Search results for: hematopoietic stem cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3656

Search results for: hematopoietic stem cells

2966 Immunomodulatory Effect of Deer Antler Extract

Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim

Abstract:

Velvet antler (VA), the immature antlers of male deer, is traditionally used for thousands of years in Asian countries, such as Korea, China, Taiwan, and Mongolia. It has been considered to improve immune system and physical strength. The goal of this study was to investigate the immunomodulatory effect of deer antler velvet using in vitro system. In the first step, the effects of VA (70% ethanol extract) on the proliferation of splenocytes, bone marrow cell, and macrophages were determined. Next, the effect of VA on the production of nitric oxide and phagocytic activity in macrophage were measured. The results showed that VA treatment increased concanavalin-A stimulated splenocyte, bone marrow cells, and macrophage proliferation in a dose dependent manner. VA at 50 and 100 ug/mL concentrations significantly enhanced the concanavalin-A stimulated splenocyte proliferation by 8.8% and 18.5%, respectively. The proliferation of bone marrow cells, isolated from 5wk-old ICR mice, were increased by 25.2% and 46.5% by 50 and 100 ug/mL VA treatment. RAW 264.7 cell proliferation reached peak value at 50 ug/mL of VA treatment exhibiting 108% of the basal value. Nitric oxide production by RAW 264.7 macrophage cells was slightly reduced by VA treatment but was not statistically significant. Moreover, the phagocytic activity of macrophages was enhanced by VA treatment. These results indicate that VA is effective in immune system.

Keywords: deer antler, splenocyte, bone marrow cells, macrophage proliferation, phagocytosis

Procedia PDF Downloads 257
2965 A Systems Approach to Targeting Cyclooxygenase: Genomics, Bioinformatics and Metabolomics Analysis of COX-1 -/- and COX-2-/- Lung Fibroblasts Providing Indication of Sterile Inflammation

Authors: Abul B. M. M. K. Islam, Mandar Dave, Roderick V. Jensen, Ashok R. Amin

Abstract:

A systems approach was applied to characterize differentially expressed transcripts, bioinformatics pathways, and proteins and prostaglandins (PGs) from lung fibroblasts procured from wild-type (WT), COX-1-/- and COX-2-/- mice to understand system level control mechanism. Bioinformatics analysis of COX-2 and COX-1 ablated cells induced COX-1 and COX-2 specific signature respectively, which significantly overlapped with an 'IL-1β induced inflammatory signature'. This defined novel cross-talk signals that orchestrated coordinated activation of pathways of sterile inflammation sensed by cellular stress. The overlapping signals showed significant over-representation of shared pathways for interferon y and immune responses, T cell functions, NOD, and toll-like receptor signaling. Gene Ontology Biological Process (GOBP) and pathway enrichment analysis specifically showed an increase in mRNA expression associated with: (a) organ development and homeostasis in COX-1-/- cells and (b) oxidative stress and response, spliceosomes and proteasomes activity, mTOR and p53 signaling in COX-2-/- cells. COX-1 and COX-2 showed signs of functional pathways committed to cell cycle and DNA replication at the genomics level. As compared to WT, metabolomics analysis revealed a significant increase in COX-1 mRNA and synthesis of basal levels of eicosanoids (PGE2, PGD2, TXB2, LTB4, PGF1α, and PGF2α) in COX-2 ablated cells and increase in synthesis of PGE2, and PGF1α in COX-1 null cells. There was a compensation of PGE2 and PGF1α in COX-1-/- and COX-2-/- cells. Collectively, these results support a broader, differential and collaborative regulation of both COX-1 and COX-2 pathways at the metabolic, signaling, and genomics levels in cellular homeostasis and sterile inflammation induced by cellular stress.

Keywords: cyclooxygenases, inflammation, lung fibroblasts, systemic

Procedia PDF Downloads 277
2964 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran

Abstract:

In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 214
2963 Synthesis of Silver Powders Destined for Conductive Paste Metallization of Solar Cells Using Butyl-Carbitol and Butyl-Carbitol Acetate Chemical Reduction

Authors: N. Moudir, N. Moulai-Mostefa, Y. Boukennous, I. Bozetine, N. Kamel, D. Moudir

Abstract:

the study focuses on a novel process of silver powders synthesis for the preparation of conductive pastes used for solar cells metalization. Butyl-Carbitol and butyl-carbitol Acetate have been used as solvents and reducing agents of silver nitrate (AgNO3) as precursor to get silver powders. XRD characterization revealed silver powders with a cubic crystal system. SEM micro graphs showed spherical morphology of the particles. Laser granulometer gives similar particles distribution for the two agents. Using same glass frit and organic vehicle for comparative purposes, two conductive pastes were prepared with the synthesized silver powders for the front-side metalization of multi-crystalline cells. The pastes provided acceptable fill factor of 59.5 % and 60.8 % respectively.

Keywords: chemical reduction, conductive paste, silver nitrate, solar cell

Procedia PDF Downloads 295
2962 Mathematical modeling of the calculation of the absorbed dose in uranium production workers with the genetic effects.

