Search results for: random effect approach
27733 Effect of Education Based-on the Health Belief Model on Preventive Behaviors of Exposure to Secondhand Smoke among Women
Authors: Arezoo Fallahi
Abstract:
Introduction: Exposure to second-hand smoke is an important global health problem and threatens the health of people, especially children and women. The aim of this study was to determine the effect of education based on the Health Belief Model on preventive behaviors of exposure to second-hand smoke in women. Materials and Methods: This experimental study was performed in 2022 in Sanandaj, west of Iran. Seventy-four people were selected by simple random sampling and divided into an intervention group (37 people) and a control group (37 people). Data collection tools included demographic characteristics and a second-hand smoke exposure questionnaire based on the Health Beliefs Model. The training in the intervention group was conducted in three one-hour sessions in the comprehensive health service centers in the form of lectures, pamphlets, and group discussions. Data were analyzed using SPSS software version 21 and statistical tests such as correlation, paired t-test, and independent t-test. Results: The intervention and control groups were homogeneous before education. They were similar in terms of mean scores of the Health Belief Model. However, after an educational intervention, some of the scores increased, including the mean perceived sensitivity score (from 17.62±2.86 to 19.75±1.23), perceived severity score (28.40±4.45 to 31.64±2), perceived benefits score (27.27±4.89 to 31.94±2.17), practice score (32.64±4.68 to 36.91±2.32) perceived barriers from 26.62±5.16 to 31.29±3.34, guide for external action (from 17.70±3.99 to 22/89 ±1.67), guide for internal action from (16.59±2.95 to 1.03±18.75), and self-efficacy (from 19.83 ±3.99 to 23.37±1.43) (P <0.05). Conclusion: The educational intervention designed based on the Health Belief Model in women was effective in performing preventive behaviors against exposure to second-hand smoke.Keywords: education, women, exposure to secondhand smoke, health belief model
Procedia PDF Downloads 7127732 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing
Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan
Abstract:
This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium
Procedia PDF Downloads 29627731 Parameter Estimation for Contact Tracing in Graph-Based Models
Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar
Abstract:
We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference
Procedia PDF Downloads 7527730 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 12127729 Scanning Electronic Microscopy for Analysis of the Effects of Surfactants on De-Wrinkling and Dispersion of Graphene
Authors: Kostandinos Katsamangas, Fawad Inam
Abstract:
Graphene was dispersed using a tip sonicator and the effect of surfactants were analysed. Sodium Dodecyl Sulphate (SDS) and Polyvinyl Alcohol (PVA) were compared to observe whether or not they had any effect on any de-wrinkling, and secondly whether they aided to achieve better dispersions. There is a huge demand for wrinkle free graphene as this will greatly increase its usefulness in various engineering applications. A comprehensive literature on de-wrinkling graphene has been discussed. Low magnification Scanning Electronic Microscopy (SEM) was conducted to assess the quality of graphene de-wrinkling. The utilization of the PVA has a significant effect on de-wrinkling whereas SDS had minimal effect on the de-wrinkling of graphene.Keywords: Graphene, de-wrinkling, dispersion, surfactants, scanning electronic microscopy
Procedia PDF Downloads 47027728 FEDBD Plasma, A Promising Approach for Skin Rejuvenation
Authors: P. Charipoor, M. Khani, H. Mahmoudi, E. Ghasemi, P. Akbartehrani, B. Shokri
Abstract:
Cold air plasma could have a variety of effects on cells and living organisms and also shows good results in medical and cosmetic cases. Herein, plasma floating electrode dielectric barrier discharge (FEDBD) plasma was designed for mouse skin rejuvenation purposes. It is safe and easy to use in clinics, laboratories, and homes. The effects of this device were investigated on mouse skin. Vitamin C ointment in combination with plasma was also used as a new method to improve FEDBD results. In this study, 20 Wistar rats were evaluated in four groups. The first group received high-dose plasma, the second group received moderate-dose plasma (with vitamin C cream), the third group received low-dose plasma (with vitamin C cream) for 6 minutes, and the fourth group received only vitamin C cream. This process was done 3 times a week for 4 weeks. Skin temperature was monitored to evaluate the thermal effect of plasma. The presence of reactive species was also demonstrated using optical spectroscopy. Mechanical assays were performed to evaluate the effect of plasma and vitamin C on the mechanical strength of the tissue, which showed a positive effect of plasma on the treated tissue compared to the control group. Using pathological and biometric skin tests, an increase in collagen levels, epidermal thickness, and an increase in fibroblasts was observed in rat skin, as well as increased skin elasticity. This study showed the positive effect of using the FEDBD plasma device on the effective parameters in skin rejuvenation.Keywords: plasma, skin rejuvenation, collagen, epidermal thickness
