Search results for: optical networks
3758 Fundamental Study on the Growth Mechanism of MoS₂ Quantum Dots: Impact of Reaction Time and Precursor Concentration
Authors: Geetika Sahu, Chanchal Chakraborty, Subhadeep Roy, Souri Banerjee
Abstract:
We aim to investigate the growth mechanism of molybdenum disulfide quantum dots (MoS₂ QDs) under hydrothermal reaction conditions by exploring two important parameters that control the growth process – (i) reaction time and (ii) precursor concentration. This fundamental study will focus on tuning the particle size, which eventually alters the optical and electronic properties of the QDs due to the quantum confinement effect, as well as monitoring the spatial growth of quantum dot sheets prepared through the aggregation of individual quantum dots. Among the mentioned two parameters, the former dictates the duration of aggregation while the latter controls the aggregation rate. The hydrothermally synthesized QDs have been analyzed through morphological and optical tools, and we used fractal analysis to understand the growth process. With increasing reaction time T (at a constant precursor concentration ≈ 73mM), the growth process shows a crossover from a bottom-up to a top-down process at T= 14 hours. A non-monotonic behavior of average QD size ( d ) is observed on the other side of it ( d=7nm at T= 7 hours; d=16nm at T=14 hours; d=2nm at T=30 hours), which is supported by morphological studies like TEM and STEM, as well as optical studies like UV visible and PL spectra. Higher (lower) QD sizes correspond to lower (higher) bandgap and significant redshift (blueshift) in the PL spectra. The fractal dimension ( f) of the QD clusters shows a sudden drop from 1.92 at this particular time T=14 to 1.82 and saturates at this value afterward. This signifies the onset of the fragmentation of the clusters due to the unavailability of active precursors. To validate the role of the precursors that have been claimed, we have carried out photophysical and statistical studies at a constant reaction time (14 hours ) and have varied the precursor concentration instead. We observe a similar non-monotonic behavior in QD size (maximum size at ≈ 73mM) supported by the morphological and optical studies as the precursor concentration varies from 22mM ( d=10nm) to 125mM (d=7nm ). This is in agreement with fractal analysis, where the maximum df of 1.97 is observed at 73 mM which decreases at both higher ( df = 1.67 at 125mM ) and lower concentration ( df = 1.75 at 22mM). This impact of precursor concentration is consistent for all reaction times. The fractal dimension of the QD sheets formed during the seeding and growth process is replicated for different reaction times as well as precursor concentration values through numerical simulations of random walk process on a 2D square lattice.Keywords: aggregation and fragmentation, fractal analysis, optical studies, random walk
Procedia PDF Downloads 123757 Performance Evaluation of One and Two Dimensional Prime Codes for Optical Code Division Multiple Access Systems
Authors: Gurjit Kaur, Neena Gupta
Abstract:
In this paper, we have analyzed and compared the performance of various coding schemes. The basic ID prime sequence codes are unique in only dimension, i.e. time slots, whereas 2D coding techniques are not unique by their time slots but with their wavelengths also. In this research, we have evaluated and compared the performance of 1D and 2D coding techniques constructed using prime sequence coding pattern for Optical Code Division Multiple Access (OCDMA) system on a single platform. Analysis shows that 2D prime code supports lesser number of active users than 1D codes, but they are having large code family and are the most secure codes compared to other codes. The performance of all these codes is analyzed on basis of number of active users supported at a Bit Error Rate (BER) of 10-9.Keywords: CDMA, OCDMA, BER, OOC, PC, EPC, MPC, 2-D PC/PC, λc, λa
Procedia PDF Downloads 3373756 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm
Authors: Muhammad Bilal, Zhongfeng Qiu
Abstract:
Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.Keywords: AEORNET, AOD, SARA, GOCI, Beijing
Procedia PDF Downloads 1723755 Effect of Gamma Irradiation on Structural and Optical Properties of ZnO/Mesoporous Silica Nanocomposite
Authors: K. Sowri Babu, P. Srinath, N. Rajeswara Rao, K. Venugopal Reddy
Abstract:
The effect of gamma ray irradiation on morphology and optical properties of ZnO/Mesoporous silica (MPS) nanocomposite was studied. The ZnO/MPS nanocomposite was irradiated with gamma rays of doses 30, 60, and 90 kGy and dose-rate of irradiation was 0.15 kGy/hour. Irradiated samples are characterized with FE-SEM, FT-IR, UV-vis, and Photoluminescence (PL) spectrometers. SEM pictures showed that morphology changed from spherical to flake like morphology. UV-vis analysis showed that the band gap increased with increase of gamma ray irradiation dose. This enhancement of the band gap is assigned to the depletion of oxygen vacancies with irradiation. The intensity of PL peak decreased gradually with increase of gamma ray irradiation dose. The decrease in PL intensity is attributed to the decrease of oxygen vacancies at the interface due to poor interface and improper passivation between ZnO/MPS.Keywords: ZnO nanoparticles, nanocomposites, mesoporous silica, photoluminescence
Procedia PDF Downloads 2343754 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1993753 Mechanical and Optical Properties of Doped Aluminum Nitride Thin Films
Authors: Padmalochan Panda, R. Ramaseshan
Abstract:
Aluminum nitride (AlN) is a potential candidate for semiconductor industry due to its wide band gap (6.2 eV), high thermal conductivity and low thermal coefficient of expansion. A-plane oriented AlN film finds an important role in deep UV-LED with higher isotropic light extraction efficiency. Also, Cr-doped AlN films exhibit dilute magnetic semiconductor property with high Curie temperature (300 K), and thus compatible with modern day microelectronics. In this work, highly a-axis oriented wurtzite AlN and Al1-xMxN (M = Cr, Ti) films have synthesized by reactive co-sputtering technique at different concentration. Crystal structure of these films is studied by Grazing incidence X-ray diffraction (GIXRD) and Transmission electron microscopy (TEM). Identification of binding energy and concentration (x) in these films is carried out by X-ray photoelectron spectroscopy (XPS). Local crystal structure around the Cr and Ti atom of these films are investigated by X-ray absorption spectroscopy (XAS). It is found that Cr and Ti replace the Al atom in AlN lattice and the bond lengths in first and second coordination sphere with N and Al, respectively, decrease concerning doping concentration due to strong p-d hybridization. The nano-indentation hardness of Cr and Ti-doped AlN films seems to increase from 17.5 GPa (AlN) to around 23 and 27.5 GPa, respectively. An-isotropic optical properties of these films are studied by the Spectroscopic Ellipsometry technique. Refractive index and extinction coefficient of these films are enhanced in normal dispersion region as compared to the parent AlN film. The optical band gap energies also seem to vary between deep UV to UV regions with the addition of Cr, thus by bringing out the usefulness of these films in the area of optoelectronic device applications.Keywords: ellipsometry, GIXRD, hardness, XAS
Procedia PDF Downloads 1153752 Force Sensor for Robotic Graspers in Minimally Invasive Surgery
Authors: Naghmeh M. Bandari, Javad Dargahi, Muthukumaran Packirisamy
Abstract:
Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production.Keywords: force sensor, minimally invasive surgery, optical sensor, robotic surgery, tactile sensor
Procedia PDF Downloads 2313751 Proposing a Boundary Coverage Algorithm for Underwater Sensor Network
Authors: Seyed Mohsen Jameii
Abstract:
Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.Keywords: boundary coverage, clustering, divide and conquer, underwater sensor nodes
Procedia PDF Downloads 3433750 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents
Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary
Abstract:
Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis
Procedia PDF Downloads 3663749 Optimization of Vertical Axis Wind Turbine Based on Artificial Neural Network
Authors: Mohammed Affanuddin H. Siddique, Jayesh S. Shukla, Chetan B. Meshram
Abstract:
The neural networks are one of the power tools of machine learning. After the invention of perceptron in early 1980's, the neural networks and its application have grown rapidly. Neural networks are a technique originally developed for pattern investigation. The structure of a neural network consists of neurons connected through synapse. Here, we have investigated the different algorithms and cost function reduction techniques for optimization of vertical axis wind turbine (VAWT) rotor blades. The aerodynamic force coefficients corresponding to the airfoils are stored in a database along with the airfoil coordinates. A forward propagation neural network is created with the input as aerodynamic coefficients and output as the airfoil co-ordinates. In the proposed algorithm, the hidden layer is incorporated into cost function having linear and non-linear error terms. In this article, it is observed that the ANNs (Artificial Neural Network) can be used for the VAWT’s optimization.Keywords: VAWT, ANN, optimization, inverse design