Authors: P. Kazymbet, G. Abildinova, K.Makhambetov, M. Bakhtin, D. Rybalkina, K. Zhumadilov

Abstract:

Conducted cytogenetic research in workers Stepnogorsk Mining-Chemical Combine (Akmola region) with the study of 26341 chromosomal metaphase. Using a regression analysis with program DataFit, version 5.0, dependence between exposure dose and the following cytogenetic exponents has been studied: frequency of aberrant cells, frequency of chromosomal aberrations, frequency of the amounts of dicentric chromosomes, and centric rings. Experimental data on calibration curves "dose-effect" enabled the development of a mathematical model, allowing on data of the frequency of aberrant cells, chromosome aberrations, the amounts of dicentric chromosomes and centric rings calculate the absorbed dose at the time of the study. In the dose range of 0.1 Gy to 5.0 Gy dependence cytogenetic parameters on the dose had the following equation: Y = 0,0067е^0,3307х (R2 = 0,8206) – for frequency of chromosomal aberrations; Y = 0,0057е^0,3161х (R2 = 0,8832) –for frequency of cells with chromosomal aberrations; Y =5 Е-0,5е^0,6383 (R2 = 0,6321) – or frequency of the amounts of dicentric chromosomes and centric rings on cells. On the basis of cytogenetic parameters and regression equations calculated absorbed dose in workers of uranium production at the time of the study did not exceed 0.3 Gy.

Keywords: Stepnogorsk, mathematical modeling, cytogenetic, dicentric chromosomes

Procedia PDF Downloads 460
2961 The 6Rs of Radiobiology in Photodynamic Therapy: Review

Authors: Kave Moloudi, Heidi Abrahamse, Blassan P. George

Abstract:

Radiotherapy (RT) and photodynamic therapy (PDT) are both forms of cancer treatment that aim to kill cancer cells while minimizing damage to healthy tissue. The similarity between RT and PDT lies in their mechanism of action. Both treatments use energy to damage cancer cells. RT uses high-energy radiation to damage the DNA of cancer cells, while PDT uses light energy to activate a photosensitizing agent, which produces reactive oxygen species (ROS) that damage the cancer cells. Both treatments require careful planning and monitoring to ensure the correct dose is delivered to the tumor while minimizing damage to surrounding healthy tissue. They are also often used in combination with other treatments, such as surgery or chemotherapy, to improve overall outcomes. However, there are also significant differences between RT and PDT. For example, RT is a non-invasive treatment that can be delivered externally or internally, while PDT requires the injection of a photosensitizing agent and the use of a specialized light source to activate it. Additionally, the side effects and risks associated with each treatment can vary. In this review, we focus on generalizing the 6Rs of radiobiology in PDT, which can open a window for the clinical application of Radio-photodynamic therapy with minimum side effects. Furthermore, this review can open new insight to work on and design new radio-photosensitizer agents in Radio-photodynamic therapy.

Keywords: radiobiology, photodynamic therapy, radiotherapy, 6Rs in radiobiology, ROS, DNA damages, cellular and molecular mechanism, clinical application.

Procedia PDF Downloads 77
2960 Selection of Indigenous Tree Species and Microbial Inoculation for the Restoration of Degraded Uplands

Authors: Nelly S. Aggangan, Julieta A. Anarna

Abstract:

Indigenous tree species are priority planting materials for the National Greening Program of the Department of Environment and Natural Resources. Areas for reforestation are marginal grasslands where plant growth is stunted and seedling survival is low. This experiment was conducted to compare growth rates and seedling survival of seven indigenous reforestation species. Narra (Pterocarpus indicus), salago (Wikstroemia lanceolata), kisubeng (Sapindus saponaria), tuai (Biscofia javanica), batino (Alstonia macrophylla), bani (Pongamina pinnata) and ipil (Intsia bijuga) were inoculated with Mykovam® (mycorrhizal fungi) and Bio-N® (N2-fixing bacteria) during pricking. After five months in the nursery, the treated seedlings were planted in degraded upland acidic red soil in Cavinti, Laguna (Luzon). During outplanting, all mycorrhiza inoculated seedlings had 50-80% mycorrhizal roots while the control ones had 5-10% mycorrhizal roots. Mykovam increased height of narra, salago and kisubeng. Stem diameter was bigger in mycorrhizal salago than the control. After two years in the field, Mykovam®+Bio-N® inoculated narra, salago and bani gave 95% survival while non-mycorrhizal tuai gave the lowest survival (25%). Inoculated seedlings grew faster than the control. Highest height increase was in batino (103%), followed by bani (95%), ipil (59%), narra (58%), tuai (53%) and kisubeng was the lowest (10%). Stem diameter was increased by Mykovam® from 13-39% over the control. Highest stem diameter was obtained from narra (50%), followed by bani (40%), batino (36%), ipil (33%), salago (28%), kisubeng and tuai (12%) had the lowest. In conclusion, Mykovam® inoculated batino, bani, narra, salago and ipil can be selected to restore degraded upland acidic red soil in the Philippines.

Keywords: Azospirillum spp., Bio-N®, Mykovam®, nitrogen fixing bacteria, acidic red soil

Procedia PDF Downloads 280
2959 STAT6 Mediates Local and Systemic Fibrosis and Type Ii Immune Response via Macrophage Polarization during Acute and Chronic Pancreatitis in Murine Model

Authors: Hager Elsheikh, Matthias Sendler, Juliana Glaubnitz

Abstract:

In pancreatitis, an inflammatory reaction occurs in the pancreatic secretory cells due to premature activation of proteases, leading to pancreatic self-digestion and necrotic cell death of acinar cells. Acute pancreatitis in patients is characterized by a severe immune reaction that could lead to serious complications, such as organ failure or septic shock, if left untreated. Chronic pancreatitis is a recurrence of episodes of acute pancreatitis resulting in a fibro-inflammatory immune response, in which the type 2 immune response is primarily driven by AAMs in the pancreas. One of the most important signaling pathways for M2 macrophage activation is the IL-4/STAT6 pathway. Pancreatic fibrosis is induced by the hyperactivation of pancreatic stellate cells by dysregulation in the inflammatory response, leading to further damage, autodigestion and possibly necrosis of pancreatic acinar cells. The aim of this research is to investigate the effect of STAT6 knockout in disease severity and development of fibrosis wound healing in the presence of different macrophage populations, regulated by the type 2 immune response, after inducing chronic and/or acute pancreatitis in mice models via cerulean injection. We further investigate the influence of the JAK/STAT6 signaling pathway on the balance of fibrosis and regeneration in STAT6 deficient and wild-type mice. The characterization of resident and recruited macrophages will provide insight into the influence of the JAK/STAT6 signaling pathway on infiltrating cells and, ultimately, tissue fibrosis and disease severity.

Keywords: acute and chronic pancreatitis, tissue regeneration, macrophage polarization, Gastroenterology

Procedia PDF Downloads 47
2958 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics

Authors: Arindam Pramanik, Parimal Karmakar

Abstract:

We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.

Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery

Procedia PDF Downloads 467
2957 The Anti-Glycation Effect of Sclerocarya birrea Stem-Bark Extracts and Their Ability to Break Existing Advanced Glycation End-Products Protein Cross-Links

Authors: O. I. Adeniran, M. A. Mogale

Abstract:

Advanced glycation end-products (AGEs) have been implicated in the development and progression of vascular complications of diabetes mellitus and other age-related disease such as Alzheimer’s disease, heart diseases, stroke and limb amputation. The aim of the study was to determine the anti-glycation activity and AGE-cross-linking breaking ability of Sclerocarya birrea stem-bark extracts (SBSBETs). Hexane, ethyl acetate, methanol and water extracts of Sclerocarya birrea stem-bark and standard inhibitor, aminoguanidine (AG) were incubated with bovine serum albumin (BSA)-fructose mixture for 20 and 40 days. The amounts of total immunogenic AGEs (TIAGEs), fluorescent AGEs (FAGEs) and carboxymethyl lysine (CML) formed were determined and the percentage anti-glycation activity of each plant extract calculated. The ability of SBSBETs to break fructose-derived BSA-AGE-collagen cross-links was also investigated. All SBSBETs under investigation demonstrated less anti-glycation activity against TIAGE, FAGEs and CML than AG after 20 days incubation. After 40 days incubation, ethyl acetate, methanol and water SBSBETs demonstrated lower anti-glycation activity against TIAGEs than AG but exerted higher anti-glycation activity than AG against FAGEs. All SBSBETs except water demonstrated lower anti-glycation activity than AG against CML. With regard to the ability of SBSBETs to breakdown fructose-derived AGEs cross-links, the polar SBSBETs demonstrated higher ability to break AGE-cross-links than the non-polar ones. The results of this study may lead to the isolation of bio-active phyto-chemicals from SBSBETs that may be used for the prevention of vascular complication of diabetes.

Keywords: advanced glycation end-products, anti-glycation, cross-link breaking, Sclerocarrya birrea

Procedia PDF Downloads 244
2956 Effects of Adding Sodium Nitroprusside in Semen Diluents on Motility, Viability and Lipid Peroxidation of Sperm of Holstein Bulls

Authors: Leila Karshenas, Hamid Reza Khodaei, Behnaz Mahdavi

Abstract:

We know that nitric oxide (NO) plays an important role in all sexual activities of animals. It is made in body from NO synthase enzyme and L-arginin molecule. NO can bound with sulfur-iron complexes and because production of steroid sexual hormones is related to enzymes which have this complex, NO can change the activity of these enzymes. NO affects many cells including endothelial cells of veins, macrophages and mast cells. These cells are found in testis leydig cells and therefore are important source of NO in testis tissue. Minimizing damages to sperm at the time of sperm freezing and thawing is really important. The goal of this study was to determine the function of NO before freezing and its effects on quality and viability of sperms after thawing and incubation. 4 Holstein bulls were selected from the age of 4, and artificial insemination was done for 3 weeks (2 times a week). Treatments were 0, 10, 50 and 100 nm of sodium nitroprusside (SNP). Data analysis was performed by SAS98 program. Also, mean comparison was done using Duncan's multiple ranges test (P<0.05). Concentrations used was found to increase motility and viability of spermatozoa at 1, 2 and 3 hours after thawing significantly (P<0.05), but there was no significant difference at zero time. SNP levels reduced the amount of lipid peroxidation in sperm membrane, increased acrosome health and improved sample membranes especially in 50 and 100 nm treatments. According to results, adding SNP to semen diluents increases motility and viability of spermatozoa. Also, it reduces lipid peroxidation in sperm membrane and improves sperm function.

Keywords: sperm motility, nitric oxide, lipid peroxidation, spermatozoa

Procedia PDF Downloads 342
2955 Exploring Nanoformulations for Therapeutic Induction of Necroptosis

Authors: Tianjiao Chu, Carla Rios Luci, Christy Maksoudian, Ara Sargsian, Bella B. Manshian, Stefaan J. Soenen

Abstract:

Nanomaterials have gained high interest in their use as potent anticancer agents. Apart from delivering chemotherapeutic agents in order to reduce off-target effects, molecular agents have also been widely explored. The advances in our understanding of cell biology and cell death mechanisms1 has generated a broad library of potential therapeutic targets by siRNA, mRNA, or pDNA complexes. In the present study, we explore the ability of pDNA-polyplexes to induce tumor-specific necroptosis. This results in a cascade of effects, where immunogenic cell death potentiates anti-tumor immune responses and results in an influx of dendritic cells and cytotoxic T cells, rendering the tumor more amenable to immune checkpoint inhibition. This study aims to explore whether the induction of necroptosis in a subpopulation of tumor cells can be used to potentiate immune checkpoint inhibition studies.

