Search results for: predictive%20model
324 The Hallmarks of War Propaganda: The Case of Russia-Ukraine Conflict
Authors: Veronika Solopova, Oana-Iuliana Popescu, Tim Landgraf, Christoph Benzmüller
Abstract:
Beginning in 2014, slowly building geopolitical tensions in Eastern Europe led to a full-blown conflict between the Russian Federation and Ukraine that generated an unprecedented amount of news articles and data from social media data, reflecting the opposing ideologies and narratives as a background and the essence of the ongoing war. These polarized informational campaigns have led to countless mutual accusations of misinformation and fake news, shaping an atmosphere of confusion and mistrust for many readers all over the world. In this study, we analyzed scraped news articles from Ukrainian, Russian, Romanian and English-speaking news outlets, on the eve of 24th of February 2022, compared to day five of the conflict (28th of February), to see how the media influenced and mirrored the changes in public opinion. We also contrast the sources opposing and supporting the stands of the Russian government in Ukrainian, Russian and Romanian media spaces. In a data-driven way, we describe how the narratives are spread throughout Eastern and Central Europe. We present predictive linguistic features surrounding war propaganda. Our results indicate that there are strong similarities in terms of rhetoric strategies in the pro-Kremlin media in both Ukraine and Russia, which, while being relatively neutral according to surface structure, use aggressive vocabulary. This suggests that automatic propaganda identification systems have to be tailored for each new case, as they have to rely on situationally specific words. Both Ukrainian and Russian outlets lean towards strongly opinionated news, pointing towards the use of war propaganda in order to achieve strategic goals.Keywords: linguistic, news, propaganda, Russia, ukraine
Procedia PDF Downloads 119323 The Determinants of Corporate Hedging Strategy
Authors: Ademola Ajibade
Abstract:
Previous studies have explored several rationales for hedging strategies, but the evidence provided by these studies remains ambiguous. Using a hand-collected dataset of 2460 observations of non-financial firms in eight African countries covering 2013-2022, this paper investigates the determinants and extent of corporate hedge use. In particular, this paper focuses on the link between country-specific conditions and the corporate hedging behaviour of firms. To our knowledge, this represents the first African studies investigating the association between country-specific factors and corporate hedging policy. The evidence based on both univariate and multivariate reveal that country-level corruption and government quality are important indicators of the decisions and extent of hedge use among African firms. However, the connection between country-specific factors as a rationale for corporate hedge use is stronger for firms located in highly corrupt countries. This suggest that firms located in corrupt countries are more motivated to hedge due to the large exposure they face. In addition, we test the risk management theories and observe that CEOs educational qualification and experience shape corporate hedge behaviour. We implement a lagged variables in a panel data setting to address endogeneity concern and implement an interaction term between governance indices and firm-specific variables to test for robustness. Generally, our findings reveal that institutional factors shape risk management decisions and have a predictive power in explaining corporate hedging strategy.Keywords: corporate hedging, governance quality, corruption, derivatives
Procedia PDF Downloads 89322 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)
Authors: Silvia Arrate, Waldo Salud, Eloy París
Abstract:
The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.Keywords: cutting tools, data science, prediction, TBM, wear
Procedia PDF Downloads 46321 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 13320 Evaluation of Firearm Injury Syndromic Surveillance in Utah
Authors: E. Bennion, A. Acharya, S. Barnes, D. Ferrell, S. Luckett-Cole, G. Mower, J. Nelson, Y. Nguyen
Abstract:
Objective: This study aimed to evaluate the validity of a firearm injury query in the Early Notification of Community-based Epidemics syndromic surveillance system. Syndromic surveillance data are used at the Utah Department of Health for early detection of and rapid response to unusually high rates of violence and injury, among other health outcomes. The query of interest was defined by the Centers for Disease Control and Prevention and used chief complaint and discharge diagnosis codes to capture initial emergency department encounters for firearm injury of all intents. Design: Two epidemiologists manually reviewed electronic health records of emergency department visits captured by the query from April-May 2020, compared results, and sent conflicting determinations to two arbiters. Results: Of the 85 unique records captured, 67 were deemed probable, 19 were ruled out, and two were undetermined, resulting in a positive predictive value of 75.3%. Common reasons for false positives included non-initial encounters and misleading keywords. Conclusion: Improving the validity of syndromic surveillance data would better inform outbreak response decisions made by state and local health departments. The firearm injury definition could be refined to exclude non-initial encounters by negating words such as “last month,” “last week,” and “aftercare”; and to exclude non-firearm injury by negating words such as “pellet gun,” “air gun,” “nail gun,” “bullet bike,” and “exit wound” when a firearm is not mentioned.Keywords: evaluation, health information system, firearm injury, syndromic surveillance