Procedia PDF Downloads 3253748 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 4993747 Fault Tree Analysis and Bayesian Network for Fire and Explosion of Crude Oil Tanks: Case Study
Authors: B. Zerouali, M. Kara, B. Hamaidi, H. Mahdjoub, S. Rouabhia
Abstract:
In this paper, a safety analysis for crude oil tanks to prevent undesirable events that may cause catastrophic accidents. The estimation of the probability of damage to industrial systems is carried out through a series of steps, and in accordance with a specific methodology. In this context, this work involves developing an assessment tool and risk analysis at the level of crude oil tanks system, based primarily on identification of various potential causes of crude oil tanks fire and explosion by the use of Fault Tree Analysis (FTA), then improved risk modelling by Bayesian Networks (BNs). Bayesian approach in the evaluation of failure and quantification of risks is a dynamic analysis approach. For this reason, have been selected as an analytical tool in this study. Research concludes that the Bayesian networks have a distinct and effective method in the safety analysis because of the flexibility of its structure; it is suitable for a wide variety of accident scenarios.Keywords: bayesian networks, crude oil tank, fault tree, prediction, safety
Procedia PDF Downloads 6643746 Message Framework for Disaster Management: An Application Model for Mines
Authors: A. Baloglu, A. Çınar
Abstract:
Different tools and technologies were implemented for Crisis Response and Management (CRM) which is generally using available network infrastructure for information exchange. Depending on type of disaster or crisis, network infrastructure could be affected and it could not be able to provide reliable connectivity. Thus any tool or technology that depends on the connectivity could not be able to fulfill its functionalities. As a solution, a new message exchange framework has been developed. Framework provides offline/online information exchange platform for CRM Information Systems (CRMIS) and it uses XML compression and packet prioritization algorithms and is based on open source web technologies. By introducing offline capabilities to the web technologies, framework will be able to perform message exchange on unreliable networks. The experiments done on the simulation environment provide promising results on low bandwidth networks (56kbps and 28.8 kbps) with up to 50% packet loss and the solution is to successfully transfer all the information on these low quality networks where the traditional 2 and 3 tier applications failed.Keywords: crisis response and management, XML messaging, web services, XML compression, mining
Procedia PDF Downloads 3413745 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 1843744 Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel
Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu
Abstract:
The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.Keywords: free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution
Procedia PDF Downloads 1753743 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin
Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya
Abstract:
Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.Keywords: paleochannels, optical data, SAR image, SNAP
Procedia PDF Downloads 933742 Blockchain’s Feasibility in Military Data Networks
Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam
Abstract:
Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing
Procedia PDF Downloads 1393741 Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network
Authors: Abdelazziz Aouiche, El Moundher Aouiche, Mouhamed Salah Soudani
Abstract:
Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems.Keywords: modeling, photovoltaic panel, artificial neural networks, maximum power point tracking
Procedia PDF Downloads 893740 Solving the Quadratic Programming Problem Using a Recurrent Neural Network
Authors: A. A. Behroozpoor, M. M. Mazarei
Abstract:
In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed.Keywords: REFERENCES [1] Xia, Y, A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7(6), 1996, pp.1544–1548. [2] Xia, Y., & Wang, J, A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 2005, pp. 379–386. [3] Xia, Y., H, Leung, & J, Wang, A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I, 49(4), 2002, pp.447–458.B. [4] Q. Liu, Z. Guo, J. Wang, A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 2012, pp. 99-109.