Keywords: nanoparticle, MLKL, necroptosis, immunotherapy

Procedia PDF Downloads 122
2954 Cytotoxic Activity of Acetone and Ethanol Overripe Tempe Extracts against MCF-7 Breast Cancer Cells and Their Antioxidant Property

Authors: Dian Muzdalifah, Anastasia F. Devi, Zatil A. Athaillah, Linar Z. Udin

Abstract:

Tempe is a functional food prepared from soybeans through Rhizopus spp fermentation. It is well known as functional food, originated from Indonesia. Most studies on tempe functionalities refer to ripe (48 h fermentation) tempe and only limited studies discuss overripe tempe while longer fermentation time possibly increased tempe health benefit. Hence, the present study was performed to investigate the cytotoxic activity againts MCF-7 breast cancer cells and antioxidant property of tempe prepared from 0–156 h of fermentation. Tempe samples were dried and extracted with acetone and ethanol, respectively. Their extracts were used for subsequent analysis. The cytotoxic activity was assessed on MCF 7 breast cancer cells using Alamar Blue method. The antioxidant activity was determined by DPPH free radical scavenging assay. The results indicated that acetone extracts of 108 h tempe had a potent cytotoxic activity against MCF-7 breast cancer cells (IC50 = 2.54 ± 0,30 μg/mL). Ethanol extracts of 108 h tempe also showed the potency, but at slightly higher IC50 (5.20 ± 1.01 μg/mL). Both acetone and ethanol extracts of 108 and 120 h tempe showed high antioxidant activity expressed as percent inhibition with no significant difference. However, acetone extracts of 120 h tempe (81.31 ± 3.70 %) had better ability to inhibit oxidation reaction than that of ethanol extracts (75.77 ± 6.00 %). It can be concluded that the cytotoxic activity of tempe from 0–156 h of fermentation is positively correlated to their corresponding antioxidant property. Longer fermentation time, up to 108 h, increased the ability of tempe to inhibit the growth of MCF-7 breast cancer cells and oxidative reaction. But extended fermentation time, up to 156 h, tends to decrease its ability. Further studies are encouraged to identify the active components contained in each extract.

Keywords: antioxidant property, cytotoxic activity, extracts, overripe tempeh

Procedia PDF Downloads 263
2953 Detection of Cytotoxicity of Green Synthesized Silver, Gold, and Silver/Gold Bimetallic on Baby Hamster Kidney-21 Cells Using MTT Assay

Authors: Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali Khan

Abstract:

In cancer therapy, nanoparticles (NPs) shall be applied possibly by inoculation in the veins of humans. This action will connect them with white (WBCs) and red blood cells (RBCs) in the bloodstream before they reach their main targeted cancer cells. However, possible effects of silver, gold, and silver/gold bimetallic NPs (Ag, Au, and Ag/Au BNPs) on baby hamster kidney-21 (BHK-21) cells were studied by MTT assay. Here, Ag, Au, and their Ag/Au BNPs (bimetallic nanoparticles) were synthesized by using Hippeastrum hybridum (HH) extract. These NPs were characterized by UV-visible spectroscopy, FT-IR, XRD, and EDX, and SEM analysis. XRD analysis conferring the crystal structure with an average size of 13.3, 10.72, and 8.34nm of Ag, Au, and Ag/Au BNPs, respectively. SEM showed that Ag, Au, and Ag/Au BNPs had irregular morphologies, with nano measures calculated sizes of 40, 30, and 20 nm respectively. EDX spectrometers confirmed the presence of elemental Ag signal of the AgNPs with 22.75%, Au signal of the AuNPs with 48.08%, Ag signal with 12%, and Au signal with 38.26% of the Ag/Au BNPs. The BHK-21cells were incubated in the existence of doxorubicin, plant extract, Ag, Au, and Ag/Au BNPs. The cytotoxic effects could be observed in a dose-dependent mode; doxorubicin and Ag/Au BNPs were more toxic than plant extract, Ag, and Au NPs. It is demonstrated that NPs interact with BHK-21cells and significantly reduce cell viability in a concentration-dependent manner. However, to reduce the potential threats of NPs further studies are recommended.

