transport Node in Lombardijen

Authors: Halina Veloso e Zarate, Manuela Triggianese

Abstract:

The urban challenges posed by rapid population growth, climate adaptation, and sustainable living have compelled Dutch cities to reimagine their built environment and transportation systems. As a pivotal contributor to CO₂ emissions, the transportation sector in the Netherlands demands innovative solutions for transitioning to low-carbon mobility. This study investigates the potential of transit oriented development (TOD) as a strategy for achieving carbon reduction and sustainable urban transformation. Focusing on the Lombardijen station area in Rotterdam, which is targeted for significant densification, this paper presents a design-oriented exploration of a low-carbon transport node. By employing a research-by-design methodology, this study delves into multifaceted factors and scales, aiming to propose future scenarios for Lombardijen. Drawing from a synthesis of existing literature, applied research, and practical insights, a robust design framework emerges. To inform this framework, governmental data concerning the built environment and material embodied carbon are harnessed. However, the restricted access to crucial datasets, such as property ownership information from the cadastre and embodied carbon data from De Nationale Milieudatabase, underscores the need for improved data accessibility, especially during the concept design phase. The findings of this research contribute fundamental insights not only to the Lombardijen case but also to TOD studies across Rotterdam's 13 nodes and similar global contexts. Spatial data related to property ownership facilitated the identification of potential densification sites, underscoring its importance for informed urban design decisions. Additionally, the paper highlights the disparity between the essential role of embodied carbon data in environmental assessments for building permits and its limited accessibility due to proprietary barriers. Although this study lays the groundwork for sustainable urbanization through TOD-based design, it acknowledges an area of future research worthy of exploration: the socio-economic dimension. Given the complex socio-economic challenges inherent in the Lombardijen area, extending beyond spatial constraints, a comprehensive approach demands integration of mobility infrastructure expansion, land-use diversification, programmatic enhancements, and climate adaptation. While the paper adopts a TOD lens, it refrains from an in-depth examination of issues concerning equity and inclusivity, opening doors for subsequent research to address these aspects crucial for holistic urban development.

Keywords: Rotterdam zuid, transport oriented development, carbon emissions, low-carbon design, cross-scale design, data-supported design

Procedia PDF Downloads 65
415 Applying Innovation in FP Counselling: Results from A360 Amplify Matasan Matan Arewa Implementation of Counseling for Choice to Improve Contraceptive Adoption and Continuation among Married Adolescent Girls (15-19 years) in Northern Nigeria

Authors: Bulama Alhaji Alhassan, Roselyn Odeh, Rakiya Idris Labaran, Dorcas Yemi Danladi, Faith Ochonu

Abstract:

Introduction: Contraceptive use has numerous health benefits such as preventing unplanned pregnancies thereby supporting women to achieve their life goals, maintaining the ideal amount of time between pregnancies, lowering the death rate for both mothers and children and generally enhancing the lives of women and children. Despite the numerous advantages of modern contraception and numerous initiatives by the government and development partners to promote its adoption, Nigeria's use of these methods has remained persistently low. Counseling about contraception is essential to providing high-quality treatment ensuring informed choice, and voluntarism for family planning is the key. The goal of the contraceptive counseling approach known as Counseling for Choice (C4C) is to ensure that people have the agency and voice to choose the contraceptive methods that best suit their requirements by altering the way both clients and providers engage in family planning counseling sessions. Aim: To evaluate the effect of counseling for choice on Modern Contraceptive adoption and continuation among married adolescent girls aged 15-19 years in 61 health facilities, within a 6-month period in Northern Nigeria. Methodology: Data from the NDHIS was obtained from selected facilities Pre & Post commencement of C4C intervention from 36 facilities Kaduna and 25 Nasarawa Matasan Matan Arewa (MMA) core implementation states putting into consideration the specific period of initiation of intervention, six months after deployment of the C4C, data was obtained from these facilities for post analysis. Data was analyzed on SPSS using paired sample t-test. Result: C4C resulted to improved access to FP services via increasing contraceptive adoption and continued used by 15% and 27% respectively (p<0.05) in Nasarawa state. While in Kaduna state we observed 11% and 28% improvement in adoption and continued use respectively as well with statistical significance (p<0.05) depicting that the increase is highly correlated (0.99 Nasarawa and 0.75 Kaduna) with the C4C intervention where the provider uses the NORMAL AND 3Ws Rubric to explain to the client in a simplified manner what to do with chosen method, what to expect with her method of adoption and when to return for a refill. Conclusion: In Northern Nigeria, it was observed that most clients discontinue their methods due to bleeding side effect and that was related to lack of appropriate and comprehensive information during counselling about what to expect with the clients method of adoption but with the intervention of the program, through capacity strengthening of PHC providers on counselling skills using the Counselling for Choice, it has helped to improve modern contraceptive uptake among young married women in northern Nigeria.