Procedia PDF Downloads 25627727 Customer Expectation on Service Quality in Bed and Breakfast Establishments in Johannesburg Metropolitan
Authors: Chiedza Lebogang Gutu, Nester Rufaro Manuwa, Jean-Marie Mbuya
Abstract:
In Johannesburg, Metropolitan customer expectations in the hospitality industry have rapidly been increasing which has lead to the need of improving service quality to help satisfy customer expectations. Businesses need to make sure that customer expectations are met, or find ways to control customer expectations. Therefore the purpose of the study is to investigate how customer expectations of services in bed and breakfast establishments affect the perceived quality of service. A quantitative approach was used through random sampling to collect descriptive and correlation study between customer expectations and perceived quality. Findings of the study indicated that customers at bed and breakfast generally expect a clean, friendly and safe environment that has a homely feel, while they are away from home. In addition, findings of the study also emphasised that the age-groups between 20 and 35 are more likely to travel, for business and vacation purposes, staying for more or less 3, have high expectations towards modern facilities and extras in the room such as coffee machines, and are more concerned about the service being provided quickly and right, and taking extra care to deal with problems promptly.Keywords: Customer satisfaction, Service quality, Bed and breakfast, Customer retention
Procedia PDF Downloads 38527726 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 36027725 A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering
Authors: Sudhir Kumar Sharma, Abiy D. Woldetsadik, Mazin Magzoub, Ramesh Jagannathan
Abstract:
It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds.Keywords: supercritical CO2, CaCO3 scaffolds, coffee-ring effect, ECM proteins
Procedia PDF Downloads 30227724 Ship Roll Reduction Using Water-Flow Induced Coriolis Effect
Authors: Mario P. Walker, Masaaki Okuma
Abstract:
Ships are subjected to motions which can disrupt on-board operations and damage equipment. Roll motion, in particular, is of great interest due to low damping conditions which may lead to capsizing. Therefore finding ways to reduce this motion is important in ship designs. Several techniques have been investigated to reduce rolling. These include the commonly used anti-roll tanks, fin stabilizers and bilge keels. However, these systems are not without their challenges. For example, water-flow in anti-roll tanks creates complications, and for fin stabilizers and bilge keels, an extremely large size is required to produce any significant damping creating operational challenges. Additionally, among these measures presented above only anti-roll tanks are effective in zero forward motion of the vessels. This paper proposes and investigates a method to reduce rolling by inducing Coriolis effect using water-flow in the radial direction. Motion in the radial direction of a rolling structure will induce Coriolis force and, depending on the direction of flow will either amplify or attenuate the structure. The system is modelled with two degrees of freedom, having rotational motion for parametric rolling and radial motion of the water-flow. Equations of motion are derived and investigated. Numerical examples are analyzed in detail. To demonstrate applicability parameters from a Ro-Ro vessel are used as extensive research have been conducted on these over the years. The vessel is investigated under free and forced roll conditions. Several models are created using various masses, heights, and velocities of water-flow at a given time. The proposed system was found to produce substantial roll reduction which increases with increase in any of the parameters varied as stated above, with velocity having the most significant effect. The proposed system provides a simple approach to reduce ship rolling. Water-flow control is very simple as the water flows in only one direction with constant velocity. Only needing to control the time at which the system should be turned on or off. Furthermore, the proposed system is effective in both forward and zero forward motion of the ship, and provides no hydrodynamic drag. This is a starting point for designing an effective and practical system. For this to be a viable approach further investigations are needed to address challenges that present themselves.Keywords: Coriolis effect, damping, rolling, water-flow
Procedia PDF Downloads 44927723 The Effect of Gas Flare on the Health of Schoolchildren in the Niger Delta Area of Nigeria
Authors: Uche Joyce Ogbonda, Yingchun Ji, Paul Coates
Abstract:
The proximity of schools to gas flaring sites and the use of simple ventilation systems in school buildings with currently no regulation or laid down blueprint during design and construction in an environment prone to adverse environmental hazards caused by the continuous exploration of oil in the Niger Delta is worrisome. Although a wide health implication has been associated with inhalation of poor air, its effect on the performance of schoolchildren and staffs is poorly understood. Thus, the aim of this research is to explore from professionals around the region the issues surrounding the provision of clean air indoors even though, most developed and developing world are advancing in newer systems and technologies for clean indoor air. This study adopts both qualitative and quantitative approach using both open-ended and semi- structured interview techniques. This paper finds that indoor air quality is not considered during design, selection, and construction of schools. Analysis showed that rather than consider the health effect associated with the inhalation of ambient air by schoolchildren who spend 80% of their active time in schools due to the use of simple open windows and doors as source of breathable air. Advanced ventilation systems were therefore recommended to ensure supplying clean air for school buildings.Keywords: air quality, gas flare, health implication, schools, ventilation system
Procedia PDF Downloads 29527722 The Factors Affecting Customers’ Trust on Electronic Commerce Website of Retail Business in Bangkok
Authors: Supattra Kanchanopast
Abstract:
The purpose of this research was to identify factors that influenced the trust of e-commerce within retail businesses. In order to achieve the objectives of this research, the researcher collected data from random e-commerce users in Bangkok. The data was comprised of the results of 382 questionnaires. The data was analyzed by using descriptive statistics, which included frequency, percentages, and the standard deviation of pertinent factors. Multiple regression analysis was also used. The findings of this research revealed that the majority of the respondents were female, 25-40 years old, and graduated a bachelor degree. The respondents mostly worked in private sectors and had monthly income between 15,000-25,000 baht. The findings also indicate that information quality factors, website design factors, service quality factor, security factor and advertising factors as significant factors effecting customer trust of e-commerce in online retail. The hypotheses testing revealed that these factors in e-commerce had an effect on customer’s trust in the same direction with high level.Keywords: e-commerce, online retail, Retail business, trust, website
Procedia PDF Downloads 19227721 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 21827720 The Use of Ontology Framework for Automation Digital Forensics Investigation
Authors: Ahmad Luthfi
Abstract:
One of the main goals of a computer forensic analyst is to determine the cause and effect of the acquisition of a digital evidence in order to obtain relevant information on the case is being handled. In order to get fast and accurate results, this paper will discuss the approach known as ontology framework. This model uses a structured hierarchy of layers that create connectivity between the variant and searching investigation of activity that a computer forensic analysis activities can be carried out automatically. There are two main layers are used, namely analysis tools and operating system. By using the concept of ontology, the second layer is automatically designed to help investigator to perform the acquisition of digital evidence. The methodology of automation approach of this research is by utilizing forward chaining where the system will perform a search against investigative steps and atomically structured in accordance with the rules of the ontology.Keywords: ontology, framework, automation, forensics
Procedia PDF Downloads 34127719 The Effect of Leadership Styles on Employees’ Organizational Commitment at Ambo Woreda Public Organizations, Oromia Regional State, Ethiopia
Authors: Mengistu Tulu Balcha, Endale Gadisa Motuma
Abstract:
The purpose of this study was to assess the effect of leadership styles on employees’ organizational commitments in Ambo Woreda public organizations. The study was guided by a Descriptive survey and correlation research design of the quantitative method. By using simple random sampling techniques, 80 participants of employees and by purposive sampling technique, 32 leaders were involved in research from five purposely selected Woreda public organizations without a non-response rate. Two separate instruments adopted from previous studies, namely the multifactor leadership questionnaire (MLQ), which has 36 items and the Organizational Commitment Questionnaire (OCQ), which has 12 items, were used as a data instrument tool. These items were rated by using a five-point Likert-scale. The survey data was processed by using an SPSS (version 27). Descriptive statistics to calculate mean