Keywords: hippeastrum hybridum, nanoparticle, BHK-21cells

Procedia PDF Downloads 113
2952 Cytogenetic Characterization of the VERO Cell Line Based on Comparisons with the Subline; Implication for Authorization and Quality Control of Animal Cell Lines

Authors: Fumio Kasai, Noriko Hirayama, Jorge Pereira, Azusa Ohtani, Masashi Iemura, Malcolm A. Ferguson Smith, Arihiro Kohara

Abstract:

The VERO cell line was established in 1962 from normal tissue of an African green monkey, Chlorocebus aethiops (2n=60), and has been commonly used worldwide for screening for toxins or as a cell substrate for the production of viral vaccines. The VERO genome was sequenced in 2014; however, its cytogenetic features have not been fully characterized as it contains several chromosome abnormalities and different karyotypes coexist in the cell line. In this study, the VERO cell line (JCRB0111) was compared with one of the sublines. In contrast to 59 chromosomes as the modal chromosome number in the VERO cell line, the subline had two peaks of 56 and 58 chromosomes. M-FISH analysis using human probes revealed that the VERO cell line was characterized by a translocation t(2;25) found in all metaphases, which was absent in the subline. Different abnormalities detected only in the subline show that the cell line is heterogeneous, indicating that the subline has the potential to change its genomic characteristics during cell culture. The various alterations in the two independent lineages suggest that genomic changes in both VERO cells can be accounted for by progressive rearrangements during their evolution in culture. Both t(5;X) and t(8;14) observed in all metaphases of the two cell lines might have a key role in VERO cells and could be used as genetic markers to identify VERO cells. The flow karyotype shows distinct differences from normal. Further analysis of sorted abnormal chromosomes may uncover other characteristics of VERO cells. Because of the absence of STR data, cytogenetic data are important in characterizing animal cell lines and can be an indicator of their quality control.

Keywords: VERO, cell culture passage, chromosome rearrangement, heterogeneous cells

Procedia PDF Downloads 398
2951 Endothelial Progenitor Cell Biology in Ankylosing Spondylitis

Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan

Abstract:

Aim: Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming the endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Methods: Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). Results: EPCs were depleted in AS patients as compared to the healthy controls (CD34+/CD133+: 0.027 ± 0.010 % vs. 0.044 ± 0.011 %, p<0.001). EPCs depletion were significantly associated with disease duration (r=-0.52, p=0.01) and BASDAI (r=-0.45, p=0.04). Conclusion: This is the first study to demonstrate endothelial progenitor cells depletion in AS patients. EPCs depletion inversely correlates with disease duration and disease activity, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS.

Keywords: ankylosing spondylitis, endothelial progenitor cells, inflammation, vascular damage

Procedia PDF Downloads 419
2950 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications

Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy

Abstract:

Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.

Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr

Procedia PDF Downloads 499
2949 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold

Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher

Abstract:

Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.

Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve

Procedia PDF Downloads 125
2948 Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer

Authors: Ji Hye Im, Nguyen T. T. Phuong, Keon Wook Kang

Abstract:

Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.

Keywords: TAMR-MCF-7, CREB, estrogen receptor, aromatase

Procedia PDF Downloads 401
2947 Baseline CD4 Positive T Lymphocytes Counts among HIV Sero-Positive Patients Attending Benue State University Teaching Hospital, Makurdi, Nigeria

Authors: S. I. Nwadioha, M. S. Odimayo, G. T. A. Jombo, E. O. P. Nwokedi

Abstract:

Aims and Objectives: To determine the baseline CD4 positive T lymphocytes count of HIV/AIDS treatment naïve adults clients presenting for the first time treatment in Benue State University Teaching Hospital. Subjects and Methods: A total of 700 subjects age between 18 years to 70 years, were recruited for the study, comprising 600 HIV sero-positive patients and 100 healthy controls in Benue State University Teaching Hospital, Makurdi from 2013 to 2014. The CD4 counts of the subjects were evaluated using a Partec flow cytometer. Results: CD4 count of 200-299 cells/μl peaked with 25% (n=150/600)[control; 0%( n= 0/100)]. The study also showed that 44% (266/600) of HIV subjects had acquired immunodeficiency syndrome as defined by low CD4 counts below 200 cells/μl. Seventy-five per cent (n=451/600)of our patients would require to be placed on antiretroviral therapy with CD4 count of less than 350 cells/μl. At CD4 350 baseline criterion, age group 20-29 years had the highest demand 35%(160/451) for ARV followed by age groups 30-39 and 40-49 years with 28%(128/451) and 22%(98/451) respectively. Conclusion: There is a high prevalence of acquired immunodeficiency syndrome as defined by CD4 counts below 200 cells/μl, among the young active productive age group. The strict adopting of the ART WHO 2010 scale- up criteria doubles the number of the HIV clients that would qualify for ART with its attendant health benefits on the long run.

Keywords: CD4 counts, HIV patients, young age group, Nigeria

Procedia PDF Downloads 311
2946 Influence of Substitution on Structure of Tin Lantanium Pyrochlore La₂₋ₓSrₓSn₂O₇₋δ(0 ≤ x ≤ 0.25) Solid-Oxide Fuel Cells

Authors: Bounar Nedjemeddine

Abstract:

Materials with the pyrochlore lattice structure have attracted much recent attention due to their wide applications in ceramic thermal barrier coatings, high-permittivity dielectrics, and potential solid electrolytes in solid-oxide fuel cells. The work described in this paper is devoted to the synthesis and characterization of a pyrochlore structure based on lanthanum (La₂O₃) and tin (SnO₂) oxides of general formula La₂Sn₂O₇, substituted by Sr at the site La. Their structures were determined from X-ray powder diffraction using CELFER analysis. All the compositions present the space group Fd-3m. The substitution of La by Sr in the La₂Sn₂O₇ compound causes a variation of the cell parameters. The difference in charge between La³⁺ and Sr²⁺ and the difference in size cause the cell parameters to decrease from a=10.7165 A° to a=10.6848 A° for the substitution rates (x = 0.05, 0.1, 0.15 ...), which leads to a decrease in the volume of the mesh. For a substitution rate x = 0.25, there is an increase in the cell parameters (a=10.7035A°), which can be explained by a competitiveness of the size effect and the presence of a gap in the structure which go in the opposite direction.