Keywords: continuation, counselling, uptake, adolescent, modern & implementation

Procedia PDF Downloads 53
414 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.

Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq

Procedia PDF Downloads 160
413 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application

Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo

Abstract:

Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.

Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering

Procedia PDF Downloads 118
412 Empowering Indigenous Epistemologies in Geothermal Development

Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui

Abstract:

Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.

Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework

Procedia PDF Downloads 170
411 Evaluation of the Relations between Childhood Trauma and Dissociative Experiences, Self-Perception, and Early Maladaptive Schemes in Sexual Assault Convicts

Authors: Safak Akdemir

Abstract:

The main purpose of this research is to evaluate the relationships between childhood traumas and dissociative experiences, self-perceptions and early maladaptive schemas in male convicts convicted of sexual assault crimes in prison. In our study, male convicts in prison for the crime of sexual assault constitute the experimental group, and the participants matched with this experimental group in terms of education, age and gender constitute the control group. The experimental group of the research consists of 189 male individuals who are convicted in the Ministry of Justice, General Directorate of Prisons, Istanbul/Maltepe L Type Closed Prison. The control group of this study consists of 147 adult males matched with the experimental group in terms of age, gender and education parameters. A total of 336 adult male individuals are included in the sample of this study. 46% of the experimental group were convicted of only sexual assault, 54% of them were convicted of both sexual assault and murder, injury and drug crimes. Total of five data collection tools, namely the Personal Information Form created by S. A. & E. O., Childhood Trauma Questionnaire (CTQ), the Dissociative Experiences Scale (DES), the Rosenberg Self-Esteem Scale (RSES), and the Young Schema Questionnaire-Short Form (YSQ-SF3), were completed. DES cut-off score of 99 (52.39%) of 189 convicts in the experimental group and 12 (8.17%) of 147 people in the control group was found to be 30 and above, and this result indicates the presence of pathological dissociative experiences. 180 (95.23%) of the sexual assault convicts in the experimental group had at least one childhood trauma, 154 (81.48%) were emotional neglect, 140 (74.07%) were emotional abuse, 121 (64.02%) were physical neglect, 91 (4814%) physical abuse and 70 (37.03%) sexual abuse. 168 (88.88%) of the experimental group reported multiple type of trauma and 12 (6.34%) reported single type of trauma. While the childhood traumas, isolation, abandonment and emotional deprivation schema levels of the convicts with a DES cut-off score of 30 and above are higher than the convicts with a DES cut-off score of 30 and above, their self-esteem is lower than this group. Experimental group while childhood traumas, dissociative experiences and early maladaptive schemas are higher than the control group, their self-esteem levels are lower. Dissociative experiences, abandonment and emotional deprivation early maladaptive schemas are more common in convicts aged between 18-30 years compared to convicts aged 31 and over. In addition, dissociative experiences and early maladaptive schemas of male convicts who reported physical and sexual abuse were higher than those who did not report physical and sexual abuse, while their self-esteem was at a lower level. As a result, in terms of psychotraumatology and clinical forensic psychology, dissociative disorders developed under the influence of chronic childhood traumas, with clinical interviews and psychometric measurements to be made in terms of forensic psychiatry; it is of fundamental importance to evaluate it in terms of neurosis-psychosis distinction, disability retirement, custody, malpractice, criminal and legal capacity criteria.

