Search results for: predictive biomarker
563 Vertical Urban Design Guideline and Its Application to Measure Human Cognition and Emotions
Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma
Abstract:
This research addresses the need for a comprehensive framework that can guide the design and assessment of multi-level public spaces and public realms and their impact on the built environment. The study aims to understand and measure the neural mechanisms involved in this process. By doing so, it can lay the foundation for vertical and volumetric urbanism and ensure consistency and excellence in the field while also supporting scientific research methods for urban design with cognitive neuroscientists. To investigate these aspects, the paper focuses on the neighborhood scale in Hong Kong, specifically examining multi-level public spaces and quasi-public spaces within both commercial and residential complexes. The researchers use predictive Artificial Intelligence (AI) as a methodology to assess and comprehend the applicability of the urban design framework for vertical and volumetric urbanism. The findings aim to identify the factors that contribute to successful public spaces within a vertical living environment, thus introducing a new typology of public spaces.Keywords: vertical urbanism, scientific research methods, spatial cognition, urban design guideline
Procedia PDF Downloads 85562 Academic Achievement in Argentinean College Students: Major Findings in Psychological Assessment
Authors: F. Uriel, M. M. Fernandez Liporace
Abstract:
In the last decade, academic achievement in higher education has become a topic of agenda in Argentina, regarding the high figures of adjustment problems, academic failure and dropout, and the low graduation rates in the context of massive classes and traditional teaching methods. Psychological variables, such as perceived social support, academic motivation and learning styles and strategies have much to offer since their measurement by tests allows a proper diagnose of their influence on academic achievement. Framed in a major research, several studies analysed multiple samples, totalizing 5135 students attending Argentinean public universities. The first goal was aimed at the identification of statistically significant differences in psychological variables -perceived social support, learning styles, learning strategies, and academic motivation- by age, gender, and degree of academic advance (freshmen versus sophomores). Thus, an inferential group differences study for each psychological dependent variable was developed by means of student’s T tests, given the features of data distribution. The second goal, aimed at examining associations between the four psychological variables on the one hand, and academic achievement on the other, was responded by correlational studies, calculating Pearson’s coefficients, employing grades as the quantitative indicator of academic achievement. The positive and significant results that were obtained led to the formulation of different predictive models of academic achievement which had to be tested in terms of adjustment and predictive power. These models took the four psychological variables above mentioned as predictors, using regression equations, examining predictors individually, in groups of two, and together, analysing indirect effects as well, and adding the degree of academic advance and gender, which had shown their importance within the first goal’s findings. The most relevant results were: first, gender showed no influence on any dependent variable. Second, only good achievers perceived high social support from teachers, and male students were prone to perceive less social support. Third, freshmen exhibited a pragmatic learning style, preferring unstructured environments, the use of examples and simultaneous-visual processing in learning, whereas sophomores manifest an assimilative learning style, choosing sequential and analytic processing modes. Despite these features, freshmen have to deal with abstract contents and sophomores, with practical learning situations due to study programs in force. Fifth, no differences in academic motivation were found between freshmen and sophomores. However, the latter employ a higher number of more efficient learning strategies. Sixth, freshmen low achievers lack intrinsic motivation. Seventh, models testing showed that social support, learning styles and academic motivation influence learning strategies, which affect academic achievement in freshmen, particularly males; only learning styles influence achievement in sophomores of both genders with direct effects. These findings led to conclude that educational psychologists, education specialists, teachers, and universities must plan urgent and major changes. These must be applied in renewed and better study programs, syllabi and classes, as well as tutoring and training systems. Such developments should be targeted to the support and empowerment of students in their academic pathways, and therefore to the upgrade of learning quality, especially in the case of freshmen, male freshmen, and low achievers.Keywords: academic achievement, academic motivation, coping, learning strategies, learning styles, perceived social support