Keywords: solid-oxide fuel cells, structure, pyrochlore, X-ray diffraction

Procedia PDF Downloads 112
2945 Endothelial Progenitor Cells Is a Determinant of Vascular Function and Atherosclerosis in Ankylosing Spondylitis

Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan

Abstract:

Objective: Endothelial progenitor cells (EPCs) have reparative potential in overcoming the endothelial dysfunction and reducing cardiovascular risk. EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether reduced EPCs population are associated with endothelial dysfunction, subclinical atherosclerosis and inflammatory markers in ankylosing spondylitis (AS) patients without any known traditional cardiovascular risk factor in AS patients. Methods: Levels of circulating EPCs (CD34+/CD133+), brachial artery flow-mediated dilatation, carotid intima-media thickness (CIMT) and inflammatory markers i.e erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tissue necrosis factor (TNF)–α, interleukin (IL)-6, IL-1 were assessed in 30 AS patients (mean age33.41 ± 10.25; 11 female and 19 male) who fulfilled the modified New York diagnostic criteria with 25 healthy volunteers (mean age 29.36± 8.64; 9 female and 16 male) matched for age and sex. Results: EPCs (CD34+/CD133+) cells were significantly (0.020 ± 0.001% versus 0.040 ± 0.010%, p<0.001) reduced in patients with AS compared to healthy controls. Endothelial function (7.35 ± 2.54 versus 10.27 ±1.73, p=0.002), CIMT (0.63 ± 0.01 versus 0.35 ± 0.02, p < 0.001) and inflammatory markers were also significantly (p < 0.01) altered as compared to healthy controls. Specifically, CD34+CD133+cells were inversely multivariate correlated with CRP and TNF-α and endothelial dysfunction was positively correlated with reduced number of EPC. Conclusion: Depletion of EPCs population is an independent predictor of endothelial dysfunction and early atherosclerosis in AS patients and may provide additional information beyond conventional risk factors and inflammatory markers.

Keywords: endothelial progenitor cells, atherosclerosis, ankylosing spondylitis, cardiovascular

Procedia PDF Downloads 372
2944 Grid Based Traffic Vulnerability Model Using Betweenness Centrality for Urban Disaster Management Information

Authors: Okyu Kwon, Dongho Kang, Byungsik Kim, Seungkwon Jung

Abstract:

We propose a technique to measure the impact of loss of traffic function in a particular area to surrounding areas. The proposed method is applied to the city of Seoul, which is the capital of South Korea, with a population of about ten million. Based on the actual road network in Seoul, we construct an abstract road network between 1kmx1km grid cells. The link weight of the abstract road network is re-adjusted considering traffic volume measured at several survey points. On the modified abstract road network, we evaluate the traffic vulnerability by calculating a network measure of betweenness centrality (BC) for every single grid cells. This study analyzes traffic impacts caused by road dysfunction due to heavy rainfall in urban areas. We could see the change of the BC value in all other grid cells by calculating the BC value once again when the specific grid cell lost its traffic function, that is, when the node disappeared on the grid-based road network. The results show that it is appropriate to use the sum of the BC variation of other cells as the influence index of each lattice cell on traffic. This research was supported by a grant (2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS).

Keywords: vulnerability, road network, beweenness centrality, heavy rainfall, road impact

Procedia PDF Downloads 80
2943 Inverted Diameter-Limit Thinning: A Promising Alternative for Mixed Populus tremuloides Stands Management

Authors: Ablo Paul Igor Hounzandji, Benoit Lafleur, Annie DesRochers

Abstract:

Introduction: Populus tremuloides [Michx] regenerates rapidly and abundantly by root suckering after harvest, creating stands with interconnected stems. Pre-commercial thinning can be used to concentrate growth on fewer stems to reach merchantability faster than un-thinned stands. However, conventional thinning methods are typically designed to reach even spacing between residual stems (1,100 stem ha⁻¹, evenly distributed), which can lead to treated stands consisting of weaker/smaller stems compared to the original stands. Considering the nature of P. tremuloides's regeneration, with large underground biomass of interconnected roots, aiming to keep the most vigorous and largest stems, regardless of their spatial distribution, inverted diameter-limit thinning could be more beneficial to post-thinning stand productivity because it would reduce the imbalance between roots and leaf area caused by thinning. Aims: This study aimed to compare stand and stem productivity of P. tremuloides stands thinned with a conventional thinning treatment (CT; 1,100 stem ha⁻¹, evenly distributed), two levels of inverted diameter-limit thinning (DL1 and DL2, keeping the largest 1100 or 2200 stems ha⁻¹, respectively, regardless of their spatial distribution) and a control unthinned treatment. Because DL treatments can create substantial or frequent gaps in the thinned stands, we also aimed to evaluate the potential of this treatment to recreate mixed conifer-broadleaf stands by fill-planting Picea glauca seedlings. Methods: Three replicate 21 year-old sucker-regenerated aspen stands were thinned in 2010 according to four treatments: CT, DL1, DL2, and un-thinned control. Picea glauca seedlings were underplanted in gaps created by the DL1 and DL2 treatments. Stand productivity per hectare, stem quality (diameter and height, volume stem⁻¹) and survival and height growth of fill-planted P. glauca seedlings were measured 8 year post-treatments. Results: Productivity, volume, diameter, and height were better in the treated stands (CT, DL1, and DL2) than in the un-thinned control. Productivity of CT and DL1 stands was similar 4.8 m³ ha⁻¹ year⁻¹. At the tree level, diameter and height of the trees in the DL1 treatment were 5% greater than those in the CT treatment. The average volume of trees in the DL1 treatment was 11% higher than the CT treatment. Survival after 8 years of fill planted P. glauca seedlings was 2% greater in the DL1 than in the DL2 treatment. DL1 treatment also produced taller seedlings (+20 cm). Discussion: Results showed that DL treatments were effective in producing post-thinned stands with larger stems without affecting stand productivity. In addition, we showed that these treatments were suitable to introduce slower growing conifer seedlings such as Picea glauca in order to re-create or maintain mixed stands despite the aggressive nature of P. tremuloides sucker regeneration.

