Search results for: production optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10199

Search results for: production optimization

9509 Carbon Footprint Reduction Using Cleaner Production Strategies in a Otoshimi Producing Plant

Authors: Razuana Rahim, Abdul Aziz Abdul Raman

Abstract:

In this work, a study was conducted to evaluate the feasibility of using Cleaner Production (CP) strategy to reduce carbon dioxide emission (CO2) in a plant that produces Otoshimi. CP strategy is meant to reduce CO2 emission while taking into consideration the economic aspect. For this purpose, a CP audit was conducted and the information obtained were analyzed and major contributors of CO2 emission inside the boundary of the production plant was identified. Electricity, water and fuel consumption and generation of solid waste and wastewater were identified as the main contributors. Total CO2 emission generated was 0.27 kg CO2 per kg of Otoshimi produced, where 68% was contributed by electricity consumption. Subsequently, a total of three CP options were generated and implementations of these options are expected to reduce the CO2 emission from electricity consumption to 0.16 kg CO2 per kg of Otoshimi produced, a reduction of about 14%. The study proves that CP strategy can be implemented even without any investment to reduce CO2 for a plant that produces Otoshimi.

Keywords: carbon dioxide emission, cleaner production audit, cleaner production options, otoshimi production

Procedia PDF Downloads 427
9508 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.

Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering

Procedia PDF Downloads 514
9507 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 147
9506 A Comparison of the Environmental Impacts of Edible and Non-Edible Oil Crops in Biodiesel Production

Authors: Halit Tutar, Omer Eren, Oguz Parlakay

Abstract:

The demand for food and energy of mankind has been increasing every passing day. Renewable energy sources have been pushed to forefront since fossil fuels will be run out in the near future and their negative effects to the environment. As in every sector, the transport sector benefits from biofuel (biogas, bioethanol and biodiesel) one of the renewable energy sources as well. The edible oil crops are used in production of biodiesel. Utilizing edible oil crops as renewable energy source may raise a debate in the view of that there is a shortage in raw material of edible oil crops in Turkey. Researches related to utilization of non-edible oil crops as biodiesel raw materials have been recently increased, and especially studies related to their vegetative production and adaptation have been accelerated in Europe. In this review edible oil crops are compared to non-edible oil crops for biodiesel production in the sense of biodiesel production, some features of non-edible oil crops and their harmful emissions to environment are introduced. The data used in this study, obtained from articles, thesis, reports relevant to edible and non edible oil crops in biodiesel.

Keywords: biodiesel, edible oil crops, environmental impacts, renewable energy

Procedia PDF Downloads 434
9505 Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method

Authors: Gamze Karanfil Celep, Kevser Dincer

Abstract:

The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated.

Keywords: nanofiber, electrospinning, polyacrylonitrile, Taguchi method

Procedia PDF Downloads 206
9504 Software Assessment Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However,these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: optimization technique, quality assurance, software certification model, software assessment

Procedia PDF Downloads 487
9503 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 389
9502 Evaluation of Critical Rate in Mature Oil Field with Dynamic Oil Rim Fluid Contacts in the Niger Delta

Authors: Stanley Ibuchukwu Onwukwe

Abstract:

Most reservoir in mature oil fields are vulnerable to challenges of water and/or gas coning as the size of their oil column reduces due to long period of oil production. These often result to low oil production and excessive water and/or gas production. Since over 50 years of oil production in the Niger delta, it is apparent that most of the oil fields in the region have reached their mature stages, thereby susceptible to coning tendencies. As a result of these, a good number of wells have been shut-in and abandoned, with significant amount of oil left unproduced. Analysis of the movement of fluid contacts in the reservoir is a significant aspect of reservoir studies and can assist in the management of coning tendencies and production performance of reservoirs in a mature field. This study, therefore, seeks to evaluate the occurrence of coning through the movement of fluid contacts (GOC and OWC) and determine the critical rate for controlling coning tendencies in mature oil field. This study applies the principle of Nodal analysis to calibrate the thin oil column of a reservoir of a mature field, and was graphically evaluated using the Joshi’s equation of critical rate for gas-oil system and oil-water system respectively. A representative Proxy equation was developed and sensitivity analysis carried out to determine the trend of critical rate as the oil column is been depleted. The result shows the trend in the movement of the GOC and OWC, and the critical rate, beyond which will result in excessive water and gas production, resulting to decreasing oil production from the reservoir. This result of this study can be used as a first pass assessment in the development of mature oil field reservoirs anticipated to experience water and/or gas coning during production.

