Search results for: mango seed powder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1627

Search results for: mango seed powder

937 Performance Evaluation and Kinetics of Artocarpus heterophyllus Seed for the Purification of Paint Industrial Wastewater by Coagulation-Flocculation Process

Authors: Ifeoma Maryjane Iloamaeke, Kelvin Obazie, Mmesoma Offornze, Chiamaka Marysilvia Ifeaghalu, Cecilia Aduaka, Ugomma Chibuzo Onyeije, Claudine Ifunanaya Ogu, Ngozi Anastesia Okonkwo

Abstract:

This work investigated the effects of pH, settling time, and coagulant dosages on the removal of color, turbidity, and heavy metals from paint industrial wastewater using the seed of Artocarpus heterophyllus (AH) by the coagulation-flocculation process. The paint effluent was physicochemically characterized, while AH coagulant was instrumentally characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and X-ray diffraction (XRD). A Jar test experiment was used for the coagulation-flocculation process. The result showed that paint effluent was polluted with color, turbidity (36000 NTU), mercury (1.392 mg/L), lead (0.252 mg/L), arsenic (1.236 mg/L), TSS (63.40mg/L), and COD (121.70 mg/L). The maximum color removal efficiency was 94.33% at the dosage of 0.2 g/L, pH 2 at a constant time of 50 mins, and 74.67% at constant pH 2, coagulant dosage of 0.2 g/L and 50 mins. The highest turbidity removal efficiency was 99.94% at 0.2 g/L and 50 mins at constant pH 2 and 96.66% at pH 2 and 0.2 g/L at constant time of 50 mins. The mercury removal efficiency of 99.29% was achieved at the optimal condition of 0.8 g/L coagulant dosage, pH 8, and constant time of 50 mins and 99.57% at coagulant dosage of 0.8 g/L, time of 50 mins constant pH 8. The highest lead removal efficiency was 99.76% at a coagulant dosage of 10 g/L, time of 40 mins at constant pH 10, and 96.53% at pH 10, coagulant dosage of 10 g/L and constant time of 40 mins. For arsenic, the removal efficiency is 75.24 % at 0.8 g/L coagulant dosage, time of 40 mins, and constant pH of 8. XRD imaging before treatment showed that Artocarpus heterophyllus coagulant was crystalline and changed to amorphous after treatment. The SEM and FTIR results of the AH coagulant and sludge suggested there were changes in the surface morphology and functional groups before and after treatment. The reaction kinetics were modeled best in the second order.

Keywords: Artocarpus heterophyllus, coagulation-flocculation, coagulant dosages, setting time, paint effluent

Procedia PDF Downloads 96
936 Environmental Effects on Coconut Coir Fiber Epoxy Composites Having TiO₂ as Filler

Authors: Srikanth Korla, Mahesh Sharnangat

Abstract:

Composite materials are being widely used in Aerospace, Naval, Defence and other branches of engineering applications. Studies on natural fibers is another emerging research area as they are available in abundance, and also due to their eco-friendly in nature. India being one of the major producer of coir, there is always a scope to study the possibilities of exploring coir as reinforment, and with different combinations of other elements of the composite. In present investigation effort is made to utilize properties possessed by natural fiber and make them enable with polymer/epoxy resin. In natural fiber coconut coir is used as reinforcement fiber in epoxy resin with varying weight percentages of fiber and filler material. Titanium dioxide powder (TiO2) is used as filler material with varying weight percentage including 0%, 2% and 4% are considered for experimentation. Environmental effects on the performance of the composite plate are also studied and presented in this project work; Moisture absorption test for composite specimens is conducted using different solvents including Kerosene, Mineral Water and Saline Water, and its absorption capacity is evaluated. Analysis is carried out in different combinations of Coir as fiber and TiO2 as filler material, and the best suitable composite material considering the strength and environmental effects is identified in this work. Therefore, the significant combination of the composite material is with following composition: 2% TiO2 powder 15% of coir fibre and 83% epoxy, under unique mechanical and environmental conditions considered in the work.

Keywords: composite materials, moisture test, filler material, natural fibre composites

Procedia PDF Downloads 205
935 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering

Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif

Abstract:

The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.

