Search results for: model-free damage detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5722

Search results for: model-free damage detection

5032 DWT-SATS Based Detection of Image Region Cloning

Authors: Michael Zimba

Abstract:

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.

Keywords: affine transformation, discrete wavelet transform, radix sort, SATS

Procedia PDF Downloads 230
5031 Analyzing the Evolution of Polythiophene Nanoparticles Optically, Structurally, and Morphologically as a Sers (Surface-Enhanced Raman Spectroscopy) Sensor Pb²⁺ Detection in River Water

Authors: Temesgen Geremew

Abstract:

This study investigates the evolution of polythiophene nanoparticles (PThNPs) as surface-enhanced Raman spectroscopy (SERS) sensors for Pb²⁺ detection in river water. We analyze the PThNPs' optical, structural, and morphological properties at different stages of their development to understand their SERS performance. Techniques like UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are employed for characterization. The SERS sensitivity towards Pb²⁺ is evaluated by monitoring the peak intensity of a specific Raman band upon increasing metal ion concentration. The study aims to elucidate the relationship between the PThNPs' characteristics and their SERS efficiency for Pb²⁺ detection, paving the way for optimizing their design and fabrication for improved sensing performance in real-world environmental monitoring applications.

Keywords: polythiophene, Pb2+, SERS, nanoparticles

Procedia PDF Downloads 56
5030 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 235
5029 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection

Authors: Praveen S. Muthukumarana, Achala C. Aponso

Abstract:

A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.

Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis

Procedia PDF Downloads 145
5028 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage

Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos

Abstract:

Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.

Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage

Procedia PDF Downloads 166
5027 Rapid Detection of Cocaine Using Aggregation-Induced Emission and Aptamer Combined Fluorescent Probe

Authors: Jianuo Sun, Jinghan Wang, Sirui Zhang, Chenhan Xu, Hongxia Hao, Hong Zhou

Abstract:

In recent years, the diversification and industrialization of drug-related crimes have posed significant threats to public health and safety globally. The widespread and increasingly younger demographics of drug users and the persistence of drug-impaired driving incidents underscore the urgency of this issue. Drug detection, a specialized forensic activity, is pivotal in identifying and analyzing substances involved in drug crimes. It relies on pharmacological and chemical knowledge and employs analytical chemistry and modern detection techniques. However, current drug detection methods are limited by their inability to perform semi-quantitative, real-time field analyses. They require extensive, complex laboratory-based preprocessing, expensive equipment, and specialized personnel and are hindered by long processing times. This study introduces an alternative approach using nucleic acid aptamers and Aggregation-Induced Emission (AIE) technology. Nucleic acid aptamers, selected artificially for their specific binding to target molecules and stable spatial structures, represent a new generation of biosensors following antibodies. Rapid advancements in AIE technology, particularly in tetraphenyl ethene-based luminous, offer simplicity in synthesis and versatility in modifications, making them ideal for fluorescence analysis. This work successfully synthesized, isolated, and purified an AIE molecule and constructed a probe comprising the AIE molecule, nucleic acid aptamers, and exonuclease for cocaine detection. The probe demonstrated significant relative fluorescence intensity changes and selectivity towards cocaine over other drugs. Using 4-Butoxytriethylammonium Bromide Tetraphenylethene (TPE-TTA) as the fluorescent probe, the aptamer as the recognition unit, and Exo I as an auxiliary, the system achieved rapid detection of cocaine within 5 mins in aqueous and urine, with detection limits of 1.0 and 5.0 µmol/L respectively. The probe-maintained stability and interference resistance in urine, enabling quantitative cocaine detection within a certain concentration range. This fluorescent sensor significantly reduces sample preprocessing time, offers a basis for rapid onsite cocaine detection, and promises potential for miniaturized testing setups.

Keywords: drug detection, aggregation-induced emission (AIE), nucleic acid aptamer, exonuclease, cocaine

Procedia PDF Downloads 61
5026 Hit-Or-Miss Transform as a Tool for Similar Shape Detection

Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer

Abstract:

This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.