Procedia PDF Downloads 165319 Consumer Value and Purchase Behaviour: The Mediating Role of Consumers' Expectations of Corporate Social Responsibility in Durban, South Africa
Authors: Abosede Ijabadeniyi, Jeevarathnam P. Govender
Abstract:
Prevailing strategic Corporate Social Responsibility (CSR) research is predominantly centred around the predictive implications of the construct on behavioural outcomes. This phenomenon limits the depth of our understanding of the trajectory of strategic CSR. The purpose of this paper is to investigate the mediating effects of CSR expectations on the relationship between consumer value and purchase behaviour by identifying the implications of the multidimensionality of CSR (economic, legal, ethical and philanthropic) on the latter. Drawing from the stakeholder theory and its interplay with the prevalence of Ubuntu values; the underlying force which governs the values of South African camaraderie, we hypothesise that the multidimensionality of CSR expectations has positive mediating effects in the relationship between consumer value and purchase behaviour. Partial Least Square (PLS) path modelling was employed, using six measures of the average path coefficient (APC) to test the relationship between the constructs. Results from a sample of mall shoppers of (n=411), based on a survey conducted across five major malls in Durban, South Africa, indicate that only the legal dimension of CSR serves as a mediating factor in the relationship among the constructs. South Africa’s unique history of segregation, leading to the proliferation of spontaneous organisational approach to CSR and higher expectations of organisational legitimacy are identified as antecedents of consumers’ reliance on the law (legal CSR) to redress the ills of the past, sustainable development, and socially responsible behaviour. The paper also highlights theoretical and managerial implications for future research.Keywords: consumer value, corporate marketing, corporate social responsibility, purchase behaviour, Ubuntu
Procedia PDF Downloads 369318 A Physiological Approach for Early Detection of Hemorrhage
Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain
Abstract:
Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning
Procedia PDF Downloads 166317 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication
Authors: Vedant Janapaty
Abstract:
Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.Keywords: estuary, remote sensing, machine learning, Fourier transform
Procedia PDF Downloads 102316 Obstetric Outcome after Hysteroscopic Septum Resection in Patients with Uterine Septa of Various Sizes
Authors: Nilanchali Singh, Alka Kriplani, Reeta Mahey, Garima Kachhawa
Abstract:
Objective: Resection of larger uterine septa does improve obstetric performance but whether smaller septa need resection and their impact on obstetric outcome is not clear. We wanted to evaluate the role of septal resection of septa of various sizes in obstetric performance. Methods: This retrospective cohort study comprised of 107 patients with uterine septum. The patients were categorized on the basis of extent of uterine septum into four groups: a) Subsepta (< 1/3rd), b) Septum > 1/3 to ½, c) Septum>1/2 to whole uterine cervix, d) Septum traversing whole of uterine cavity and cervix. Out of these 107 patients, 74 could be contacted telephonically and outcomes recorded. Sensitivity and specificity of investigative modalities were calculated. Results: Infertility was seen in maximum number of cases in complete septa (100%), whereas abortions were seen more commonly, in subsepta (18%). MRI had maximum sensitivity and positive predictive value, followed by hysteron-salpingography. Tubal block, fibroid, endometriosis, pelvic adhesions, ovarian pathologies were seen in some but no definite association of these pathologies was seen with any subgroup of septa. Almost five-year follow-up was recorded in all the subgroups. Significant reduction in infertility was seen in all septal subgroup (p=0.046, 0.032 & 0.05) patients except in subsepta (< 1/3rd uterine cavity) after septum resection. Abortions were significantly reduced (p=0.048) in third subgroup (i.e. septum > ½ to upto internal os) after hysteroscopic septum resection. Take home baby rate was 33% in subsepta and around 50% in the remaining subgroups of septa. Conclusions: Septal resection improves obstetric performance in patients with uterine septa of various sizes. Whether septal resection improves obstetric performance in patients with subsepta or very small septa, is controversial. Larger studies addressing this issue need to be planned.Keywords: septal resection, obstetric outcome, infertility, septum size