Keywords: nanocrystalline aluminum alloys, mechanical alloying, hardness, elevated temperatures

Procedia PDF Downloads 454
934 Testing of Protective Coatings on Automotive Steel, a Correlation Between Salt Spray, Electrochemical Impedance Spectroscopy, and Linear Polarization Resistance Test

Authors: Dhanashree Aole, V. Hariharan, Swati Surushe

Abstract:

Corrosion can cause serious and expensive damage to the automobile components. Various proven techniques for controlling and preventing corrosion depend on the specific material to be protected. Electrochemical Impedance Spectroscopy (EIS) and salt spray tests are commonly used to assess the corrosion degradation mechanism of coatings on metallic surfaces. While, the only test which monitors the corrosion rate in real time is known as Linear Polarisation Resistance (LPR). In this study, electrochemical tests (EIS & LPR) and spray test are reviewed to assess the corrosion resistance and durability of different coatings. The main objective of this study is to correlate the test results obtained using linear polarization resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) with the results obtained using standard salt spray test. Another objective of this work is to evaluate the performance of various coating systems- CED, Epoxy, Powder coating, Autophoretic, and Zn-trivalent coating for vehicle underbody application. The corrosion resistance coating are assessed. From this study, a promising correlation between different corrosion testing techniques is noted. The most profound observation is that electrochemical tests gives quick estimation of corrosion resistance and can detect the degradation of coatings well before visible signs of damage appear. Furthermore, the corrosion resistances and salt spray life of the coatings investigated were found to be according to the order as follows- CED> powder coating > Autophoretic > epoxy coating > Zn- Trivalent plating.

Keywords: Linear Polarization Resistance (LPR), Electrochemical Impedance Spectroscopy (EIS), salt spray test, sacrificial and barrier coatings

Procedia PDF Downloads 526
933 Responses to Germination and Seedling Emergence Capacity of Durum Wheat Cultivars in Long Term Storage

Authors: S. Ahmet Bagci, Hayati Akman

Abstract:

This study was conducted at the research laboratory and greenhouse conditions to determine the effect on germination and emergency values of long-term stored seed (7 years) and non-stored seed (control) of nine durum wheat varieties. Three replicates of 20 seeds were germinated between double layered rolled germination papers in the Petri plates. Seeds were allowed to germinate at 20±1°C in the dark for 8 days. The seeds were counted on the 8th day as per ISTA rules and calculated in percent to determine germination capacity. Seedling emergency values were determined by testing 20 seeds placed into the sands with three replications of pots. Plants were counted on the 7th day and 12th day to determined seedling emergency rate and capacity, respectively. According to results, there are significant differences among the varieties in terms of germination capacity, seedling emergency rate and capacity of long-term stored and non-stored seeds. Germination capacity values declined from 100% to 93,3% of non-stored seeds whereas they were from 96,7% to 71,7% of long-term stored seeds. Percentage of seedling emergency capacity varied from 65,0% to 93,3% for non-stored seeds, however, the percentage of it was between 11,7 and 86,7% for long-term stored seeds. Results indicate that germination and emergence values responses to long-term stored condition varied significantly among durum wheat cultivars. Research results showed that the long-term-storage resulted in significant decrease with 13.5 % for germination, 36.4 % for emergence on the seventh day and 32.4 % for emergence on the twelfth day. Germination values ranged from 93.3 to 100.0 % for control and 71.7 to 96.7 % for storage. Emergence values in seventh day varied between 51.7 % and 90.0 % for control and 75.0 % and 10.0 % for storage, however values in twelfth day were between 93.3 % and 65.0 % for control and 86.7 % and 11.7 % for storage. According to research results, germination and emergence responses to long-term storage condition varied significantly among durum wheat cultivars.

Keywords: germination, emergence, long-term-storage, durum wheat

Procedia PDF Downloads 357
932 Design of New Sustainable Pavement Concrete: An Experimental Road

Authors: Manuel Rosales, Francisco Agrela, Julia Rosales

Abstract:

The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.

Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring

Procedia PDF Downloads 68
931 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: aluminium, alumina, nano-particle reinforced composites, porosity

Procedia PDF Downloads 249
930 Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation

Authors: Jinge Liu, Shuyuan Min, Bingchuan Liu, Bangzhao Yin, Bo Peng, Peng Wen, Yun Tian

Abstract:

WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%.