Keywords: hit-or-miss operator transform, HMT, binary morphological operation, shape detection, binary images processing

Procedia PDF Downloads 332
5025 Implementation of Knowledge and Attitude Management Based on Holistic Approach in Andragogy Learning, as an Effort to Solve the Environmental Problems of Post-Coal Mining Activity

Authors: Aloysius Hardoko, Susilo

Abstract:

The root cause of the problem after the environmental damage due to coal mining activities defined as the province of East Kalimantan corridor masterplan economic activity accelerated the expansion of Indonesia's economic development (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest postes group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post-coal mining activity.

Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental Issue

Procedia PDF Downloads 207
5024 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters

Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu

Abstract:

Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).

Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs

Procedia PDF Downloads 197
5023 Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode

Authors: Mohamad Syahrizal Ahmad, Illyas M. Isa

Abstract:

In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%.

Keywords: 1, 4-dihydroxybenzene, hydroquinone, multiwall carbon nanotubes, square wave voltammetry

Procedia PDF Downloads 229
5022 Interpretation of Sweep Frequency Response Analysis (SFRA) Traces for the Earth Fault Damage Practically Simulated on the Power Transformer Specially Developed for Performing Sweep Frequency Response Analysis for Various Transformers

Authors: Akshay A. Pandya, B. R. Parekh

Abstract:

This paper presents how earth fault damage in the transformer can be detected by Sweep Frequency Response Analysis (SFRA). The test methods used by the authors for presenting the results are described. The power transformer of rating 10 KVA, 11000 V/440 V, 3-phase, 50 Hz, Dyn11 has been specially developed in-house for carrying out SFRA testing by practically simulated various transformer damages on it. Earth fault has been practically simulated on HV “U” phase winding and LV “W” phase winding separately. The result of these simulated faults are presented and discussed. The motivation of this presented work is to extend the guideline approach; there are ideas to organize database containing collected measurement results. Since the SFRA interpretation is based on experience, such databases are thought to be of great importance when interpreting SFRA response. The evaluation of the SFRA responses against guidelines and experience have to be performed and conclusions regarding usefulness of each simulation has been drawn and at last overall conclusion has also been drawn.

Keywords: earth fault damage, power transformer, practical simulation, SFRA traces, transformer damages

Procedia PDF Downloads 284
5021 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments

Authors: Aileen F. Wang

Abstract:

Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.

Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square

Procedia PDF Downloads 453
5020 Seismic Fragility Curves Methodologies for Bridges: A Review

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

As a part of the transportation network, bridges are one of the most vulnerable structures. In order to investigate the vulnerability and seismic evaluation of bridges performance, identifying of bridge associated with various state of damage is important. Fragility curves provide important data about damage states and performance of bridges against earthquakes. The development of vulnerability information in the form of fragility curves is a widely practiced approach when the information is to be developed accounting for a multitude of uncertain source involved. This paper presents the fragility curve methodologies for bridges and investigates the practice and applications relating to the seismic fragility assessment of bridges.

Keywords: fragility curve, bridge, uncertainty, NLTHA, IDA

Procedia PDF Downloads 282
5019 Mechanical Properties of Ordinary Portland Cement Modified Cold Bitumen Emulsion Mixture

Authors: Hayder Kamil Shanbara, Felicite Ruddock, William Atherton, Nassier A. Nassir

Abstract:

Cold bitumen emulsion mixture (CBEM) offers a series benefits as compared with hot mix asphalt (HMA); these include environmental factors, energy saving, the resolution of logistical challenges that can characterise hot mix, and the potential to reserve funds. However, this mixture has some problems similar to any bituminous mixtures as it has low early strength, long curing time that needed to obtain the maximum performance, high air voids and considered inferior to HMA. Thus, CBEM has been used in limited applications such as lightly trafficked roads, footways and reinstatements. This laboratory study describes the development of CBEM using ordinary Portland cement (OPC) instead of the traditional mineral filler. Stiffness modulus, moisture damage and temperature sensitivity tests were used to evaluate the mechanical properties of the produced mixtures. The study concluded that there is a substantial improvement in the mechanical properties and moisture damage resistance of CBEMs containing OPC. Also, the produced cement modified CBEM shows a considerable lower thermal sensitivity than the conventional CBEM.