Keywords: coning, fluid contact movement, mature oil field, oil production

Procedia PDF Downloads 242
9501 Portfolio Risk Management Using Quantum Annealing

Authors: Thomas Doutre, Emmanuel De Meric De Bellefon

Abstract:

This paper describes the application of local-search metaheuristic quantum annealing to portfolio opti- mization. Heuristic technics are particularly handy when Markowitz’ classical Mean-Variance problem is enriched with additional realistic constraints. Once tailored to the problem, computational experiments on real collected data have shown the superiority of quantum annealing over simulated annealing for this constrained optimization problem, taking advantages of quantum effects such as tunnelling.

Keywords: optimization, portfolio risk management, quantum annealing, metaheuristic

Procedia PDF Downloads 383
9500 Multi-Criteria Test Case Selection Using Ant Colony Optimization

Authors: Niranjana Devi N.

Abstract:

Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.

Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection

Procedia PDF Downloads 668
9499 Research of Concentratibility of Low Quality Bauxite Raw Materials

Authors: Nadezhda Nikolaeva, Tatyana Alexandrova, Alexandr Alexandrov

Abstract:

Processing of high-silicon bauxite on the base of the traditional clinkering method is related to high power consumption and capital investments, which makes production of alumina from those ores non-competitive in terms of basic economic showings. For these reasons, development of technological solutions enabling to process bauxites with various chemical and mineralogical structures efficiently with low level of thermal power consumption is important. Flow sheet of the studies on washability of ores from the Timanskoe and the Severo-Onezhskoe deposits is on the base of the flotation method.

Keywords: low-quality bauxite, resource-saving technology, optimization, aluminum, conditioning of composition, separation characteristics

Procedia PDF Downloads 290
9498 The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge

Authors: E. Al-Essa, R. Bello-Mendoza, D. G. Wareham

Abstract:

Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.

Keywords: anaerobic digestion, iron oxide, methanogenesis, nanoparticle

Procedia PDF Downloads 140
9497 Algorithm for Information Retrieval Optimization

Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran

Abstract:

When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (

Keywords: information retrieval, document relevance, performance measures, personalization

Procedia PDF Downloads 241
9496 Fuzzy Climate Control System for Hydroponic Green Forage Production

Authors: Germán Díaz Flórez, Carlos Alberto Olvera Olvera, Domingo José Gómez Meléndez, Francisco Eneldo López Monteagudo

Abstract:

In recent decades, population growth has exerted great pressure on natural resources. Two of the most scarce and difficult to obtain resources, arable land, and water, are closely interrelated, to the satisfaction of the demand for food production. In Mexico, the agricultural sector uses more than 70% of water consumption. Therefore, maximize the efficiency of current production systems is inescapable. It is essential to utilize techniques and tools that will enable us to the significant savings of water, labor and fertilizer. In this study, we present a production module of hydroponic green forage (HGF), which is a viable alternative in the production of livestock feed in the semi-arid and arid zones. The equipment in addition to having a forage production module, has a climate and irrigation control system that operated with photovoltaics. The climate control, irrigation and power management is based on fuzzy control techniques. The fuzzy control provides an accurate method in the design of controllers for nonlinear dynamic physical phenomena such as temperature and humidity, besides other as lighting level, aeration and irrigation control using heuristic information. In this working, firstly refers to the production of the hydroponic green forage, suitable weather conditions and fertigation subsequently presents the design of the production module and the design of the controller. A simulation of the behavior of the production module and the end results of actual operation of the equipment are presented, demonstrating its easy design, flexibility, robustness and low cost that represents this equipment in the primary sector.

Keywords: fuzzy, climate control system, hydroponic green forage, forage production module

Procedia PDF Downloads 397
9495 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
9493 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 364
9492 Effect of Multi-Stage Fractured Patterns on Production Improvement of Horizontal Wells

Authors: Armin Shirbazo, Mohammad Vahab, Hamed Lamei Ramandi, Jalal Fahimpour

Abstract:

One of the most effective ways for increasing production in wells that are faced with problems such as pressure depletion and low rate is hydraulic fracturing. Hydraulic fracturing is creating a high permeable path through the reservoir and simulated area around the wellbore. This is very important for low permeability reservoirs, which their production is uneconomical. In this study, the influence of the fracturing pattern in multi-stage fractured horizontal wells is analyzed for a tight, heavy oil reservoir to explore the impact of fracturing patterns on improving oil recovery. The horizontal well has five transverse fractures with the same fracture length, width, height, and conductivity properties. The fracture patterns are divided into four distinct shapes: uniform shape, diamond shape, U shape, and W shape. The results show that different fracturing patterns produce various cumulative production after ten years, and the best pattern can be selected based on the most cumulative production. The result also illustrates that optimum design in fracturing can boost the production up to 3% through the permeability distribution around the wellbore and reservoir.