Keywords: laser powder bed fusion, biodegradable metal, high temperature oxidation, biodegradation behavior, WE43

Procedia PDF Downloads 105
929 Virus Diseases of Edible Seed Squash (Cucurbita pepo L.) in Aksaray Province

Authors: Serkan Yesil

Abstract:

Cucurbits (the Cucurbitaceae family) include 119 genera and 825 species distributed primarily in tropical and subtropical regions of the world. The major cultivated cucurbit species such as melon (Cucumis melo L.), cucumber (Cucumis sativus L.), squash (Cucurbita pepo L.), and watermelon (Citrullus lanatus (Thunb) Matsum.&Nakai) are important vegetable crops worldwide. Squash is grown for fresh consuming, as well as its seeds are used as a snack in Turkey like some Mediterranean countries and Germany, Hungary, Austria and China. Virus diseases are one of the most destructive diseases on squash which is grown for seeds in Aksaray province. In this study, it was aimed to determine the virus infections in major squash growing areas in Aksaray province. Totally 153 plant samples with common virus symptoms like mosaic, curling, blistering, mottling, distortion, shoestring, stunting and vine decline were collected from squash plants during 2014. In this study, DAS-ELISA method is used for identifying the virus infections on the plant samples. According to the results of the DAS-ELISA 84.96 % of plant samples were infected with Zucchini yellow mosaic Potyvirus (ZYMV), Watermelon mosaic Potyvirus-2 (WMV-2), Cucumber mosaic Cucumovirus (CMV), Papaya ringspot Potyvirus-watermelon strain (PRSV-W) and Squash mosaic Comovirus (SqMV). ZYMV was predominant in the research area with the ratio of 66.01 %. WMV-2 was the second important virus disease in the survey area, it was detected on the samples at the ratio of 57.51 %. Also, mixed infections of those virus infections were detected commonly in squash. Especially, ZYMV+WMV-2 mixed infections were common. Cucumber green mottle mosaic Tobamovirus (CGMMV) was not present in the research area.

Keywords: Aksaray, DAS-ELISA, edible seed squash, WMV-2, ZYMV

Procedia PDF Downloads 227
928 Insecticidal Activity of Piper aduncum Fruit and Tephrosia vogelii Leaf Mixed Formulations against Cabbage Pest Plutella xylostella (L.) (Lepidoptera: Plutellidae)

Authors: Eka Candra Lina, Indah Widhianingrum, Mita Eka Putri, Nur Afni Evalia, Muhammad Makky

Abstract:

The emulsifiable concentrate (EC) and wettable powder (WP) of Piper aduncum and Tephrosia vogelii mixed formulations were tested for their activities in the laboratory and their effectiveness in the field against cabbage pest Plutella xyostella. Cabbage leaves soaked in six different mixed formulation concentrations were tested to 2ⁿᵈ instar larvae of P. xylostella with six replications. The observation was conducted everyday until larvae reached 4ᵗʰ instar stage. Correlation between concentration and larvae mortality was analyzed using probit (POLO-PC). The survived larvae was observed by looking at the growth and development, as well as the antifeedant effects. Field efficacy test was based on LC₉₅ value from laboratory test result. The experiment used a randomized block design with 5 treatments and 3 replications to test the populations of P. xylostella larvae and insecticide effectivity. The results showed that the EC and WP mixed formulations showed insecticidal activity against P. xylostella larvae, with LC₉₅ value of 0.35% and 0.37%, respectively. The highest antifeedant effect on EC mixed formulation was 85.01% and WP mixed formulation was 86.23%. Both mixed formulations also slowed the development of larvae when compared with control. Field effication result showed that applications of EC mixed formulation were able to restrain the population of P. xylostella, with effectivity value of 71.06%. Insecticide effectivity value of EC mixed formulation was higher than WP mixed formulation and Bacillus thuringiensis formulation.

Keywords: botanical insecticide, efficacy, emulsifiable concentrate (EC), Plutella xylostella, wettable powder (WP)

Procedia PDF Downloads 242
927 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques

Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri

Abstract:

Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.

Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior

Procedia PDF Downloads 307
926 Effect of Sintering Time and Porosity on Microstructure, Mechanical and Corrosion Properties of Ti6Al15Mo Alloy for Implant Applications

Authors: Jyotsna Gupta, S. Ghosh, S. Aravindan

Abstract:

The requirement of artificial prostheses (such as hip and knee joints) has increased with time. Many researchers are working to develop new implants with improved properties such as excellent biocompatibility with no tissue reactions, corrosion resistance in body fluid, high yield strength and low elastic modulus. Further, the morphological properties of the artificial implants should also match with that of the human bone so that cell adhesion, proliferation and transportation of the minerals and nutrition through body fluid can be obtained. Present study attempts to make porous Ti6Al15Mo alloys through powder metallurgy route using space holder technique. The alloy consists of 6wt% of Al which was taken as α phase stabilizer and 15wt% Mo was taken as β phase stabilizer with theoretical density 4.708. Ammonium hydrogen carbonate is used as a space holder in order to generate the porosity. The porosity of these fabricated porous alloys was controlled by adding the 0, 50, 70 vol.% of the space holder content. Three phases were found in the microstructure: α, α_2 and β phase of titanium. Kirkendall pores are observed to be decreased with increase of holding time during sintering and parallelly compressive strength and elastic modulus value increased slightly. Compressive strength and elastic modulus of porous Ti-6Al-15Mo alloy (1.17 g/cm3 density) is found to be suitable for cancellous bone. Released ions from Ti-6Al-15Mo alloy are far below from the permissible limits in human body.