Keywords: cold bitumen emulsion mixture, moisture damage, OPC, stiffness modulus, temperature sensitivity

Procedia PDF Downloads 261
5018 The Impact on Habitat of Reef Traps Used in the Freshwater Shrimp (Palaemonetes antennarius, H. Milne Erwards, 1837) Catch

Authors: Cenkmen R. Begburs

Abstract:

In Antalya region, freshwater shrimps are usually collected with scoops and tin traps. However, it can be catched by reef traps in some water sources. Freshwater shrimps are constantly catching for commercial reasons because of a favorite bait for angling. There are more or less damage catching fishing vehicles to the habitat. This study was carried out in the Kırkgöz spring, Antalya and examined the effect of reef traps on the Kırkgöz spring habitat. Reef traps used 18.5x23.5x25 cm perforated bricks are arranged next to each other, blocks of random dimensions are prepared in 5x10, 18x24, 7x8 meter dimensions. These blocks are constructed with two layers of bricks that are covered with various materials such as carpets and blankets. Then, freshwater shrimps enter the holes of bricks. The bricks are closed off from both sides and discharged into a container when it is desired to be caught. The reef traps built on the plants which staying on the plant for a long time have been damaging the vegetation under the reef traps. Fishermen are setting new traps on the plants to increase the fishing efficiency since the freshwater shrimps are among the water plants. As a result, this application disrupts the aquatic organisms in their habitats. It is important to use fishing gears which will cause less damage and conserve stocks for sustainable fishing.

Keywords: reef trap, Antalya, environment, damage

Procedia PDF Downloads 202
5017 The Impact of Cognitive Load on Deceit Detection and Memory Recall in Children’s Interviews: A Meta-Analysis

Authors: Sevilay Çankaya

Abstract:

The detection of deception in children’s interviews is essential for statement veracity. The widely used method for deception detection is building cognitive load, which is the logic of the cognitive interview (CI), and its effectiveness for adults is approved. This meta-analysis delves into the effectiveness of inducing cognitive load as a means of enhancing veracity detection during interviews with children. Additionally, the effectiveness of cognitive load on children's total number of events recalled is assessed as a second part of the analysis. The current meta-analysis includes ten effect sizes from search using databases. For the effect size calculation, Hedge’s g was used with a random effect model by using CMA version 2. Heterogeneity analysis was conducted to detect potential moderators. The overall result indicated that cognitive load had no significant effect on veracity outcomes (g =0.052, 95% CI [-.006,1.25]). However, a high level of heterogeneity was found (I² = 92%). Age, participants’ characteristics, interview setting, and characteristics of the interviewer were coded as possible moderators to explain variance. Age was significant moderator (β = .021; p = .03, R2 = 75%) but the analysis did not reveal statistically significant effects for other potential moderators: participants’ characteristics (Q = 0.106, df = 1, p = .744), interview setting (Q = 2.04, df = 1, p = .154), and characteristics of interviewer (Q = 2.96, df = 1, p = .086). For the second outcome, the total number of events recalled, the overall effect was significant (g =4.121, 95% CI [2.256,5.985]). The cognitive load was effective in total recalled events when interviewing with children. All in all, while age plays a crucial role in determining the impact of cognitive load on veracity, the surrounding context, interviewer attributes, and inherent participant traits may not significantly alter the relationship. These findings throw light on the need for more focused, age-specific methods when using cognitive load measures. It may be possible to improve the precision and dependability of deceit detection in children's interviews with the help of more studies in this field.

Keywords: deceit detection, cognitive load, memory recall, children interviews, meta-analysis

Procedia PDF Downloads 55
5016 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases

Procedia PDF Downloads 142
5015 Change Detection Analysis on Support Vector Machine Classifier of Land Use and Land Cover Changes: Case Study on Yangon

Authors: Khin Mar Yee, Mu Mu Than, Kyi Lint, Aye Aye Oo, Chan Mya Hmway, Khin Zar Chi Winn

Abstract:

The dynamic changes of Land Use and Land Cover (LULC) changes in Yangon have generally resulted the improvement of human welfare and economic development since the last twenty years. Making map of LULC is crucially important for the sustainable development of the environment. However, the exactly data on how environmental factors influence the LULC situation at the various scales because the nature of the natural environment is naturally composed of non-homogeneous surface features, so the features in the satellite data also have the mixed pixels. The main objective of this study is to the calculation of accuracy based on change detection of LULC changes by Support Vector Machines (SVMs). For this research work, the main data was satellite images of 1996, 2006 and 2015. Computing change detection statistics use change detection statistics to compile a detailed tabulation of changes between two classification images and Support Vector Machines (SVMs) process was applied with a soft approach at allocation as well as at a testing stage and to higher accuracy. The results of this paper showed that vegetation and cultivated area were decreased (average total 29 % from 1996 to 2015) because of conversion to the replacing over double of the built up area (average total 30 % from 1996 to 2015). The error matrix and confidence limits led to the validation of the result for LULC mapping.