Keywords: Aspen, inverted diameter-limit, mixed forest, populus tremuloides, silviculture, thinning

Procedia PDF Downloads 128
2942 Response of Planktonic and Aggregated Bacterial Cells to Water Disinfection with Photodynamic Inactivation

Authors: Thayse Marques Passos, Brid Quilty, Mary Pryce

Abstract:

The interest in developing alternative techniques to obtain safe water, free from pathogens and hazardous substances, is growing in recent times. The photodynamic inactivation of microorganisms (PDI) is a promising ecologically-friendly and multi-target approach for water disinfection. It uses visible light as an energy source combined with a photosensitiser (PS) to transfer energy/electrons to a substrate or molecular oxygen generating reactive oxygen species, which cause cidal effects towards cells. PDI has mainly been used in clinical studies and investigations on its application to disinfect water is relatively recent. The majority of studies use planktonic cells. However, in their natural environments, bacteria quite often do not occur as freely suspended cells (planktonic) but in cell aggregates that are either freely floating or attached to surfaces as biofilms. Microbes can form aggregates and biofilms as a strategy to protect them from environmental stress. As aggregates, bacteria have a better metabolic function, they communicate more efficiently, and they are more resistant to biocide compounds than their planktonic forms. Among the bacteria that are able to form aggregates are members of the genus Pseudomonas, they are a very diverse group widely distributed in the environment. Pseudomonas species can form aggregates/biofilms in water and can cause particular problems in water distribution systems. The aim of this study was to evaluate the effectiveness of photodynamic inactivation in killing a range of planktonic cells including Escherichia coli DSM 1103, Staphylococcus aureus DSM 799, Shigella sonnei DSM 5570, Salmonella enterica and Pseudomonas putida DSM 6125, and aggregating cells of Pseudomonas fluorescens DSM 50090, Pseudomonas aeruginosa PAO1. The experiments were performed in glass Petri dishes, containing the bacterial suspension and the photosensitiser, irradiated with a multi-LED (wavelengths 430nm and 660nm) for different time intervals. The responses of the cells were monitored using the pour plate technique and confocal microscopy. The study showed that bacteria belonging to Pseudomonads group tend to be more tolerant to PDI. While E. coli, S. aureus, S. sonnei and S. enterica required a dosage ranging from 39.47 J/cm2 to 59.21 J/cm2 for a 5 log reduction, Pseudomonads needed a dosage ranging from 78.94 to 118.42 J/cm2, a higher dose being required when the cells aggregated.

Keywords: bacterial aggregation, photoinactivation, Pseudomonads, water disinfection

Procedia PDF Downloads 281
2941 The Effects of Metformin And PCL-sorafenib Nanoparticles Co-treatment on MCF-7 Cell Culture Model of Breast Cancer

Authors: Emad Heydarnia, Aref Sepasi, Nika Asefi, Sara Khakshournia, Javad Mohammadnejad

Abstract:

Background: Despite breakthrough therapeutics in breast cancer, it is one of the main causes of mortality among women worldwide. Thus, drug therapies for treating breast cancer have recently been developed by scientists. Metformin and Sorafenib are well-known therapeutic in breast cancer. In the present study, we combined Sorafenib and PCL-sorafenib with metformin to improve drug absorption and promote therapeutic efficiency. Methods: The MCF-7 cells were treated with Metformin, Sorafenib, or PCL-sorafenib. The growth inhibitory effect of these drugs and cell viability were assessed using MTT and flow cytometry assays, respectively. The expression of targeted genes involved in cell proliferation, signaling, and the cell cycle was measured by Real-time PCR. Results: The results showed that MCF-7 cells treated with Metformin/Sorafenib and PCL-sorafenib/Metformin co-treatment contributed to 50% viability compared to untreated group. Moreover, PI and Annexin V staining tests showed that the cells viability for Metformin/Sorafenib and PCL-sorafenib/Metformin was 38% and 17%, respectively. Furthermore, Sorafenib/Metformin and PCL-sorafenib/Metformin leads to p53 gene expression increase by which they can increase ROS, thereby decreasing GPX4 gene expression. In addition, they affected the expression of BCL2, and BAX genes and altered the cell cycle. Conclusion: Together, the combination of PCL-sorafenib/Metformin and Sorafenib/Metformin increased Sorafenib absorption at lower doses and also leads to apoptosis and oxidative stress increases in MCF-7 cells.