and standard deviations of leaders’ and employees’ responses to leadership styles dominantly practiced in order to determine their perceptions, MLQ of leaders’ and employees’ responses (independent sample), and multiple linear regressions were used to calculate the effect of leadership styles on organizational commitment. The findings of the study show that the leadership style dominantly practiced in Ambo Woreda public organizations was more transactional than transformational and followed by laissez-faire. The level of EOC was ranked as continuance commitment and had the highest mean score, followed by normative commitment and then affective commitment. There is a strong, positive and significant relationship between leadership style dimensions and employees’ organizational commitment. Leadership styles were found statistically significant to predict employee commitment and there was a significant linear relationship between independent variables and dependent variables. Out of the three leadership variables, the transactional leadership style has the highest contribution, followed by the transformational leadership style, whereas the laissez-faire leadership style has the least contribution in predicting employees’ organizational commitment. Finally, the researcher forwarded possible recommendations for Ambo Woreda public organizational leaders and employees to work on improving leadership styles and employees’ commitment collaboratively.Keywords: organizations, employee, relations, commitments, style
Procedia PDF Downloads 2627718 A New Approach to Interval Matrices and Applications
Authors: Obaid Algahtani
Abstract:
An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples.Keywords: interval analysis, interval matrices, state space model, Kalman Filter
Procedia PDF Downloads 42327717 Language Developmental Trends of Mandarin-Speaking Preschoolers in Beijing
Authors: Nga Yui Tong
Abstract:
Mandarin, the official language of China, is based on the Beijing dialect and is spoken by more than one billion people from all over the world. To investigate the trends of Mandarin acquisition, 192 preschoolers are recruited by stratified random sampling. They are from 4 different districts in Beijing, 2 schools in each district, with 4 age groups, both genders, and 3 children in each stratum. The children are paired up to conduct semi-structured free play for 30 minutes. Their language output is videotaped, transcribed, and coded for the calculation of Mean Length of Utterance (MLU). Two-way ANOVA showed that the variation of MLU is significantly contributed by age, which is coherent to previous findings of other languages. This first large-scale study to investigate the developmental trend of Mandarin in young children in Beijing provides empirical evidence to the development of standards and curriculum planning for early Mandarin education. Interestingly, the gender effect in the study is insignificant, with boys showing a slightly higher MLU than girls across all age groups and settings, except the 4.5 years same-gender dyads. The societal factors in the Chinese context on parenting and gender bias are worth looking into.Keywords: Beijing, language development, Mandarin, preschoolers
Procedia PDF Downloads 11727716 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables
Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner
Abstract:
High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line
Procedia PDF Downloads 17227715 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14227714 Effect of Mica Content in Sand on Site Response Analyses
Authors: Volkan Isbuga, Joman M. Mahmood, Ali Firat Cabalar
Abstract:
This study presents the site response analysis of mica-sand mixtures available in certain parts of the world including Izmir, a highly populated city and located in a seismically active region in western part of Turkey. We performed site response analyses by employing SHAKE, an equivalent linear approach, for the micaceous soil deposits consisting of layers with different amount of mica contents and thicknesses. Dynamic behavior of micaceous sands such as shear modulus reduction and damping ratio curves are input for the ground response analyses. Micaceous sands exhibit a unique dynamic response under a scenario earthquake with a magnitude of Mw=6. Results showed that higher amount of mica caused higher spectral accelerations.Keywords: micaceous sands, site response, equivalent linear approach, SHAKE
Procedia PDF Downloads 33927713 Enhanced Test Scheme based on Programmable Write Time for Future Computer Memories
Authors: Nor Zaidi Haron, Fauziyah Salehuddin, Norsuhaidah Arshad, Sani Irwan Salim
Abstract:
Resistive random access memories (RRAMs) are one of the main candidates for future computer memories. However, due to their tiny size and immature device technology, the quality of the outgoing RRAM chips is seen as a serious issue. Defective RRAM cells might behave differently than existing semiconductor memories (Dynamic RAM, Static RAM, and Flash), meaning that they are difficult to be detected using existing test schemes. This paper presents an enhanced test scheme, referred to as Programmable Short Write Time (PSWT) that is able to improve the detection of faulty RRAM cells. It is developed by applying multiple weak write operations, each with different time durations. The test circuit embedded in the RRAM chip is made programmable in order to supply different weak write times during testing. The RRAM electrical model is described using Verilog-AMS language and is simulated using HSPICE simulation tools. Simulation results show that the proposed test scheme offers better open-resistive fault detection compared to existing test schemes.Keywords: memory fault, memory test, design-for-testability, resistive random access memory
Procedia PDF Downloads 38627712 The Capabilities Approach as a Future Alternative to Neoliberal Higher Education in the MENA Region
Authors: Ranya Elkhayat
Abstract:
This paper aims at offering a futures study for higher education in the Middle East. Paying special attention to the negative impacts of neoliberalism, the paper will demonstrate how higher education is now commodified, corporatized and how arts and humanities are eschewed in favor of science and technology. This conceptual paper argues against the neoliberal agenda and aims at providing an alternative exemplified in the Capabilities Approach with special reference to Martha Nussbaum’s theory. The paper is divided into four main parts: the current state of higher education under neoliberal values, a prediction of the conditions of higher education in the near future, the future of higher education using the theoretical framework of the Capabilities Approach, and finally, some areas of concern regarding the approach. The implications of the study demonstrate that Nussbaum’s Capabilities Approach will ensure that the values of education are preserved while avoiding the pitfalls of neoliberalism.Keywords: capabilities approach, education future, higher education, MENA
Procedia PDF Downloads 19427711 A Framework for Internet Education: Personalised Approach
Authors: Zoe Wong
Abstract:
The purpose of this paper is to develop a framework for internet education. This framework uses the personalized learning approach for everyone who can freely develop their qualifications & careers. The key components of the framework includes students, teachers, assessments and infrastructure. It allows remove the challenges and limitations of the current educational system and allows learners' to cope with progressing learning materials.Keywords: internet education, personalized approach, information technology, framework
Procedia PDF Downloads 35627710 Comparative study of the technical efficiency of the cotton farms in the towns of Banikoara and Savalou
Authors: Boukari Abdou Wakilou
Abstract:
Benin is one of West Africa's major cotton-producing countries. Cotton is the country's main source of foreign currency and employment. But it is also one of the sources of soil degradation. The search for good agricultural practices is therefore, a constant preoccupation. The aim of this study is to measure the technical efficiency of cotton growers by comparing those who constantly grow cotton on the same land with those who practice crop rotation. The one-step estimation approach of the stochastic production frontier, including determinants of technical inefficiency, was applied to a stratified random sample of 261 cotton producers. Overall, the growers had a high average technical efficiency level of 90%. However, there was no significant difference in the level of technical efficiency between the two groups of growers studied. All the factors linked to compliance with the technical production itinerary had a positive influence on the growers' level of efficiency. It is, therefore, important to continue raising awareness of the importance of respecting the technical production itinerary and of integrated soil fertility management techniques.Keywords: technical efficiency, soil fertility, cotton, crop rotation, benin
Procedia PDF Downloads 6427709 Reactivity Study on South African Calcium Based Material Using a pH-Stat and Citric Acid: A Statistical Approach
Authors: Hilary Rutto, Mbali Chiliza, Tumisang Seodigeng
Abstract:
The study on reactivity of calcined calcium-based material is very important in dry flue gas desulphurisation (FGD) process, so as to produce absorbent with high sulphur dioxide capture capacity during the hydration process. The effect of calcining temperature and time on the reactivity of calcined limestone material were investigated. In this study, the reactivity was measured using a pH stat apparatus and also confirming the result by performing citric acid reactivity test. The reactivity was calculated using the shrinking core model. Based on the experiments, a mathematical model is developed to correlate the effect of time and temperature to the reactivity of absorbent. The calcination process variables were temperature (700 -1000°C) and time (1-6 hrs). It was found that reactivity increases with an increase in time and temperature.Keywords: reactivity, citric acid, calcination, time