Keywords: land use and land cover change, change detection, image processing, support vector machines

Procedia PDF Downloads 138
5014 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 364
5013 Sensing of Cancer DNA Using Resonance Frequency

Authors: Sungsoo Na, Chanho Park

Abstract:

Lung cancer is one of the most common severe diseases driving to the death of a human. Lung cancer can be divided into two cases of small-cell lung cancer (SCLC) and non-SCLC (NSCLC), and about 80% of lung cancers belong to the case of NSCLC. From several studies, the correlation between epidermal growth factor receptor (EGFR) and NSCLCs has been investigated. Therefore, EGFR inhibitor drugs such as gefitinib and erlotinib have been used as lung cancer treatments. However, the treatments result showed low response (10~20%) in clinical trials due to EGFR mutations that cause the drug resistance. Patients with resistance to EGFR inhibitor drugs usually are positive to KRAS mutation. Therefore, assessment of EGFR and KRAS mutation is essential for target therapies of NSCLC patient. In order to overcome the limitation of conventional therapies, overall EGFR and KRAS mutations have to be monitored. In this work, the only detection of EGFR will be presented. A variety of techniques has been presented for the detection of EGFR mutations. The standard detection method of EGFR mutation in ctDNA relies on real-time polymerase chain reaction (PCR). Real-time PCR method provides high sensitive detection performance. However, as the amplification step increases cost effect and complexity increase as well. Other types of technology such as BEAMing, next generation sequencing (NGS), an electrochemical sensor and silicon nanowire field-effect transistor have been presented. However, those technologies have limitations of low sensitivity, high cost and complexity of data analyzation. In this report, we propose a label-free and high-sensitive detection method of lung cancer using quartz crystal microbalance based platform. The proposed platform is able to sense lung cancer mutant DNA with a limit of detection of 1nM.

Keywords: cancer DNA, resonance frequency, quartz crystal microbalance, lung cancer

Procedia PDF Downloads 233
5012 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades

Authors: Abdullah Alnutayfat, Alexander Sutin

Abstract:

One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).

Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation

Procedia PDF Downloads 85
5011 Evaluation of Expected Annual Loss Probabilities of RC Moment Resisting Frames

Authors: Saemee Jun, Dong-Hyeon Shin, Tae-Sang Ahn, Hyung-Joon Kim

Abstract:

Building loss estimation methodologies which have been advanced considerably in recent decades are usually used to estimate socio and economic impacts resulting from seismic structural damage. In accordance with these methods, this paper presents the evaluation of an annual loss probability of a reinforced concrete moment resisting frame designed according to Korean Building Code. The annual loss probability is defined by (1) a fragility curve obtained from a capacity spectrum method which is similar to a method adopted from HAZUS, and (2) a seismic hazard curve derived from annual frequencies of exceedance per peak ground acceleration. Seismic fragilities are computed to calculate the annual loss probability of a certain structure using functions depending on structural capacity, seismic demand, structural response and the probability of exceeding damage state thresholds. This study carried out a nonlinear static analysis to obtain the capacity of a RC moment resisting frame selected as a prototype building. The analysis results show that the probability of being extensive structural damage in the prototype building is expected to 0.004% in a year.

Keywords: expected annual loss, loss estimation, RC structure, fragility analysis

Procedia PDF Downloads 397
5010 SIP Flooding Attacks Detection and Prevention Using Shannon, Renyi and Tsallis Entropy

Authors: Neda Seyyedi, Reza Berangi

Abstract:

Voice over IP (VOIP) network, also known as Internet telephony, is growing increasingly having occupied a large part of the communications market. With the growth of each technology, the related security issues become of particular importance. Taking advantage of this technology in different environments with numerous features put at our disposal, there arises an increasing need to address the security threats. Being IP-based and playing a signaling role in VOIP networks, Session Initiation Protocol (SIP) lets the invaders use weaknesses of the protocol to disable VOIP service. One of the most important threats is denial of service attack, a branch of which in this article we have discussed as flooding attacks. These attacks make server resources wasted and deprive it from delivering service to authorized users. Distributed denial of service attacks and attacks with a low rate can mislead many attack detection mechanisms. In this paper, we introduce a mechanism which not only detects distributed denial of service attacks and low rate attacks, but can also identify the attackers accurately. We detect and prevent flooding attacks in SIP protocol using Shannon (FDP-S), Renyi (FDP-R) and Tsallis (FDP-T) entropy. We conducted an experiment to compare the percentage of detection and rate of false alarm messages using any of the Shannon, Renyi and Tsallis entropy as a measure of disorder. Implementation results show that, according to the parametric nature of the Renyi and Tsallis entropy, by changing the parameters, different detection percentages and false alarm rates will be gained with the possibility to adjust the sensitivity of the detection mechanism.

Keywords: VOIP networks, flooding attacks, entropy, computer networks

Procedia PDF Downloads 405
5009 Assessment of Genotoxic Effects of a Fungicide (Propiconazole) in Freshwater Fish Gambusia Affinis Using Alkaline Single-Cell Gel Electrophoresis (Comet Essay)

Authors: Bourenane Bouhafs Naziha

Abstract:

ARTEA330EC is a fungicide used to inhibit the growth of many types of fungi on and cereals and rice, it is the single largest selling agrochemical that has been widely detected in surface waters in our area (Northeast Algerian). The studies on long-term genotoxic effects of fugicides in different tissues of fish using genotoxic biomarkers are limited. Therefore, in the present study DNA damage by propiconazole in freshwater fish Gambusia affinis by comet assays was investigated. The LC(50)- 96 h of the fungicide was estimated for the fish in a semi-static system. On this basis of LC(50) value sublethal and nonlethal concentrations were determined (25; 50; 75; and 100 ppm). The DNA damage was measured in erythrocytes as the percentage of DNA in comet tails of fishes exposed to above concentrations the fungicide. In general,non significant effects for both the concentrations and time of exposure were observed in treated fish compared with the controls. However It was found that the highest DNA damage was observed at the highest concentration and the longest time of exposure (day 12). The study indicated comet assay to be sensitive and rapid method to detect genotoxicity of propiconasol and other pesticides in fishes.

Keywords: genotoxicity, fungicide, propiconazole, freshwater, Gambusia affinis, alkaline single-cell gel electrophoresis

Procedia PDF Downloads 298
5008 A Trends Analysis of Yatch Simulator

Authors: Jae-Neung Lee, Keun-Chang Kwak

Abstract:

This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.

Keywords: yacht simulator, simulator, trends analysis, SIFT

Procedia PDF Downloads 432
5007 Development of Colorimetric Based Microfluidic Platform for Quantification of Fluid Contaminants

Authors: Sangeeta Palekar, Mahima Rana, Jayu Kalambe

Abstract:

In this paper, a microfluidic-based platform for the quantification of contaminants in the water is proposed. The proposed system uses microfluidic channels with an embedded environment for contaminants detection in water. Microfluidics-based platforms present an evident stage of innovation for fluid analysis, with different applications advancing minimal efforts and simplicity of fabrication. Polydimethylsiloxane (PDMS)-based microfluidics channel is fabricated using a soft lithography technique. Vertical and horizontal connections for fluid dispensing with the microfluidic channel are explored. The principle of colorimetry, which incorporates the use of Griess reagent for the detection of nitrite, has been adopted. Nitrite has high water solubility and water retention, due to which it has a greater potential to stay in groundwater, endangering aquatic life along with human health, hence taken as a case study in this work. The developed platform also compares the detection methodology, containing photodetectors for measuring absorbance and image sensors for measuring color change for quantification of contaminants like nitrite in water. The utilization of image processing techniques offers the advantage of operational flexibility, as the same system can be used to identify other contaminants present in water by introducing minor software changes.