Keywords: crime, sexual assault, criminology, rape crimes, dissocitative disorders, maladative schemas

Procedia PDF Downloads 53
410 Exploratory Study on Mediating Role of Commitment-to-Change in Relations between Employee Voice, Employee Involvement and Organizational Change Readiness

Authors: Rohini Sharma, Chandan Kumar Sahoo, Rama Krishna Gupta Potnuru

Abstract:

Strong competitive forces and requirements to achieve efficiency are forcing the organizations to realize the necessity and inevitability of change. What's more, the trend does not appear to be abating. Researchers have estimated that about two thirds of change project fails. Empirical evidences further shows that organizations invest significantly in the planned change but people side is accounted for in a token or instrumental way, which is identified as one of the important reason, why change endeavours fail. However, whatever be the reason for change, organizational change readiness must be gauged prior to the institutionalization of organizational change. Hence, in this study the influence of employee voice and employee involvement on organizational change readiness via commitment-to-change is examined, as it is an area yet to be extensively studied. Also, though a recent study has investigated the interrelationship between leadership, organizational change readiness and commitment to change, our study further examined these constructs in relation with employee voice and employee involvement that plays a consequential role for organizational change readiness. Further, integrated conceptual model weaving varied concepts relating to organizational readiness with focus on commitment to change as mediator was found to be an area, which required more theorizing and empirical validation, and this study rooted in an Indian public sector organization is a step in this direction. Data for the study were collected through a survey among employees of Rourkela Steel Plant (RSP), a unit of Steel Authority of India Limited (SAIL); the first integrated Steel Plant in the public sector in India, for which stratified random sampling method was adopted. The schedule was distributed to around 700 employees, out of which 516 complete responses were obtained. The pre-validated scales were used for the study. All the variables in the study were measured on a five-point Likert scale ranging from “strongly disagree (1)” to “strongly agree (5)”. Structural equation modeling (SEM) using AMOS 22 was used to examine the hypothesized model, which offers a simultaneous test of an entire system of variables in a model. The study results shows that inter-relationship between employee voice and commitment-to-change, employee involvement and commitment-to-change and commitment-to-change and organizational change readiness were significant. To test the mediation hypotheses, Baron and Kenny’s technique was used. Examination of direct and mediated effect of mediators confirmed that commitment-to-change partially mediated the relation between employee involvement and organizational change readiness. Furthermore, study results also affirmed that commitment-to-change does not mediate the relation between employee involvement and organizational change readiness. The empirical exploration therefore establishes that it is important to harness employee’s valuable suggestions regarding change for building organizational change readiness. Regarding employee involvement, it was found that sharing information and involving people in decision-making, leads to a creation of participative climate, which educes employee commitment during change and commitment-to-change further, fosters organizational change readiness.

Keywords: commitment-to-change, change management, employee voice, employee involvement, organizational change readiness

Procedia PDF Downloads 312
409 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 143
408 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models

Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.

Keywords: numerical models, parametric study, segmental tunnels, structural response

Procedia PDF Downloads 215
407 Social Factors That Contribute to Promoting and Supporting Resilience in Children and Youth following Environmental Disasters: A Mixed Methods Approach

Authors: Caroline McDonald-Harker, Julie Drolet

Abstract:

Abstract— In the last six years Canada In the last six years Canada has experienced two major and catastrophic environmental disasters– the 2013 Southern Alberta flood and the 2016 Fort McMurray, Alberta wildfire. These two disasters resulted in damages exceeding 12 billion dollars, the costliest disasters in Canadian history. In the aftermath of these disasters, many families faced the loss of homes, places of employment, schools, recreational facilities, and also experienced social, emotional, and psychological difficulties. Children and youth are among the most vulnerable to the devastating effects of disasters due to the physical, cognitive, and social factors related to their developmental life stage. Yet children and youth also have the capacity to be resilient and act as powerful catalyst for change in their own lives and wider communities following disaster. Little is known, particularly from a sociological perspective, about the specific factors that contribute to resilience in children and youth, and effective ways to support their overall health and well-being. This paper focuses on the voices and experiences of children and youth residing in these two disaster-affected communities in Alberta, Canada and specifically examines: 1) How children and youth’s lives are impacted by the tragedy, devastation, and upheaval of disaster; 2) Ways that children and youth demonstrate resilience when directly faced with the adversarial circumstances of disaster; and 3) The cumulative internal and external factors that contribute to bolstering and supporting resilience among children and youth post-disaster. This paper discusses the characteristics associated with high levels of resilience in 183 children and youth ages 5 to 17 based on quantitative and qualitative data obtained through a mix methods approach. Child and youth participants were administered the Children and Youth Resilience Measure (CYRM-28) in order to examine factors that influence resilience processes including: individual, caregiver, and context factors. The CYRM-28 was then supplemented with qualitative interviews with children and youth to contextualize the CYRM-28 resiliency factors and provide further insight into their overall disaster experience. Findings reveal that high levels of resilience among child and youth participants is associated with both individual factors and caregiver factors, specifically positive outlook, effective communication, peer support, and physical and psychological caregiving. Individual and caregiver factors helped mitigate the negative effects of disaster, thus bolstering resilience in children and youth. This paper discusses the implications that these findings have for understanding the specific mechanisms that support the resiliency processes and overall recovery of children and youth following disaster; the importance of bridging the gap between children and youth’s needs and the services and supports provided to them post-disaster; and the need to develop resiliency processes and practices that empower children and youth as active agents of change in their own lives following disaster. These findings contribute to furthering knowledge about pragmatic and representative changes to resources, programs, and policies surrounding disaster response, recovery, and mitigation.

Keywords: children and youth, disaster, environment, resilience

Procedia PDF Downloads 108
406 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 237
405 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 294
404 Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX): Scale Development

Authors: Cristina Costescu, Carmen David, Adrian Roșan

Abstract:

Executive functions (EF) and emotion regulation strategies are processes that allow individuals to function in an adaptative way and to be goal-oriented, which is essential for success in daily living activities, at school, or in social contexts. The Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX) represents an empirically based tool (based on the model of EF developed by Diamond) for evaluating significant dimensions of child and adolescent EFs and emotion regulation strategies, mainly in school contexts. The instrument measures the following dimensions: working memory, inhibition, cognitive flexibility, executive attention, planning, emotional control, and emotion regulation strategies. Building the instrument involved not only a top-down process, as we selected the content in accordance with prominent models of FE, but also a bottom-up one, as we were able to identify valid contexts in which FE and ER are put to use. For the construction of the instrument, we implemented three focus groups with teachers and other professionals since the aim was to develop an accurate, objective, and ecological instrument. We used the focus group method in order to address each dimension and to yield a bank of items to be further tested. Each dimension is addressed through a task that the examiner will apply and through several items derived from the main task. For the validation of the instrument, we plan to use item response theory (IRT), also known as the latent response theory, that attempts to explain the relationship between latent traits (unobservable cognitive processes) and their manifestations (i.e., observed outcomes, responses, or performance). REMEX represents an ecological scale that integrates a current scientific understanding of emotion regulation and EF and is directly applicable to school contexts, and it can be very useful for developing intervention protocols. We plan to test his convergent validity with the Childhood Executive Functioning Inventory (CHEXI) and Emotion Dysregulation Inventory (EDI) and divergent validity between a group of typically developing children and children with neurodevelopmental disorders, aged between 6 and 9 years old. In a previous pilot study, we enrolled a sample of 40 children with autism spectrum disorders and attention-deficit/hyperactivity disorder aged 6 to 12 years old, and we applied the above-mentioned scales (CHEXI and EDI). Our results showed that deficits in planning, bebavior regulation, inhibition, and working memory predict high levels of emotional reactivity, leading to emotional and behavioural problems. Considering previous results, we expect our findings to provide support for the validity and reliability of the REMEX version as an ecological instrument for assessing emotion regulation and EF in children and for key features of its uses in intervention protocols.

Keywords: executive functions, emotion regulation, children, item response theory, focus group

Procedia PDF Downloads 85
403 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry

Authors: Paulomi Polly Burey, Mark Lynch

Abstract:

It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.

Keywords: chemistry, food science, future pedagogy, STEM education

Procedia PDF Downloads 150