Keywords: bone implant, powder metallurgy, sintering time, Ti-6Al-15Mo

Procedia PDF Downloads 144
925 Rheological Study of Wheat-Chickpea Flour Blend Bread for People with Type-2 Diabetes

Authors: Tasleem Zafar, Jiwan Sidhu

Abstract:

Introduction: Chickpea flour is known to offer many benefits to diabetic persons, especially in maintaining their blood sugar levels in the acceptable range. Under this project we have studied the chemical composition and antioxidant capacity of white flour (WF), whole wheat flour (WWF) and chickpea flour (BF), in addition to the effect of replacement of WF and WWF with BF on the rheological characteristics of these flour blends, with the ultimate objective of producing acceptable quality flat as well as pan-bread for the diabetic consumers. Methods: WF and WWF were replaced with BF ranging from 0 to 40%, to investigate its effect on the rheological properties and functionality of blended flour dough using farinograph, viscoamylograph, mixograph and falling number apparatus as per the AACC standard methods. Texture Profile Analysis (TPA) was carried on the WF, WWF, and their blends with BF using Stable Micro System Texture Analyzer. Effect of certain additives, such as freeze-dried amla fruit powder (Phyllanthus emblica L.), guar gum, and xanthan gum on the dough rheological properties were also studied. Results: Freeze-dried amla fruit powder was found to be very rich in ascorbic acid and other phenolics having higher antioxidant activity. A decreased farinograph water absorption, increased dough development time, higher mixing tolerance index (i.e., weakening of dough), decreased resistance to extension, lower ratio numbers were obtained when the replacement with BF was increased from 0 to 40%. The BF gave lower peak viscosity, lower paste breakdown, and lower setback values when compared with WF. The falling number values were significantly lower in WWF (meaning higher α-amylase activity) than both the WF and BF. Texture Profile Analysis (TPA) carried on the WF, WWF, and their blends with BF showed significant variations in hardness and compressibility values, dough becoming less hard and less compressible when the replacement of WF and WWF with BF was increased from 0 to 40%. Conclusions: To overcome the deleterious effects of adding BF to WF and WWF on the rheological properties will be an interesting challenge when good quality pan bread and Arabic flatbread have to be commercially produced in a bakery. Use of freeze-dried amla fruit powder, guar gum, and xanthan gum did show some promise to improve the mixing characteristics of WF, WWF, and their blends with BF, and these additives are expected to be useful in producing an acceptable quality flat as well as pan-bread on a commercial scale.

Keywords: wheat flour, chickpea flour, amla fruit, rheology

Procedia PDF Downloads 159
924 Effect of Ginger Diets on in vitro Fermentation Characteristics, Enteric Methane Production and Performance of West African Dwarf Sheep

Authors: Dupe Olufunke Ogunbosoye, Thaofik Badmos Mustapha, Lanre Shaffihy Adeaga, R. O. Imam

Abstract:

Efforts have been made to reduce ruminants' methane emissions while improving animal productivity. Hence, an experiment was conducted to investigate the in vitro fermentation pattern, methane production, and performance of West African dwarf (WAD) rams-fed diets at graded levels of ginger. Sixteen (16) rams were randomly allocated into four dietary treatments with four animals per treatment in a completely randomized design for 84 days. Ginger powder was added at 0.00%, 0.25%, 0.50% and 0.75% as T1, T2, T3 and T4 respectively. The results indicated that at the 24-hour diet incubation, gas production, methane, metabolizable energy (ME), organic matter digestibility (OMD), and short-chain fatty acids (SCFA) concentrations decreased with the increasing level of ginger. Conversely, the sheep-fed T4 recorded the highest daily weight gain (47.61g/day), while the least daily weight gain (17.86g/day) was recorded in ram-fed T1. The daily weight gain of the rams fed T3 and T4 was similar but significantly different from the daily weight gain in T1 (17.86g/day) and T2 (29.76g/day). Daily feed intake was not significantly different across the treatments. T4 recorded the best response regarding feed conversion ratio (18.59) compared with other treatments. Based on the results obtained, rams fed T4 perform best in terms of growth and methane production. It is therefore concluded that the addition of ginger powder into the diet of sheep up to 0.75% enhances the growth rate of WAD sheep and reduces enteric methane production to create a smart nutrition system in ruminant animal production.