Procedia PDF Downloads 123561 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach
Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta
Abstract:
Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.Keywords: support vector machines, decision tree, random forest
Procedia PDF Downloads 42560 Machine Learning-Based Workflow for the Analysis of Project Portfolio
Authors: Jean Marie Tshimula, Atsushi Togashi
Abstract:
We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.Keywords: machine learning, topic modeling, natural language processing, big data
Procedia PDF Downloads 168559 Validation of Existing Index Properties-Based Correlations for Estimating the Soil–Water Characteristic Curve of Fine-Grained Soils
Authors: Karim Kootahi, Seyed Abolhasan Naeini
Abstract:
The soil-water characteristic curve (SWCC), which represents the relationship between suction and water content (or degree of saturation), is an important property of unsaturated soils. The conventional method for determining SWCC is through specialized testing procedures. Since these procedures require specialized unsaturated soil testing apparatus and lengthy testing programs, several index properties-based correlations have been developed for estimating the SWCC of fine-grained soils. There are, however, considerable inconsistencies among the published correlations and there is no validation study on the predictive ability of existing correlations. In the present study, all existing index properties-based correlations are evaluated using a high quality worldwide database. The performances of existing correlations are assessed both graphically and quantitatively using statistical measures. The results of the validation indicate that most of the existing correlations provide unacceptable estimates of degree of saturation but the most recent model appears to be promising.Keywords: SWCC, correlations, index properties, validation
Procedia PDF Downloads 177558 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor
Authors: K.Narasimhulu, Y. Pydi Setty
Abstract:
The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water
Procedia PDF Downloads 452557 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker
Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi
Abstract:
Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles
Procedia PDF Downloads 292556 Dizziness in the Emergency: A 1 Year Prospective Study
Authors: Nouini Adrâa
Abstract:
Background: The management of dizziness and vertigo can be challenging in the emergency department (ED). It is important to rapidly diagnose vertebrobasilar stroke (VBS), as therapeutic options such as thrombolysis and anticoagulation require prompt decisions. Objective: This study aims to assess the rate of misdiagnosis in patients with dizziness caused by VBS in the ED. Methods and Results: The cohort was comprised of 82 patients with a mean age of 55 years; 51% were women and 49% were men. Among dizzy patients, 15% had VBS. We used Cohen’s kappa test to quantify the agreement between two raters – namely, emergency physicians and neurologists – regarding the causes of dizziness in the ED. The agreement between emergency physicians and neurologists is low for the final diagnosis of central vertigo disorders and moderate for the final diagnosis of VBS. The sensitivity of ED clinal examination for benign conditions such as BPPV was low at 56%. The positive predictive value of the ED clinical examination for VBS was also low at 50%. Conclusion: There is a substantial rate of misdiagnosis in patients with dizziness caused by VBS in the ED. To reduce the number of missing diagnoses of VBS in the future, there is a need to train emergency physicians in neuro vestibular examinations, including the HINTS examination for acute vestibular syndrome (AVS) and the Dix-Hallpike (DH) maneuver for episodic vestibular syndrome. Using video head impulse tests could help reduce the rate of misdiagnosis of VBS in the ED.Keywords: dizziness, vertigo, vestibular disease, emergency
Procedia PDF Downloads 56555 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing
Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May
Abstract:
Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models
Procedia PDF Downloads 274554 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 294553 Comparison Of Data Mining Models To Predict Future Bridge Conditions
Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed
Abstract:
Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models
Procedia PDF Downloads 191552 Characterising Rates of Renal Dysfunction and Sarcoidosis in Patients with Elevated Serum Angiotensin-Converting Enzyme
Authors: Fergal Fouhy, Alan O’Keeffe, Sean Costelloe, Michael Clarkson
Abstract:
Background: Sarcoidosis is a systemic, non-infectious disease of unknown aetiology, characterized by non-caseating granulomatous inflammation. The lung is most often affected (90%); however, the condition can affect all organs, including the kidneys. There is limited evidence describing the incidence and characteristics of renal involvement in sarcoidosis. Serum angiotensin-converting enzyme (ACE) is a recognised biomarker used in the diagnosis and monitoring of sarcoidosis. Methods: A single-centre, retrospective cohort study of patients presenting to Cork University Hospital (CUH) in 2015 with first-time elevations of serum ACE was performed. This included an initial database review of ACE and other biochemistry results, followed by a medical chart review to confirm the presence or absence of sarcoidosis and management thereof. Acute kidney injury (AKI) was staged using the AKIN criteria, and chronic kidney disease (CKD) was staged using the KDIGO criteria. Follow-up was assessed over five years tracking serum creatinine, serum calcium, and estimated glomerular filtration rates (eGFR). Results: 119 patients were identified as having a first raised serum ACE in 2015. Seventy-nine male patients and forty female patients were identified. The mean age of patients identified was 47 years old. 11% had CKD at baseline. 18% developed an AKI at least once within the next five years. A further 6% developed CKD during this time period. 13% developed hypercalcemia. The patients within the lowest quartile of serums ACE had an incidence of sarcoidosis of 5%. None of this group developed hypercalcemia, 23% developed AKI, and 7% developed CKD. Of the patients with a serum ACE in the highest quartile, almost all had documented diagnoses of sarcoidosis with an incidence of 96%. 3% of this group developed hypercalcemia, 13% AKI and 3% developed CKD. Conclusions: There was an unexpectedly high incidence of AKI in patients who had a raised serum ACE. Not all patients with a raised serum ACE had a confirmed diagnosis of sarcoidosis. There does not appear to be a relationship between increased serum ACE levels and increased incidence of hypercalcaemia, AKI, and CKD. Ideally, all patients should have biopsy-proven sarcoidosis. This is an initial study that should be replicated with larger numbers and including multiple centres.Keywords: sarcoidosis, acute kidney injury, chronic kidney disease, hypercalcemia
Procedia PDF Downloads 104551 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant
Authors: E. Benga, T. Tengen, A. Alugongo
Abstract:
Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant
Procedia PDF Downloads 382550 Correlation between Calpain 1 Expression and Proliferating/Apoptotic Index and Prognostic Factors in Triple Negative Breast Cancer
Authors: Shadia Al-Bahlani, Ruqaya Al-Rashdi, Shadia Al-Sinawi, Maya Al-Bahri
Abstract:
Background: Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and Human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. The role of clapins in pathogenesis and tumor progression has been studied in certain cancer types; however, its definite role is not yet established in breast cancer especially in the TNBC subtype. Objectives: This study aims to measure calpain-1 expression and correlate this measurement with the proliferating/apoptotic index as well with the prognostic factors in TNBC patients’ tissue. Materials and Methods: Thirty nine paraffin blocks from patients diagnosed with TNBC were used to measure the expression of calpain-1 and Ki-67 (proliferating marker) proteins using immunohistochemistry. Apoptosis was assessed morphological and biochemically using conventional Haematoxylin and Eosin (H&E) staining method and terminal deoxynucleotidyl transferase-mediate dUTP nick and labeling (TUNEL) assay respectively. Data was statistically analyzed using Pearson X2 test of association. Results: Calpain-1 content was visualized in the nucleus of the TNBC cells and its expression varied from low to high among the patients tissue. Calpain expression showed no significant correlation with the proliferating/apoptotic index as well with the clinicopathological variables. Apoptotic counts quantified by H&E staining showed significant association with the apoptotic TUNEL assay, validating both approaches. Conclusion: Although calpain-1 expression showed no significant association with the clinical outcome, its variable level of expression might indicate a hidden role in breast cancer tissue. Larger number of samples and different mode of assessments are needed to fully investigate such role. Exploring the involvement of calpain-1 in cancer progression might help in considering it as a biomarker of breast cancer.Keywords: breast cancer, calpain, apoptosis, prognosis