Procedia PDF Downloads 317315 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology
Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon
Abstract:
There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental valuesKeywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)
Procedia PDF Downloads 540314 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 110313 Contribution of Spatial Teledetection to the Geological Mapping of the Imiter Buttonhole: Application to the Mineralized Structures of the Principal Corps B3 (CPB3) of the Imiter Mine (Anti-atlas, Morocco)
Authors: Bouayachi Ali, Alikouss Saida, Baroudi Zouhir, Zerhouni Youssef, Zouhair Mohammed, El Idrissi Assia, Essalhi Mourad
Abstract:
The world-class Imiter silver deposit is located on the northern flank of the Precambrian Imiter buttonhole. This deposit is formed by epithermal veins hosted in the sandstone-pelite formations of the lower complex and in the basic conglomerates of the upper complex, these veins are controlled by a regional scale fault cluster, oriented N70°E to N90°E. The present work on the contribution of remote sensing on the geological mapping of the Imiter buttonhole and application to the mineralized structures of the Principal Corps B3. Mapping on satellite images is a very important tool in mineral prospecting. It allows the localization of the zones of interest in order to orientate the field missions by helping the localization of the major structures which facilitates the interpretation, the programming and the orientation of the mining works. The predictive map also allows for the correction of field mapping work, especially the direction and dimensions of structures such as dykes, corridors or scrapings. The use of a series of processing such as SAM, PCA, MNF and unsupervised and supervised classification on a Landsat 8 satellite image of the study area allowed us to highlight the main facies of the Imite area. To improve the exploration research, we used another processing that allows to realize a spatial distribution of the alteration mineral indices, and the application of several filters on the different bands to have lineament maps.Keywords: principal corps B3, teledetection, Landsat 8, Imiter II, silver mineralization, lineaments
Procedia PDF Downloads 93312 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast
Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi
Abstract:
Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature
Procedia PDF Downloads 277311 Measurements and Predictions of Hydrates of CO₂-rich Gas Mixture in Equilibrium with Multicomponent Salt Solutions
Authors: Abdullahi Jibril, Rod Burgass, Antonin Chapoy
Abstract:
Carbon dioxide (CO₂) is widely used in reservoirs to enhance oil and gas production, mixing with natural gas and other impurities in the process. However, hydrate formation frequently hinders the efficiency of CO₂-based enhanced oil recovery, causing pipeline blockages and pressure build-ups. Current hydrate prediction methods are primarily designed for gas mixtures with low CO₂ content and struggle to accurately predict hydrate formation in CO₂-rich streams in equilibrium with salt solutions. Given that oil and gas reservoirs are saline, experimental data for CO₂-rich streams in equilibrium with salt solutions are essential to improve these predictive models. This study investigates the inhibition of hydrate formation in a CO₂-rich gas mixture (CO₂, CH₄, N₂, H₂ at 84.73/15/0.19/0.08 mol.%) using multicomponent salt solutions at concentrations of 2.4 wt.%, 13.65 wt.%, and 27.3 wt.%. The setup, test fluids, methodology, and results for hydrates formed in equilibrium with varying salt solution concentrations are presented. Measurements were conducted using an isochoric pressure-search method at pressures up to 45 MPa. Experimental data were compared with predictions from a thermodynamic model based on the Cubic-Plus-Association equation of state (EoS), while hydrate-forming conditions were modeled using the van der Waals and Platteeuw solid solution theory. Water activity was evaluated based on hydrate suppression temperature to assess consistency in the inhibited systems. Results indicate that hydrate stability is significantly influenced by inhibitor concentration, offering valuable guidelines for the design and operation of pipeline systems involved in offshore gas transport of CO₂-rich streams.Keywords: CO₂-rich streams, hydrates, monoethylene glycol, phase equilibria
Procedia PDF Downloads 11310 Transcriptomic Analysis of Non-Alcoholic Fatty Liver Disease in Cafeteria Diet Induced Obese Rats
Authors: Mohammad Jamal
Abstract:
Non-alcoholic fatty liver disease (NAFLD) has become one of the most chronic liver diseases, prevalent among people with morbid obesity. NAFLD does not develop clinically significant liver disease, however cirrhosis and liver cancer develop in subset and currently there are no approved therapies for the treatment of NAFLD. The study is aimed to understand the various key genes involved in the mechanism of NAFLD which can be valuable for developing diagnostic and predictive biomarkers based on their histologic stage of liver. The study was conducted on 16 male Sprague Dawley rats. The animals were divided in two groups: control group (n=8) fed on ad libitum normal chow and regular water and the cafeteria group (CAF)) (n=8) fed on high fatty/ carbohydrate diet. The animals received their respective diet from 4 weeks onwards from D.O.B until 25 weeks. Liver was extracted and RT² Profiler PCR Array was used to assess the NAFLD related genes. Histological evaluation was performed using H&E stain in liver tissue sections. Our PCR array results showed that genes involved in anti-inflammatory activity (Ifng, IL10), fatty acid uptake/oxidation (Fabp5), apoptosis (Fas), lipogenesis (Gck and Srebf1), Insulin signalling (Igfbp1) and metabolic pathway (pdk4) were upregulated in the liver of cafeteria fed obese rats. Bloated hepatocytes, displaced nucleus and higher lipid content were seen in the liver of cafeteria fed obese rats. Although Liver biopsies remain the gold standard in evaluating NAFLD, however an approach towards non-invasive markers could be used in understanding the physiology, therapeutic potential, and the targets to combat NAFLD.Keywords: biomarkers, cafeteria diet, obesity, NAFLD
Procedia PDF Downloads 141309 Modeling Breathable Particulate Matter Concentrations over Mexico City Retrieved from Landsat 8 Satellite Imagery
Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Magnolia G. Martinez-Rivera, Pablo de J. Angeles-Salto, Carlos Herrera-Ventosa
Abstract:
In order to diminish health risks, it is of major importance to monitor air quality. However, this process is accompanied by the high costs of physical and human resources. In this context, this research is carried out with the main objective of developing a predictive model for concentrations of inhalable particles (PM10-2.5) using remote sensing. To develop the model, satellite images, mainly from Landsat 8, of the Mexico City’s Metropolitan Area were used. Using historical PM10 and PM2.5 measurements of the RAMA (Automatic Environmental Monitoring Network of Mexico City) and through the processing of the available satellite images, a preliminary model was generated in which it was possible to observe critical opportunity areas that will allow the generation of a robust model. Through the preliminary model applied to the scenes of Mexico City, three areas were identified that cause great interest due to the presumed high concentration of PM; the zones are those that present high plant density, bodies of water and soil without constructions or vegetation. To date, work continues on this line to improve the preliminary model that has been proposed. In addition, a brief analysis was made of six models, presented in articles developed in different parts of the world, this in order to visualize the optimal bands for the generation of a suitable model for Mexico City. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.Keywords: air quality, modeling pollution, particulate matter, remote sensing
Procedia PDF Downloads 154308 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan
Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed
Abstract:
This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.Keywords: attitude, Islamic credit card, religiosity, subjective norms
Procedia PDF Downloads 143307 Entrepreneurship Education and Student Entrepreneurial Intention: A Comprehensive Review, Synthesis of Empirical Findings, and Strategic Insights for Future Research Advancements
Authors: Abdul Waris Jalili, Yanqing Wang, Som Suor
Abstract:
This research paper explores the relationship between entrepreneurship education and students' entrepreneurial intentions. It aims to determine if entrepreneurship education reliably predicts students' intention to become entrepreneurs and how and when this relationship occurs. This study aims to investigate the predictive relationship between entrepreneurship education and student entrepreneurial intentions. The goal is to understand the factors that influence this relationship and to identify any mediating or moderating factors. A thorough and systematic search and review of empirical articles published between 2013 and 2023 were conducted. Three databases, Google Scholar, Science Direct, and PubMed, were explored to gather relevant studies. Criteria such as reporting empirical results, publication in English, and addressing the research questions were used to select 35 papers for analysis. The collective findings of the reviewed studies suggest a generally positive relationship between entrepreneurship education and student entrepreneurial intentions. However, recent findings indicate that this relationship may be more complex than previously thought. Mediators and moderators have been identified, highlighting instances where entrepreneurship education indirectly influences student entrepreneurial intentions. The review also emphasizes the need for more robust research designs to establish causality in this field. This research adds to the existing literature by providing a comprehensive review of the relationship between entrepreneurship education and student entrepreneurial intentions. It highlights the complexity of this relationship and the importance of considering mediators and moderators. The study also calls for future research to explore different facets of entrepreneurship education independently and examine complex relationships more comprehensively.Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intention, entrepreneurial self-efficacy