Keywords: enteric methane, growth, in vitro, sheep, nutrition system

Procedia PDF Downloads 78
923 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 117
922 Improving Search Engine Performance by Removing Indexes to Malicious URLs

Authors: Durga Toshniwal, Lokesh Agrawal

Abstract:

As the web continues to play an increasing role in information exchange, and conducting daily activities, computer users have become the target of miscreants which infects hosts with malware or adware for financial gains. Unfortunately, even a single visit to compromised web site enables the attacker to detect vulnerabilities in the user’s applications and force the downloading of multitude of malware binaries. We provide an approach to effectively scan the so-called drive-by downloads on the Internet. Drive-by downloads are result of URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. To scan the web for malicious pages, the first step is to use a crawler to collect URLs that live on the Internet, and then to apply fast prefiltering techniques to reduce the amount of pages that are needed to be examined by precise, but slower, analysis tools (such as honey clients or antivirus programs). Although the technique is effective, it requires a substantial amount of resources. A main reason is that the crawler encounters many pages on the web that are legitimate and needs to be filtered. In this paper, to characterize the nature of this rising threat, we present implementation of a web crawler on Python, an approach to search the web more efficiently for pages that are likely to be malicious, filtering benign pages and passing remaining pages to antivirus program for detection of malwares. Our approaches starts from an initial seed of known, malicious web pages. Using these seeds, our system generates search engines queries to identify other malicious pages that are similar to the ones in the initial seed. By doing so, it leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. The results shows that this guided approach is able to identify malicious web pages more efficiently when compared to random crawling-based approaches.

Keywords: web crawler, malwares, seeds, drive-by-downloads, security

Procedia PDF Downloads 229
921 Microwave Dielectric Constant Measurements of Titanium Dioxide Using Five Mixture Equations

Authors: Jyh Sheen, Yong-Lin Wang

Abstract:

This research dedicates to find a different measurement procedure of microwave dielectric properties of ceramic materials with high dielectric constants. For the composite of ceramic dispersed in the polymer matrix, the dielectric constants of the composites with different concentrations can be obtained by various mixture equations. The other development of mixture rule is to calculate the permittivity of ceramic from measurements on composite. To do this, the analysis method and theoretical accuracy on six basic mixture laws derived from three basic particle shapes of ceramic fillers have been reported for dielectric constants of ceramic less than 40 at microwave frequency. Similar researches have been done for other well-known mixture rules. They have shown that both the physical curve matching with experimental results and low potential theory error are important to promote the calculation accuracy. Recently, a modified of mixture equation for high dielectric constant ceramics at microwave frequency has also been presented for strontium titanate (SrTiO3) which was selected from five more well known mixing rules and has shown a good accuracy for high dielectric constant measurements. However, it is still not clear the accuracy of this modified equation for other high dielectric constant materials. Therefore, the five more well known mixing rules are selected again to understand their application to other high dielectric constant ceramics. The other high dielectric constant ceramic, TiO2 with dielectric constant 100, was then chosen for this research. Their theoretical error equations are derived. In addition to the theoretical research, experimental measurements are always required. Titanium dioxide is an interesting ceramic for microwave applications. In this research, its powder is adopted as the filler material and polyethylene powder is like the matrix material. The dielectric constants of those ceramic-polyethylene composites with various compositions were measured at 10 GHz. The theoretical curves of the five published mixture equations are shown together with the measured results to understand the curve matching condition of each rule. Finally, based on the experimental observation and theoretical analysis, one of the five rules was selected and modified to a new powder mixture equation. This modified rule has show very good curve matching with the measurement data and low theoretical error. We can then calculate the dielectric constant of pure filler medium (titanium dioxide) by those mixing equations from the measured dielectric constants of composites. The accuracy on the estimating dielectric constant of pure ceramic by various mixture rules will be compared. This modified mixture rule has also shown good measurement accuracy on the dielectric constant of titanium dioxide ceramic. This study can be applied to the microwave dielectric properties measurements of other high dielectric constant ceramic materials in the future.