Procedia PDF Downloads 443549 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide
Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović
Abstract:
Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.Keywords: ANN regression, GC/MS, Satureja montana, terpenes
Procedia PDF Downloads 454548 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna
Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo
Abstract:
The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system
Procedia PDF Downloads 37547 The Analysis of Space Syntax Used in the Development Explore of Hangzhou city’s Centratity
Authors: Liu Junzhu
Abstract:
In contemporary China,city is expanding with an amazing speed. And because of the unexpected events’ interference, spatial structure could change itself in a short time, That will lead to the new urban district livingness and unfortunately, this phenomenon is very common.On the one hand,it fail to achieve the goal of city planning, On the other hand,it is unfavourable to the sustainable development of city. Bill Hillier’stheory Space Syntax shows organzation pattern of each space,it explains the characteristics of urban spatial patterns and its transformation regulation from the point of self-organization in system and also, it gives confirmatory and predictive ways to the building and city. This paper used axial model to summarize Hangzhou City’s special structure and enhanced comprehensive understanding of macroscopic space and environment, space structure,developing trend, ect, by computer analysis of Space Syntax. From that, it helps us to know the operation law in the urban system and to understand Hangzhou City’s spatial pattern and indirect social effect it has mad more clearly, Thus, it could comply with the tendency of cities development in process and planning of policy and plan our cities’ future sustainably.Keywords: sustainable urban design, space syntax, spatial network, segment angular analysis, social inclusion
Procedia PDF Downloads 464546 Downregulation of Epidermal Growth Factor Receptor in Advanced Stage Laryngeal Squamous Cell Carcinoma
Authors: Sarocha Vivatvakin, Thanaporn Ratchataswan, Thiratest Leesutipornchai, Komkrit Ruangritchankul, Somboon Keelawat, Virachai Kerekhanjanarong, Patnarin Mahattanasakul, Saknan Bongsebandhu-Phubhakdi
Abstract:
In this globalization era, much attention has been drawn to various molecular biomarkers, which may have the potential to predict the progression of cancer. Epidermal growth factor receptor (EGFR) is the classic member of the ErbB family of membrane-associated intrinsic tyrosine kinase receptors. EGFR expression was found in several organs throughout the body as its roles involve in the regulation of cell proliferation, survival, and differentiation in normal physiologic conditions. However, anomalous expression, whether over- or under-expression is believed to be the underlying mechanism of pathologic conditions, including carcinogenesis. Even though numerous discussions regarding the EGFR as a prognostic tool in head and neck cancer have been established, the consensus has not yet been met. The aims of the present study are to assess the correlation between the level of EGFR expression and demographic data as well as clinicopathological features and to evaluate the ability of EGFR as a reliable prognostic marker. Furthermore, another aim of this study is to investigate the probable pathophysiology that explains the finding results. This retrospective study included 30 squamous cell laryngeal carcinoma patients treated at King Chulalongkorn Memorial Hospital from January 1, 2000, to December 31, 2004. EGFR expression level was observed to be significantly downregulated with the progression of the laryngeal cancer stage. (one way ANOVA, p = 0.001) A statistically significant lower EGFR expression in the late stage of the disease compared to the early stage was recorded. (unpaired t-test, p = 0.041) EGFR overexpression also showed the tendency to increase recurrence of cancer (unpaired t-test, p = 0.128). A significant downregulation of EGFR expression was documented in advanced stage laryngeal cancer. The results indicated that EGFR level correlates to prognosis in term of stage progression. Thus, EGFR expression might be used as a prevailing biomarker for laryngeal squamous cell carcinoma prognostic prediction.Keywords: downregulation, epidermal growth factor receptor, immunohistochemistry, laryngeal squamous cell carcinoma
Procedia PDF Downloads 111545 A Next Generation Multi-Scale Modeling Theatre for in silico Oncology