Procedia PDF Downloads 21727708 Conscious Intention-based Processes Impact the Neural Activities Prior to Voluntary Action on Reinforcement Learning Schedules
Authors: Xiaosheng Chen, Jingjing Chen, Phil Reed, Dan Zhang
Abstract:
Conscious intention can be a promising point cut to grasp consciousness and orient voluntary action. The current study adopted a random ratio (RR), yoked random interval (RI) reinforcement learning schedule instead of the previous highly repeatable and single decision point paradigms, aimed to induce voluntary action with the conscious intention that evolves from the interaction between short-range-intention and long-range-intention. Readiness potential (RP) -like-EEG amplitude and inter-trial-EEG variability decreased significantly prior to voluntary action compared to cued action for inter-trial-EEG variability, mainly featured during the earlier stage of neural activities. Notably, (RP) -like-EEG amplitudes decreased significantly prior to higher RI-reward rates responses in which participants formed a higher plane of conscious intention. The present study suggests the possible contribution of conscious intention-based processes to the neural activities from the earlier stage prior to voluntary action on reinforcement leanring schedule.Keywords: Reinforcement leaning schedule, voluntary action, EEG, conscious intention, readiness potential
Procedia PDF Downloads 7627707 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System
Authors: Mehmet Savsar, Majid Aldaihani
Abstract:
Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability
Procedia PDF Downloads 51427706 Effectiveness of a Traits Cooperative Learning on Developing Writing Achievement and Composition among Teacher Candidates
Authors: Abdelaziz Hussien
Abstract:
This article reports investigations of a study into the effectiveness of a traits cooperative learning (TCL) on teacher candidates’ writing achievement, composition, and attitudes towards traits of writing approach and small group learning. Mixed methodologies were used with the participants in a repeated measures quasi-experimental design. Forty-two class teacher candidates, enrolled in the Bahrain Teachers College, completed the pre and post author-developed measures. The results suggest that TCL has a positive effect on the participants’ writing achievement, composition, and attitudes towards traits of writing approach, but not on the attitudes towards small group learning. Further implications to teacher education are presented.Keywords: trait-based language education, cooperative learning, writing achievement, writing composition, traits of writing, teacher education
Procedia PDF Downloads 16727705 Prevalence of Visual Impairment among School Children in Ethiopia: A Systematic Review and Meta-Analysis
Authors: Merkineh Markos Lorato, Gedefaw Diress Alene
Abstract:
Introduction: Visual impairment is any condition of the eye or visual system that results in loss/reduction of visual functioning. It significantly influences the academic routine and social activities of children, and the effect is severe for low-income countries like Ethiopia. So, this study aimed to determine the pooled prevalence of visual impairment among school children in Ethiopia. Methods: Databases such as Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, World Wide Web of Science, and Cochrane Library searched to retrieve eligible articles. In addition, Google Scholar and a reference list of the retrieved eligible articles were addressed. Studies that reported the prevalence of visual impairment were included to estimate the pooled prevalence. Data were extracted using a standardized data extraction format prepared in Microsoft Excel and analysis was held using STATA 11 statistical software. I² was used to assess the heterogeneity. Because of considerable heterogeneity, a random effect meta-analysis model was used to estimate the pooled prevalence of visual impairment among school children in Ethiopia. Results: The result of 9 eligible studies showed that the pooled prevalence of visual impairment among school children in Ethiopia was 7.01% (95% CI: 5.46, 8.56%). In the subgroup analysis, the highest prevalence was reported in South Nations Nationalities and Tigray region together (7.99%; 3.63, 12.35), while the lowest prevalence was reported in Addis Ababa (5.73%; 3.93, 7.53). Conclusion: The prevalence of visual impairment among school children is significantly high in Ethiopia. If it is not detected and intervened early, it will cause a lifetime threat to visually impaired school children, so that school vision screening program plan and its implementation may cure the life quality of future generations in Ethiopia.Keywords: visual impairment, school children, Ethiopia, prevalence
Procedia PDF Downloads 3527704 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process
Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria
Abstract:
Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms
Procedia PDF Downloads 107