Keywords: microwave measurement, dielectric constant, mixture rules, composites

Procedia PDF Downloads 367
920 Correlations among Their Characteristics and Determination of Some Morphological Characteristics of Perennial Ryegrass Genotypes

Authors: Abdullah Özköse, Ahmet Tamkoç

Abstract:

This study aimed to determine some plant characteristics of perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara and correlations between these characteristics. In order to evaluate for breeding purposes according to Turkey's environmental conditions, perennial ryegrass plants collected from natural pasture of Ankara at 2004 were utilized. The collected seeds of plants were sown in pots and seedlings were prepared in greenhouse. Seedlings were transplanted to the experimental field at 50x50 cm intervals in Randomized Complete Blocks Design in 2005. Data were obtained from the observations and measurements of 568 perennial ryegrasses in 2007 and 2008. Perennial ryegrass plants’ in the spring re-growth time, color, density, growth habit, tendency to inflorescences, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike, and 1000 grain weight were investigated and correlation analyses were made on the data. Correlation coefficients were estimated between all paired combinations of the traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with growth habit and in the spring re-growth time spring.

Keywords: correlation, morphological traits, Lolium perenne

Procedia PDF Downloads 455
919 Evaluation of Two Functional Food Products: Tortillas and Yogurt Based on Spirulina platensis and Haematococcus pluvialis

Authors: Raul Alexis Sanchez Cornejo, Elena Ivonne Mancera Andrade, Gibran Sidney Aleman Nava, Angel Josue Arteaga Garces, Roberto Parra Saldivar

Abstract:

An unhealthy diet is one of the main factors for a wide range of chronical diseases such as diabetes, obesity, cancer, cardiovascular diseases, among others. Nowadays, there is a current need to provide innovate healthy products to people in order to decrease the number of people with unhealthy diet. This study focuses on the production of two food products based on two microalgae strains: Tortillas with powder of Haematococcus pluvialis and Spirulina platensis biomass and yogurt with microencapsulated biomass of the same strains. S. platensis has been used widely as food supplements in a form of powder and pills due to its high content in proteins and fatty acids. Haematococcus pluvialis has been recognized for its ability to produce high-added value products under stressful conditions such as antioxidants (astaxanthin). Despite the benefits that those microalgae have, few efforts have been done to use them in food products. The main objective of this work is to evaluate the nutritional properties such as protein content, lipid fraction, carbohydrates, antioxidants,, and vitamins, that these microalgae strains provide to the food product. Additionally, physicochemical, and sensory evaluation were assessed to evaluate the quality of the product. The results obtained will dictate the feasibility of the product to be commercialized. These novel products will have the ability to change the nutritional intake and strength the health of the consumers.

Keywords: functional food, Haematococcus pluvialis, microalgae, Spirulina platensis, tortilla, yogurt

Procedia PDF Downloads 313
918 Effects of Centrifugation, Encapsulation Method and Different Coating Materials on the Total Antioxidant Activity of the Microcapsules of Powdered Cherry Laurels

Authors: B. Cilek Tatar, G. Sumnu, M. Oztop, E. Ayaz

Abstract:

Encapsulation protects sensitive food ingredients against heat, oxygen, moisture and pH until they are released to the system. It can mask the unwanted taste of nutrients that are added to the foods for fortification purposes. Cherry laurels (Prunus laurocerasus) contain phenolic compounds which decrease the proneness to several chronic diseases such as types of cancer and cardiovascular diseases. The objective of this research was to study the effects of centrifugation, different coating materials and homogenization methods on microencapsulation of powders obtained from cherry laurels. In this study, maltodextrin and mixture of maltodextrin:whey protein with a ratio of 1:3 (w/w) were chosen as coating materials. Total solid content of coating materials was kept constant as 10% (w/w). Capsules were obtained from powders of freeze-dried cherry laurels through encapsulation process by silent crusher homogenizer or microfluidization. Freeze-dried cherry laurels were core materials and core to coating ratio was chosen as 1:10 by weight. To homogenize the mixture, high speed homogenizer was used at 4000 rpm for 5 min. Then, silent crusher or microfluidizer was used to complete encapsulation process. The mixtures were treated either by silent crusher for 1 min at 75000 rpm or microfluidizer at 50 MPa for 3 passes. Freeze drying for 48 hours was applied to emulsions to obtain capsules in powder form. After these steps, dry capsules were grounded manually into a fine powder. The microcapsules were analyzed for total antioxidant activity with DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging method. Prior to high speed homogenization, the samples were centrifuged (4000 rpm, 1 min). Centrifugation was found to have positive effect on total antioxidant activity of capsules. Microcapsules treated by microfluidizer were found to have higher total antioxidant activities than those treated by silent crusher. It was found that increasing whey protein concentration in coating material (using maltodextrin:whey protein 1:3 mixture) had positive effect on total antioxidant activity for both silent crusher and microfluidization methods. Therefore, capsules prepared by microfluidization of centrifuged mixtures can be selected as the best conditions for encapsulation of cherry laurel powder by considering their total antioxidant activity. In this study, it was shown that capsules prepared by these methods can be recommended to be incorporated into foods in order to enhance their functionality by increasing antioxidant activity.