Procedia PDF Downloads 6453739 Design an Architectural Model for Deploying Wireless Sensor Network to Prevent Forest Fire
Authors: Saurabh Shukla, G. N. Pandey
Abstract:
The fires have become the most serious disasters to forest resources and the human environment. In recent years, due to climate change, human activities and other factors the frequency of forest fires has increased considerably. The monitoring and prevention of forest fires have now become a global concern for forest fire prevention organizations. Currently, the methods for forest fire prevention largely consist of patrols, observation from watch towers. Thus, software like deployment of the wireless sensor network to prevent forest fire is being developed to get a better estimate of the temperature and humidity prospects. Now days, wireless sensor networks are beginning to be deployed at an accelerated pace. It is not unrealistic to expect that in coming years the world will be covered with wireless sensor networks. This new technology has lots of unlimited potentials and can be used for numerous application areas including environmental, medical, military, transportation, entertainment, crisis management, homeland defense, and smart spaces.Keywords: deployment, sensors, wireless sensor networks, forest fires
Procedia PDF Downloads 4373738 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter
Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai
Abstract:
Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking
Procedia PDF Downloads 4823737 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm
Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy
Abstract:
IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.Keywords: IoT, fog networks, data stewardship, dynamic access policy
Procedia PDF Downloads 603736 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition
Procedia PDF Downloads 4563735 An Efficient Fundamental Matrix Estimation for Moving Object Detection
Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung
Abstract:
In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.Keywords: corner detection, optical flow, epipolar geometry, RANSAC
Procedia PDF Downloads 4093734 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems
Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas
Abstract:
This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.Keywords: transportation networks, freight delivery, data flow, monitoring, e-services
Procedia PDF Downloads 1293733 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based on Wimax Networks
Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas
Abstract:
Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non-real time traffic in congested networks by considering channel status.Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).
Procedia PDF Downloads 2883732 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 763731 Understanding Social Networks in Community's Coping Capacity with Floods: A Case Study of a Community in Cambodia
Authors: Ourn Vimoil, Kallaya Suntornvongsagul
Abstract:
Cambodia is considered as one of the most disaster prone countries in South East Asia, and most of natural disasters are related to floods. Cambodia, a developing country, faces significant impacts from floods, such as environmental, social, and economic losses. Using data accessed from focus group discussions and field surveys with villagers in Ba Baong commune, prey Veng province, Cambodia, the research would like to examine roles of social networks in raising community’s coping capacity with floods. The findings indicate that social capital play crucial roles in three stages of floods, namely preparedness, response, and recovery to overcome the crisis. People shared their information and resources, and extent their assistances to one another in order to adapt to floods. The study contribute to policy makers, national and international agencies working on this issue to pay attention on social networks as one factors to accelerate flood coping capacity at community level.Keywords: social network, community, coping capacity, flood, Cambodia
Procedia PDF Downloads 3663730 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range
Authors: Alberto Mínguez-Martínez, Jesús de Vicente y Oliva
Abstract:
Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro-and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. Among the different options proposed in the literature, the areal topography methods may be the most relevant because they could be compared to those measurements performed using Coordinate Measuring Machines (CMM’s). These measuring methods give (x, y, z) coordinates for each point, expressing it in two different ways, either expressing the z coordinate as a function of x, denoting it as z(x), for each Y-axis coordinate, or as a function of the x and y coordinates, denoting it as z (x, y). Between others, optical measuring instruments, mainly microscopes, are extensively used to carry out measurements at scales lower than one millimeter because it is a non-destructive measuring method. In this paper, the authors propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments by applying minor changes.Keywords: industrial environment, confocal microscope, optical measuring instrument, traceability
Procedia PDF Downloads 1573729 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 104