Keywords: multi-stage fracturing, horizontal well, fracture patterns, fracture length, number of stages

Procedia PDF Downloads 222
9491 Optimal Production Planning in Aromatic Coconuts Supply Chain Based on Mixed-Integer Linear Programming

Authors: Chaimongkol Limpianchob

Abstract:

This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case.

Keywords: aromatic coconut, supply chain management, production planning, mixed-integer linear programming

Procedia PDF Downloads 460
9490 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex

Procedia PDF Downloads 532
9489 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 85
9488 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 183
9487 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems

Authors: Emily Kambalame

Abstract:

Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluation

Keywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems

Procedia PDF Downloads 62
9486 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 110
9485 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia

Authors: Arragaw Alemayehu, Woldeamlak Bewket

Abstract:

The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.

Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend

Procedia PDF Downloads 438
9484 Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger

Authors: Jwan J. Abdullah, Greetham Darren, Gregory A, Tucker, Chenyu Du

Abstract:

Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei.

Keywords: SSF, enzyme hydrolysis, municipal solid waste (MSW), optimizing conditions, enzyme hydrolysis

Procedia PDF Downloads 555
9483 Maintenance Performance Measurement Derived Optimization: A Case Study

Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Stanley Mburu

Abstract:

Maintenance performance measurement (MPM) represents an integrated aspect that considers both operational and maintenance related aspects while evaluating the effectiveness and efficiency of maintenance to ensure assets are working as they should. Three salient issues require to be addressed for an asset-intensive organization to employ an MPM-based framework to optimize maintenance. Firstly, the organization should establish important perfomance metric(s), in this case the maintenance objective(s), which they will be focuss on. The second issue entails aligning the maintenance objective(s) with maintenance optimization. This is achieved by deriving maintenance performance indicators that subsequently form an objective function for the optimization program. Lastly, the objective function is employed in an optimization program to derive maintenance decision support. In this study, we develop a framework that initially identifies the crucial maintenance performance measures, and employs them to derive maintenance decision support. The proposed framework is demonstrated in a case study of a geothermal drilling rig, where the objective function is evaluated utilizing a simulation-based model whose parameters are derived from empirical maintenance data. Availability, reliability and maintenance inventory are depicted as essential objectives requiring further attention. A simulation model is developed mimicking a drilling rig operations and maintenance where the sub-systems are modelled undergoing imperfect maintenance, corrective (CM) and preventive (PM), with the total cost as the primary performance measurement. Moreover, three maintenance spare inventory policies are considered; classical (retaining stocks for a contractual period), vendor-managed inventory with consignment stock and periodic monitoring order-to-stock (s, S) policy. Optimization results infer that the adoption of (s, S) inventory policy, increased PM interval and reduced reliance of CM actions offers improved availability and total costs reduction.

Keywords: maintenance, vendor-managed, decision support, performance, optimization

Procedia PDF Downloads 125
9482 Techno-Economic Optimization and Evaluation of an Integrated Industrial Scale NMC811 Cathode Active Material Manufacturing Process

Authors: Usama Mohamed, Sam Booth, Aliysn J. Nedoma

Abstract:

As part of the transition to electric vehicles, there has been a recent increase in demand for battery manufacturing. Cathodes typically account for approximately 50% of the total lithium-ion battery cell cost and are a pivotal factor in determining the viability of new industrial infrastructure. Cathodes which offer lower costs whilst maintaining or increasing performance, such as nickel-rich layered cathodes, have a significant competitive advantage when scaling up the manufacturing process. This project evaluates the techno-economic value proposition of an integrated industrial scale cathode active material (CAM) production process, closing the mass and energy balances, and optimizing the operation conditions using a sensitivity analysis. This is done by developing a process model of a co-precipitation synthesis route using Aspen Plus software and validated based on experimental data. The mechanism chemistry and equilibrium conditions were established based on previous literature and HSC-Chemistry software. This is then followed by integrating the energy streams, adding waste recovery and treatment processes, as well as testing the effect of key parameters (temperature, pH, reaction time, etc.) on CAM production yield and emissions. Finally, an economic analysis estimating the fixed and variable costs (including capital expenditure, labor costs, raw materials, etc.) to calculate the cost of CAM ($/kg and $/kWh), total plant cost ($) and net present value (NPV). This work sets the foundational blueprint for future research into sustainable industrial scale processes for CAM manufacturing.

Keywords: cathodes, industrial production, nickel-rich layered cathodes, process modelling, techno-economic analysis

Procedia PDF Downloads 100
9481 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design

Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez

Abstract:

Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.

Keywords: coffee waste, optimization, oil yield, statistical planning

Procedia PDF Downloads 119
9480 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 327