Keywords: antioxidant activity, cherry laurel, microencapsulation, microfluidization

Procedia PDF Downloads 294
917 The Application of Karonda Friuts (Carissa carandas Linn.) for Ice Cream-Making

Authors: A. Pornpitakdumrong

Abstract:

The aim of this research study was to develop recipe of Karanda ice cream as healthy promoting ice cream by high protein, low fat and naturally raw material, which found in local area. The results were found that appropriate condition for Karanda ice cream including incubation period, temperature and frozen time, which were 8-12 hours, -20 to -25 °C and 2-4 hours, respectively. Small fruit variety Karanda should selected only ripe fruits for Karanda ice cream made. Because of unripe fruits were contained resin and need to be air dried for reducing level of resin. Therefore, large fruit variety Karanda can be use both ripe and unripe fruits for Karanda ice cream made by without any astringent and bitter taste. However, small fruit variety Karanda was proper to made ice cream for trade, because occurring of industry to select the ripe fruits and commercially frozen, which be providing for the whole year compared with large variety fruits were rarely, low harvesting amount and short shelf life. Karanda ice cream produced from flesh part was attractive but was not accepted by consumers. It may due to resin contained with Karanda pulp, which led to be rough texture of ice cream. We were choose only Karanda juice, which was more appropriated and used Karanda juice with water by 1:1 ratio, because undiluted juice was sour taste. Most acceptance recipe of karanda ice cream product was sixth recipe by 91% of consumers, which was contained soy protein to made ice cream was delicate and swell, milk powder (little amount) to made ice cream was greasy, corn powder as stabilizer and undiluted coconut milk (little amount) to improve ice cream odor and similar to apricot odor.

Keywords: karonda fruits, Carissa carandas Linn, ice cream, healthy ice cream

Procedia PDF Downloads 410
916 Treatments for Overcoming Dormancy of Leucaena Seeds (Leucaena leucocephala)

Authors: Tiago Valente, Erico Lima, Bruno Deminicis, Andreia Cezario, Wallacy Santos, Fabiane Brito

Abstract:

Introduction: The Leucaena leucocephala known as leucaena is a perennial legume shrub of subtropical regions in which the forage shows favorable characteristics for livestock production. The objective of the study was to evaluate the influence of methods for overcoming dormancy the seeds of Leucaena leucocephala (Lam.). Materials and Methods: The number of germinated seeds was evaluated daily at the germination criterion radicle protrusion (growth, with about 2 cm long, the emerged seedlings of all). After the counting of the number of germinated seeds daily, the following characteristics were evaluated: Step 1: Germination count which represents the cumulative percentage of germinated seeds on the third day after the start of the test (Germ3); Step 2: Percentage of germinated seeds that correspond to the total percentage of seeds that germinate until the a seventh day after start of the test (Germ7); Step 3: Percentage of germinated seeds that correspond to the total percentage of seeds that germinate until the fifteenth day after start of the test (Germ15);Step 4: Germination speed index (GSI), which was calculated with number of germinated seeds to the nth observation; divided by number of days after sowing. Step 5: Total count of seeds do not germinate after 15 days (NGerm).The seed treatments were: (T1) water at 100 ºC/10 min; (T2) water at 100 ºC/1 min; (T3) Acetone (10 min); (T4) Ethyl alcohol (10 minutes); and (T5) intact seeds (control). Data were analyzed using a completely randomized design with eight replications, and it was adopted the Tukey test at 5% significance level. Results and Discussion: The treatment T1, had the highest speed of germination of seeds GSI, differed (P < 0.05). The T5 treatment (control) was the slowest response, between treatments until the seventh day after the beginning of the test (Germ7), with an amount of 20% accumulation of germinated seeds. The worst result of germination it was T5, with 30% of non-germinated seeds after 15 days of sowing. Acknowledgments: IFGoiano and CNPq (Brazil).