Procedia PDF Downloads 65306 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 132305 Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions
Authors: Suwapitch Chalongkulasak, Teerasak E-Kobon, Pramote Chumnanpuen
Abstract:
Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.Keywords: Propionibacterium acnes, Achatina fulica, peptidomes, antibacterial peptides, snail mucus
Procedia PDF Downloads 129304 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 61303 The Theory of the Mystery: Unifying the Quantum and Cosmic Worlds
Authors: Md. Najiur Rahman
Abstract:
This hypothesis reveals a profound and symmetrical connection that goes beyond the boundaries of quantum physics and cosmology, revolutionizing our understanding of the fundamental building blocks of the cosmos, given its name ‘The Theory of the Mystery’. This theory has an elegantly simple equation, “R = ∆r / √∆m” which establishes a beautiful and well-crafted relationship between the radius (R) of an elementary particle or galaxy, the relative change in radius (∆r), and the mass difference (∆m) between related entities. It is fascinating to note that this formula presents a super synchronization, one which involves the convergence of every basic particle and any single celestial entity into perfect alignment with its respective mass and radius. In addition, we have a Supporting equation that defines the mass-radius connection of an entity by the equation: R=√m/N, where N is an empirically established constant, determined to be approximately 42.86 kg/m, representing the proportionality between mass and radius. It provides precise predictions, collects empirical evidence, and explores the far-reaching consequences of theories such as General Relativity. This elegant symmetry reveals a fundamental principle that underpins the cosmos: each component, whether small or large, follows a precise mass-radius relationship to exert gravity by a universal law. This hypothesis represents a transformative process towards a unified theory of physics, and the pursuit of experimental verification will show that each particle and galaxy is bound by gravity and plays a unique but harmonious role in shaping the universe. It promises to reveal the great symphony of the mighty cosmos. The predictive power of our hypothesis invites the exploration of entities at the farthest reaches of the cosmos, providing a bridge between the known and the unknown.Keywords: unified theory, quantum gravity, mass-radius relationship, dark matter, uniform gravity
Procedia PDF Downloads 103302 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 133301 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 39300 Portable Palpation Probe for Diabetic Foot Ulceration Monitoring
Authors: Bummo Ahn
Abstract:
Palpation is widely used to measure soft tissue firmness or stiffness in the living condition in order to apply detection, diagnosis, and treatment of tumors, scar tissue, abnormal muscle tone, or muscle spasticity. Since these methods are subjective and depend on the proficiency level, it is concluded that there are other diagnoses depending on the condition of the experts and the results are not objective. The mechanical property obtained by using the elasticity of the tissue is important to calculate a predictive variable for monitoring abnormal tissues. If the mechanical load such as reaction force on the foot increases in the same region under the same conditions, the mechanical property of the tissue is changed. Therefore, objective diagnosis is possible not only for experts but also for patients using this quantitative information. Furthermore, the portable system also allows non-experts to easily diagnose at home, not in hospitals or institutions. In this paper, we introduce a portable palpation system that can be used to measure the mechanical properties of human tissue, which can be applied to monitor diabetic foot ulceration patients with measuring the mechanical property change of foot tissue. The system was designed to be smaller and portable in comparison with the conventional palpation systems. It is consists of the probe, the force sensor, linear actuator, micro control unit, the display module, battery, and housing. Using this system, we performed validation experiments by applying different palpations (3 and 5 mm) to soft tissue (silicone rubber) and measured reaction forces. In addition, we estimated the elastic moduli of the soft tissue against different palpations and compare the estimated elastic moduli that show similar value even if the palpation depths are different.Keywords: palpation probe, portable, diabetic foot ulceration, monitoring, mechanical property