Keywords: colorimetric, fluid contaminants, nitrite detection, microfluidics

Procedia PDF Downloads 198
5006 Integrated Microsystem for Multiplexed Genosensor Detection of Biowarfare Agents

Authors: Samuel B. Dulay, Sandra Julich, Herbert Tomaso, Ciara K. O'Sullivan

Abstract:

An early, rapid and definite detection for the presence of biowarfare agents, pathogens, viruses and toxins is required in different situations which include civil rescue and security units, homeland security, military operations, public transportation securities such as airports, metro and railway stations due to its harmful effect on the human population. In this work, an electrochemical genosensor array that allows simultaneous detection of different biowarfare agents within an integrated microsystem that provides an easy handling of the technology which combines a microfluidics setup with a multiplexing genosensor array has been developed and optimised for the following targets: Bacillus anthracis, Brucella abortis and melitensis, Bacteriophage lambda, Francisella tularensis, Burkholderia mallei and pseudomallei, Coxiella burnetii, Yersinia pestis, and Bacillus thuringiensis. The electrode array was modified via co-immobilisation of a 1:100 (mol/mol) mixture of a thiolated probe and an oligoethyleneglycol-terminated monopodal thiol. PCR products from these relevant biowarfare agents were detected reproducibly through a sandwich assay format with the target hybridised between a surface immobilised probe into the electrode and a horseradish peroxidase-labelled secondary reporter probe, which provided an enzyme based electrochemical signal. The potential of the designed microsystem for multiplexed genosensor detection and cross-reactivity studies over potential interfering DNA sequences has demonstrated high selectivity using the developed platform producing high-throughput.

Keywords: biowarfare agents, genosensors, multipled detection, microsystem

Procedia PDF Downloads 272
5005 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion

Procedia PDF Downloads 575
5004 Detection the Ice Formation Processes Using Multiple High Order Ultrasonic Guided Wave Modes

Authors: Regina Rekuviene, Vykintas Samaitis, Liudas Mažeika, Audrius Jankauskas, Virginija Jankauskaitė, Laura Gegeckienė, Abdolali Sadaghiani, Shaghayegh Saeidiharzand

Abstract:

Icing brings significant damage to aviation and renewable energy installations. Air-conditioning, refrigeration, wind turbine blades, airplane and helicopter blades often suffer from icing phenomena, which cause severe energy losses and impair aerodynamic performance. The icing process is a complex phenomenon with many different causes and types. Icing mechanisms, distributions, and patterns are still relevant to research topics. The adhesion strength between ice and surfaces differs in different icing environments. This makes the task of anti-icing very challenging. The techniques for various icing environments must satisfy different demands and requirements (e.g., efficient, lightweight, low power consumption, low maintenance and manufacturing costs, reliable operation). It is noticeable that most methods are oriented toward a particular sector and adapting them to or suggesting them for other areas is quite problematic. These methods often use various technologies and have different specifications, sometimes with no clear indication of their efficiency. There are two major groups of anti-icing methods: passive and active. Active techniques have high efficiency but, at the same time, quite high energy consumption and require intervention in the structure’s design. It’s noticeable that vast majority of these methods require specific knowledge and personnel skills. The main effect of passive methods (ice-phobic, superhydrophobic surfaces) is to delay ice formation and growth or reduce the adhesion strength between the ice and the surface. These methods are time-consuming and depend on forecasting. They can be applied on small surfaces only for specific targets, and most are non-biodegradable (except for anti-freezing proteins). There is some quite promising information on ultrasonic ice mitigation methods that employ UGW (Ultrasonic Guided Wave). These methods are have the characteristics of low energy consumption, low cost, lightweight, and easy replacement and maintenance. However, fundamental knowledge of ultrasonic de-icing methodology is still limited. The objective of this work was to identify the ice formation processes and its progress by employing ultrasonic guided wave technique. Throughout this research, the universal set-up for acoustic measurement of ice formation in a real condition (temperature range from +240 C to -230 C) was developed. Ultrasonic measurements were performed by using high frequency 5 MHz transducers in a pitch-catch configuration. The selection of wave modes suitable for detection of ice formation phenomenon on copper metal surface was performed. Interaction between the selected wave modes and ice formation processes was investigated. It was found that selected wave modes are sensitive to temperature changes. It was demonstrated that proposed ultrasonic technique could be successfully used for the detection of ice layer formation on a metal surface.

Keywords: ice formation processes, ultrasonic GW, detection of ice formation, ultrasonic testing

Procedia PDF Downloads 64
5003 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review

Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari

Abstract:

Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.

Keywords: environmental phenomena, change detection, monitor, techniques

Procedia PDF Downloads 274