Keywords: acetone, boiling water, germination, seed physiology

Procedia PDF Downloads 200
915 Evaluation of Total Phenolic Content and Antioxidant Activity in Amaranth Seeds Grown in Latvia

Authors: Alla Mariseva, Ilze Beitane

Abstract:

Daily intake of products rich in antioxidants that scavenge free radicals in cell membranes is an effective way to combat oxidative stress. Last year there was noticed higher interest towards the identification and utilization of plants rich in antioxidant compounds as they may behave as preventive medicine. Amaranth seeds due to polyphenols, anthocyanins, flavonoids, and tocopherols are characterized by high antioxidant activity. The study aimed to evaluate the total phenolic content and radical scavenging activity of amaranth seeds cultivated in 2020 in two farms in Latvia. One sample of amaranth seeds came from an organic farm, the other – from a conventional farm. The total phenol content of amaranth seed extracts was measured with the Folin-Ciocalte spectrophotometric method. The total phenols were expressed as gallic acid equivalents (GAE) per 100 g dry weight (DW) of the samples. The antioxidant activity of amaranth seed extracts was calculated based on scavenging activities of the stable 2.2-diphenyl-1-picrylhydrazyl (DPPH˙) radical, the radical scavenging capacity (ABTS) was demonstrated as Trolox mM equivalents (TE) per 100 g-1 dry weight. Three parallel measurements were performed on all samples. There were significant differences between organic and conventional amaranth seeds in terms of total phenolic content and antioxidant activity. Organic amaranth seeds showed higher total phenolic content compared to conventional amaranth seeds, 65.4±6.0 mg GAE 100 g⁻¹ DW and 43.4±7.8 mg GAE 100 g⁻¹ DW respectively. Organic amaranth seeds were also characterized by higher DPPH radical scavenging activity (7.9±0.4 mM TE 100 g⁻¹ of dry matter) and ABTS radical scavenging capacity (13.2±1.5 mM TE 100 g⁻¹ of dry matter). The results obtained on total phenolic content and antioxidant activity of amaranth seeds grown in Latvia confirmed that the samples have a high biological value; therefore, it would be necessary to promote their consumption by including them in various food products, including vegan products, increasing their nutritional value.

Keywords: ABTS, amaranth seeds, antioxidant activity, DPPH, total phenolic content

Procedia PDF Downloads 221
914 Influence of BaTiO₃ on the Biological Behaviour of Hydroxyapatite: Collagen Composites

Authors: Cristina Busuioc, Georgeta Voicu, Sorin-Ion Jinga

Abstract:

The human bone presents in its dry form piezoelectric properties, which means that a mechanical stress results in electric polarization and an applied electric field causes strain. The immediate consequence was the revealing of piezoelectricity role in bone remodelling, as well as the integration of ceramic materials with piezoelectric behaviour in the composition of unitary or composite biomaterials. Thus, we prepared hydroxyapatite - collagen hybrid materials with barium titanate addition in order to achieve a better osseointegration. Barium titanate powder synthesized by a combined sol-gel-hydrothermal method, commercial hydroxyapatite and laboratory extracted collagen gel were employed as starting materials. Before the composites, fabrication, the powder with piezoelectric features was characterized in detail from the compositional, structural, morphological and electrical point of view. The next step was to elucidate the influence of barium titanate presence especially on the biological properties of the final materials. The biocompatibility of the hybrid supports without or with piezoelectric addition was investigated on mouse osteoblast cells through LDH cytotoxicity assay, LIVE/DEAD cell viability assay, and MTT cell proliferation assay. All results indicated that the analysed materials do not exert cytotoxic effects and present the ability to sustain cell survival and to promote their proliferation. In conclusion, barium titanate nanoparticles exhibit a good biocompatibility and osteoinductive properties, while the derived composite materials based on hydroxyapatite as oxide phase and collagen as polymeric phase can be successfully used for tissue engineering applications.

Keywords: barium titanate, hybrid composites, piezoelectricity, tissue engineering

Procedia PDF Downloads 322
913 Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients

Authors: Saeid Jafari, Khursheed Ahmad Sheikh, Randy W. Worobo, Kitipong Assatarakul

Abstract:

In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45-65 ◦C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 ◦C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.

Keywords: functional foods, coco shell powder, antioxidant activity, encapsulation, extraction

Procedia PDF Downloads 57
912 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks

Authors: Andrew C. Eloka Eboka, Freddie L. Inambao

Abstract:

Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.

Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond

Procedia PDF Downloads 363
911 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran

Authors: Nasser Hosseini

Abstract:

Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.

Keywords: corn (KSC704), output and input, energy efficiency, Khoy city

Procedia PDF Downloads 440
910 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS

Authors: M. Tabatabaee, R. Mohebat, M. Baranian

Abstract:

Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.

Keywords: zinc sulfide, nano articles, photodegradation, solar light

Procedia PDF Downloads 404
909 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 190
908 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 322