Authors: Safee Chaudhary, Mahnoor Naseer Gondal, Hira Anees Awan, Abdul Rehman, Ammar Arif, Risham Hussain, Huma Khawar, Zainab Arshad, Muhammad Faizyab Ali Chaudhary, Waleed Ahmed, Muhammad Umer Sultan, Bibi Amina, Salaar Khan, Muhammad Moaz Ahmad, Osama Shiraz Shah, Hadia Hameed, Muhammad Farooq Ahmad Butt, Muhammad Ahmad, Sameer Ahmed, Fayyaz Ahmed, Omer Ishaq, Waqar Nabi, Wim Vanderbauwhede, Bilal Wajid, Huma Shehwana, Muhammad Tariq, Amir Faisal
Abstract:
Cancer is a manifestation of multifactorial deregulations in biomolecular pathways. These deregulations arise from the complex multi-scale interplay between cellular and extracellular factors. Such multifactorial aberrations at gene, protein, and extracellular scales need to be investigated systematically towards decoding the underlying mechanisms and orchestrating therapeutic interventions for patient treatment. In this work, we propose ‘TISON’, a next-generation web-based multiscale modeling platform for clinical systems oncology. TISON’s unique modeling abstraction allows a seamless coupling of information from biomolecular networks, cell decision circuits, extra-cellular environments, and tissue geometries. The platform can undertake multiscale sensitivity analysis towards in silico biomarker identification and drug evaluation on cellular phenotypes in user-defined tissue geometries. Furthermore, integration of cancer expression databases such as The Cancer Genome Atlas (TCGA) and Human Proteome Atlas (HPA) facilitates in the development of personalized therapeutics. TISON is the next-evolution of multiscale cancer modeling and simulation platforms and provides a ‘zero-code’ model development, simulation, and analysis environment for application in clinical settings.Keywords: systems oncology, cancer systems biology, cancer therapeutics, personalized therapeutics, cancer modelling
Procedia PDF Downloads 224544 I Can’t Escape the Scars, Even If I Do Get Better”: A Discourse Analysis of Adolescent Talk About Their Self-Harm During Cognitive-Behavioural Therapy Sessions for Major Depressive Disorder
Authors: Anna Kristen
Abstract:
There has been a pronounced increase in societal discourses around adolescent self-harm, yet there is a paucity of literature examining adolescent talk about self-harm that accounts for the sociocultural context. The objective of this study was to explore how adolescents with Depression talk about their self-harm engagement in consideration of both socio-cultural discourses and the therapy context during Cognitive-Behavioural Therapy (CBT) sessions. Utilizing a sample from the Improving Mood with Psychoanalytic and Cognitive Therapies study, discourse analysis was carried out on audio-recorded CBT sessions. The study established three groupings of results: (a) adolescent positioning as stuck in self-harm engagement; (b) adolescent positioning as ambivalent in the talk about ceasing self-harm; and (c) adolescent use of stigma discourses in self-harm talk & constructions of self-harm scars. These findings indicate that clinician awareness of adolescent use of language and discourse may inform interventions beyond Manualized CBT strategies. These findings are highly relevant in light of research that demonstrates CBT treatment for adolescent depression does not effectively address concurring self-harm and given that self-harm is the most significant risk factor predictive of subsequent suicidal behaviours.Keywords: adolescence, cognitive-behavioral therapy, discourse, self-harm, stigma
Procedia PDF Downloads 249543 Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock
Authors: Azzam Alosaimi
Abstract:
Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock.Keywords: infiltration rate, energy demands, heating loss, cooling loss, carbon emissions
Procedia PDF Downloads 166542 Current Status and Prospects of Further Control of Brucellosis in Humans and Domestic Ruminants in Bangladesh
Authors: A. K. M. Anisur Rahman
Abstract:
Brucellosis is an ancient and one of the world's most widespread zoonotic diseases affecting both, public health and animal production. Its current status in humans and domestic ruminants along with probable means to control further in Bangladesh are described. The true exposure prevalence of brucellosis in cattle, goats, and sheep seems to be low: 0.3% in cattle, 1% in goats and 1.2% in sheep. The true prevalence of brucellosis in humans was also reported to be around 2%. In such a low prevalence scenario both in humans and animals, the positive predictive values of the diagnostic tests were very low. The role Brucella species in the abortion of domestic ruminants is less likely. Still now, no Brucella spp. was isolated from animal and human samples. However, Brucella abortus DNA was detected from seropositive humans, cattle, and buffalo; milk of cow, goats, and gayals and semen of an infected bull. Consuming raw milk and unpasteurized milk products by Bangladeshi people are not common. Close contact with animals, artificial insemination using semen from infected bulls, grazing mixed species of animals together in the field and transboundary animal movement are important factors, which should be considered for the further control of this zoonosis in Bangladesh.Keywords: brucellosis, control, human, zoonosis