Procedia PDF Downloads 119299 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation
Procedia PDF Downloads 204298 Cognitive Rehabilitation in Schizophrenia: A Review of the Indian Scenario
Authors: Garima Joshi, Pratap Sharan, V. Sreenivas, Nand Kumar, Kameshwar Prasad, Ashima N. Wadhawan
Abstract:
Schizophrenia is a debilitating disorder and is marked by cognitive impairment, which deleteriously impacts the social and professional functioning along with the quality of life of the patients and the caregivers. Often the cognitive symptoms are in their prodromal state and worsen as the illness progresses; they have proven to have a good predictive value for the prognosis of the illness. It has been shown that intensive cognitive rehabilitation (CR) leads to improvements in the healthy as well as cognitively-impaired subjects. As the majority of population in India falls in the lower to middle socio-economic status and have low education levels, using the existing packages, a majority of which are developed in the West, for cognitive rehabilitation becomes difficult. The use of technology is also restricted due to the high costs involved and the limited availability and familiarity with computers and other devices, which pose as an impedance for continued therapy. Cognitive rehabilitation in India uses a plethora of retraining methods for the patients with schizophrenia targeting the functions of attention, information processing, executive functions, learning and memory, and comprehension along with Social Cognition. Psychologists often have to follow an integrative therapy approach involving social skills training, family therapy and psychoeducation in order to maintain the gains from the cognitive rehabilitation in the long run. This paper reviews the methodologies and cognitive retaining programs used in India. It attempts to elucidate the evolution and development of methodologies used, from traditional paper-pencil based retraining to more sophisticated neuroscience-informed techniques in cognitive rehabilitation of deficits in schizophrenia as home-based or supervised and guided programs for cognitive rehabilitation.Keywords: schizophrenia, cognitive rehabilitation, neuropsychological interventions, integrated approached to rehabilitation
Procedia PDF Downloads 361297 Factors Associated with Non-Adherence to Antiretroviral Treatment among HIV Infected Patients in Ukraine
Authors: Larissa Burruano, Sergey Grabovyj, Irina Nguen
Abstract:
The study aimed to assess the level of adherence to anti retroviral therapy (ART) and to examine the relationship between adherence and risk behavior factor (drug use) among patients infected with HIV. The patients with newly diagnosed or established HIV infection under follow-up at the Sumskij Regional Centre for AIDS Prevention in Ukraine were eligible for this study. Medical records were used to measure the patient’s adherence to medication. Measurements were obtained at month 6 and at month 12 to calculate the number of medication omission during the past 30 days: (on a 2-point scale – once until three in a month – were considered adherent, three and more in a month – were considered non-adherent). Of the 50 study participants, 27 (54.0%) were men and 23 (46.0%) women. The mean age is 35.2 years (SD= 5.1). A majority of the patients (82.0%) is in the age group of 25-30 years. The main level of adherence was 74.0% and 66.0% at 6 and 12 months, respectively. The main routes of HIV transmission were drug injection among men 12 (44.4%) and sexual contact among women 11 (47.8%). Univariate analyses indicated that patients who had lower level of education were more likely to have been non-adherent at month 6- (X2 =5.1, n=50, p < .05) and at month 12 (X2 = 4.34, n=50, p < .05). Multivariate tests showed that only age (OR= 1.163 [95% CI 0.98–1.370]) was significant independent predictor of treatment adherence, while gender, education, employment status were not predictive for the risk of developing non-compliance. There was not a significant interaction between non-adherence and intravenous drug use. Consistent with these findings, younger people were more likely to have missed a dose of their medication because they had a greater sense of invulnerability than older patients. The study indicates that the socio demographic characteristic should be taken into an account in the future research regarding adherence in the case of HIV infection. If the patient anti retroviral adherence can be improved by qualitatively better medical care in all regions of the Ukraine, behavioral changes in the population can to be expected in the long term.Keywords: HIV, antiretroviral therapy, adherence, Ukraine, Eastern Europe
Procedia PDF Downloads 287296 Enhancing Project Performance Forecasting using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management
Procedia PDF Downloads 46295 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 26