Keywords: breast cancer, metformin, nanotechnology, sorafenib

Procedia PDF Downloads 52
2940 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 131
2939 Oncolytic Efficacy of Thymidine Kinase-Deleted Vaccinia Virus Strain Tiantan (oncoVV-TT) in Glioma

Authors: Seyedeh Nasim Mirbahari, Taha Azad, Mehdi Totonchi

Abstract:

Oncolytic viruses, which only replicate in tumor cells, are being extensively studied for their use in cancer therapy. A particular virus known as the vaccinia virus, a member of the poxvirus family, has demonstrated oncolytic abilities glioma. Treating Glioma with traditional methods such as chemotherapy and radiotherapy is quite challenging. Even though oncolytic viruses have shown immense potential in cancer treatment, their effectiveness in glioblastoma treatment is still low. Therefore, there is a need to improve and optimize immunotherapies for better results. In this study, we have designed oncoVV-TT, which can more effectively target tumor cells while minimizing replication in normal cells by replacing the thymidine kinase gene with a luc-p2a-GFP gene expression cassette. Human glioblastoma cell line U251 MG, rat glioblastoma cell line C6, and non-tumor cell line HFF were plated at 105 cells in a 12-well plates in 2 mL of DMEM-F2 medium with 10% FBS added to each well. Then incubated at 37°C. After 16 hours, the cells were treated with oncoVV-TT at an MOI of 0.01, 0.1 and left in the incubator for a further 24, 48, 72 and 96 hours. Viral replication assay, fluorescence imaging and viability tests, including trypan blue and crystal violet, were conducted to evaluate the cytotoxic effect of oncoVV-TT. The finding shows that oncoVV-TT had significantly higher cytotoxic activity and proliferation rates in tumor cells in a dose and time-dependent manner, with the strongest effect observed in U251 MG. To conclude, oncoVV-TT has the potential to be a promising oncolytic virus for cancer treatment, with a more cytotoxic effect in human glioblastoma cells versus rat glioma cells. To assess the effectiveness of vaccinia virus-mediated viral therapy, we have tested U251mg and C6 tumor cell lines taken from human and rat gliomas, respectively. The study evaluated oncoVV-TT's ability to replicate and lyse cells and analyzed the survival rates of the tested cell lines when treated with different doses of oncoVV-TT. Additionally, we compared the sensitivity of human and mouse glioma cell lines to the oncolytic vaccinia virus. All experiments regarding viruses were conducted under biosafety level 2. We engineered a Vaccinia-based oncolytic virus called oncoVV-TT to replicate specifically in tumor cells. To propagate the oncoVV-TT virus, HeLa cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 10 MOI virus was added. After 48 h, cells were harvested by scraping, and viruses were collected by 3 sequential freezing and thawing cycles followed by removal of cell debris by centrifugation (1500 rpm, 5 min). The supernatant was stored at −80 ◦C for the following experiments. To measure the replication of the virus in Hela, cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 5 MOI virus or equal dilution of PBS was added. At the treatment time of 0 h, 24 h, 48 h, 72 h and 96 h, the viral titers were determined under the fluorescence microscope (BZ-X700; Keyence, Osaka, Japan). Fluorescence intensity was quantified using the imagej software according to the manufacturer’s protocol. For the isolation of single-virus clones, HeLa cells seeded in six-well plates (5×105 cells/well). After 24 h (100% confluent), the cells were infected with a 10-fold dilution series of TianTan green fluorescent protein (GFP)virus and incubated for 4 h. To examine the cytotoxic effect of oncoVV-TT virus ofn U251mg and C6 cell, trypan blue and crystal violet assay was used.

Keywords: oncolytic virus, immune therapy, glioma, vaccinia virus

Procedia PDF Downloads 60
2938 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation

Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi

Abstract:

Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.

Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing

Procedia PDF Downloads 350
2937 Copper Chelation by 3-(Bromoacetyl) Coumarin Derivative Induced Apoptosis in Cancer Cells: Influence of Copper Chelation Strategy in Cancer Treatment

Authors: Saman Khan, Imrana Naseem

Abstract:

Copper is an essential trace element required for pro-angiogenic co-factors including vascular endothelial growth factor (VEGF). Elevated levels of copper are found in various types of cancer including prostrate, colon, breast, lung and liver for angiogensis and metastasis. Therefore, targeting copper via copper-specific chelators in cancer cells can be developed as effective anticancer treatment strategy. In continuation of our pursuit to design and synthesize copper chelators, herein we opted for a reaction to incorporate di-(2-picolyl) amine in 3-(bromoacetyl) coumarin (parent backbone) for the synthesis of complex 1. We evaluated lipid peroxidation, protein carbonylation, ROS generation, DNA damage and consequent apoptosis by complex 1 in exogenously added Cu(II) in human peripheral lymphocytes (simulate malignancy condition). Results showed that Cu(II)-complex 1 interaction leads to cell proliferation inhibition, apoptosis, ROS generation and DNA damage in human lymphocytes, and these effects were abrogated by cuprous chelator neocuproine and ROS scavengers (thiourea, catalase, SOD). This indicates that complex 1 cytotoxicity is due to redox cycling of copper to generate ROS which leads to pro-oxidant cell death in cancer cells. To further confirm our hypothesis, using the rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma; we showed that complex 1 mediates DNA breakage and cell death in isolated carcinoma cells. Membrane permeant copper chelator, neocuproine, and ROS scavengers inhibited the complex 1-mediated cellular DNA degradation and apoptosis. In summary, complex 1 anticancer activity is due to its copper chelation capability. These results will provide copper chelation as an effective targeted cancer treatment strategy for selective cytotoxic action against malignant cells without affecting normal cells.

Keywords: cancer treatment, copper chelation, ROS generation, DNA damage, redox cycling, apoptosis

Procedia PDF Downloads 273