Procedia PDF Downloads 366541 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments
Authors: Alaa El-Din Rezk
Abstract:
For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD
Procedia PDF Downloads 264540 Body Image Dissatifaction with and Personal Behavioral Control in Obese Patients Who are Attending to Treatment
Authors: Mariela Gonzalez, Zoraide Lugli, Eleonora Vivas, Rosana Guzmán
Abstract:
The objective was to determine the predictive capacity of self-efficacy perceived for weight control, locus of weight control and skills of weight self-management in the dissatisfaction of the body image in obese people who attend treatment. Sectional study conducted in the city of Maracay, Venezuela, with 243 obese who attend to treatment, 173 of the feminine gender and 70 of the male, with ages ranging between 18 and 57 years old. The sample body mass index ranged between 29.39 and 44.14. The following instruments were used: The Body Shape Questionnaire (BSQ), the inventory of body weight self-regulation, The Inventory of self-efficacy in the regulation of body weight and the Inventory of the Locus of weight control. Calculating the descriptive statistics and of central tendency, coefficients of correlation and multiple regression; it was found that a low ‘perceived Self-efficacy in the weight control’ and a high ‘Locus of external control’, predict the dissatisfaction with body image in obese who attend treatment. The findings are a first approximation to give an account of the importance of the personal control variables in the study of the psychological grief on the overweight individual.Keywords: dissatisfaction with body image, obese people, personal control, psychological variables
Procedia PDF Downloads 434539 Association of a Genetic Polymorphism in Cytochrome P450, Family 1 with Risk of Developing Esophagus Squamous Cell Carcinoma
Authors: Soodabeh Shahid Sales, Azam Rastgar Moghadam, Mehrane Mehramiz, Malihe Entezari, Kazem Anvari, Mohammad Sadegh Khorrami, Saeideh Ahmadi Simab, Ali Moradi, Seyed Mahdi Hassanian, Majid Ghayour-Mobarhan, Gordon A. Ferns, Amir Avan
Abstract:
Background Esophageal cancer has been reported as the eighth most common cancer universal and the seventh cause of cancer-related death in men .recent studies have revealed that cytochrome P450, family 1, subfamily B, polypeptide 1, which plays a role in metabolizing xenobiotics, is associated with different cancers. Therefore in the present study, we investigated the impact of CYP1B1-rs1056836 on esophagus squamous cell carcinoma (ESCC) patients. Method: 317 subjects, with and without ESCC were recruited. DNA was extracted and genotyped via Real-time PCR-Based Taq Man. Kaplan Meier curves were utilized to assess overall and progression-free survival. To evaluate the relationship between patients clinicopathological data, genotypic frequencies, disease prognosis, and patients survival, Pearson chi-square and t-test were used. Logistic regression was utilized to assess the association between the risk of ESCC and genotypes. Results: the genotypic frequency for GG, GC, and CC are respectively 58.6% , 29.8%, 11.5% in the healthy group and 51.8%, 36.14% and 12% in ESCC group. With respect to the recessive genetic inheritance model, an association between the GG genotype and stage of ESCC were found. Also, statistically significant results were not found for this variation and risk of ESCC. Patients with GG genotype had a decreased risk of nodal metastasis in comparison with patients with CC/CG genotype, although this link was not statistically significant. Conclusion: Our findings illustrated the correlation of CYP1B1-rs1056836 as a potential biomarker for ESCC patients, supporting further studies in larger populations in different ethnic groups. Moreover, further investigations are warranted to evaluate the association of emerging marker with dietary intake and lifestyle.Keywords: Cytochrome P450, esophagus squamous cell carcinoma, dietary intake, lifestyle
Procedia PDF Downloads 201538 Analogical Reasoning on Preschoolers’ Linguistic Performance
Authors: Yenie Norambuena
Abstract:
Analogical reasoning is a cognitive process that consists of structured comparisons of mental representations and scheme construction. Because of its heuristic function, it is ubiquitous in cognition and could play an important role in language development. The use of analogies is expressed early in children and this behavior is also reflected in language, suggesting a possible way to understand the complex links between thought and language. The current research examines factors of verbal and non-verbal reasoning that should be taken into consideration in the study of language development for their relations and predictive value. The study was conducted with 48 Chilean preschoolers (Spanish speakers) from 4 to 6-year-old. We assessed children’s verbal analogical reasoning, non-verbal analogical reasoning and linguistics skills (Listening Comprehension, Phonemic awareness, Alphabetic principle, Syllabification, Lexical repetition and Lexical decision). The results evidenced significant correlations between analogical reasoning factors and linguistic skills and they can predict linguistic performance mainly on oral comprehension, lexical decision and phonological skills. These findings suggest a fundamental interrelationship between analogical reasoning and linguistic performance on children’s and points to the need to consider this cognitive process in comprehensive theories of children's language development.Keywords: verbal analogical reasoning, non-verbal analogical reasoning, linguistic skills, language development
Procedia PDF Downloads 267537 The Effects of Consumer Inertia and Emotions on New Technology Acceptance
Authors: Chyi Jaw
Abstract:
Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.Keywords: cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity
Procedia PDF Downloads 296536 Collaboration in Palliative Care Networks in Urban and Rural Regions of Switzerland
Authors: R. Schweighoffer, N. Nagy, E. Reeves, B. Liebig
Abstract:
Due to aging populations, the need for seamless palliative care provision is of central interest for western societies. An essential aspect of palliative care delivery is the quality of collaboration amongst palliative care providers. Therefore, the current research is based on Bainbridge’s conceptual framework, which provides an outline for the evaluation of palliative care provision. This study is the first one to investigate the predictive validity of spatial distribution on the quantity of interaction amongst various palliative care providers. Furthermore, based on the familiarity principle, we examine whether the extent of collaboration influences the perceived quality of collaboration among palliative care providers in urban versus rural areas of Switzerland. Based on a population-representative survey of Swiss palliative care providers, the results of the current study show that professionals in densely populated areas report higher absolute numbers of interactions and are more satisfied with their collaborative practice. This indicates that palliative care providers who work in urban areas are better embedded into networks than their counterparts in more rural areas. The findings are especially important, considering that efficient collaboration is a prerequisite to achieve satisfactory patient outcomes. Conclusively, measures should be taken to foster collaboration in weakly interconnected palliative care networks.Keywords: collaboration, healthcare networks, palliative care, Switzerland
Procedia PDF Downloads 270535 The Biochemical and Radiographic Evaluation of the Non-Metastatic Bone Disease in Patients with Renal Cell Carcinoma Undergoing Hemodialysis
Authors: Aliakbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi
Abstract:
Background: Bones are commonly affected by renal cell carcinoma (RCC) (primarily or secondary), and this condition causes bone fragility. The aim of this study was to evaluate the diagnostic value of noninvasive methods for the diagnosis of ROD in RCC patients on hemodialysis (HD) in northern Iran. Methods: In this cross-sectional study, 50 RCC patients with ESRD referred to dialysis units in northern Iran during 2021-2024 were randomly selected and investigated. The biochemical and radiographic evaluation of ROD and its subtypes was performed, and then all patients underwent bone biopsy and histopathological study, and finally, the diagnostic value of the noninvasive methods was assessed. Results: The mean age of patients was 58.9 ± 11.7 years, and 27 cases (54.0%) were female. 38 (76.0%) of RCC patients with ESRD had ROD, and 12 patients (24.0%) had no evidence of bone disorders. The sensitivity, specificity, positive and predictive values and accuracy of the noninvasive methods for the diagnosis of ROD were 92%, 82%, 95%, 75% and 90%, respectively. Conclusion: This study showed that the frequency of ROD in RCC patients with ESRD in northern Iran was high and the biochemical and radiographic markers have a high diagnostic value for ROD as well as histopathological assessment.Keywords: renal cell carcinoma, renal osteodystrophy, hemodialysis, non-metastatic
Procedia PDF Downloads 12534 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech
Authors: Monica Gonzalez Machorro
Abstract:
Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment
Procedia PDF Downloads 127