Search results for: fundamental mode shape
5130 Digital Watermarking Based on Visual Cryptography and Histogram
Authors: R. Rama Kishore, Sunesh
Abstract:
Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.Keywords: digital watermarking, visual cryptography, histogram, butter worth filter
Procedia PDF Downloads 3595129 Effects of Mechanical Test and Shape of Grain Boundary on Martensitic Transformation in Fe-Ni-C Steel
Authors: Mounir Gaci, Salim Meziani, Atmane Fouathia
Abstract:
The purpose of the present paper is to model the behavior of metal alloy, type TRIP steel (Transformation Induced Plasticity), during solid/solid phase transition. A two-dimensional micromechanical model is implemented in finite element software (ZEBULON) to simulate the martensitic transformation in Fe-Ni-C steel grain under mechanical tensile stress of 250 MPa. The effects of non-uniform grain boundary and the criterion of mechanical shear load on the transformation and on the TRIP value during martensitic transformation are studied. The suggested mechanical criterion is favourable to the influence of the shear phenomenon on the progression of the martensitic transformation (Magee’s mechanism). The obtained results are in satisfactory agreement with experimental ones and show the influence of the grain boundary shape and the chosen mechanical criterion (SMF) on the transformation parameters.Keywords: martensitic transformation, non-uniform Grain Boundary, TRIP, shear Mechanical force (SMF)
Procedia PDF Downloads 2615128 Hydraulic Analysis of Irrigation Approach Channel Using HEC-RAS Model
Authors: Muluegziabher Semagne Mekonnen
Abstract:
This study was intended to show the irrigation water requirements and evaluation of canal hydraulics steady state conditions to improve on scheme performance of the Meki-Ziway irrigation project. The methodology used was the CROPWAT 8.0 model to estimate the irrigation water requirements of five major crops irrigated in the study area. The results showed that for the whole existing and potential irrigation development area of 2000 ha and 2599 ha, crop water requirements were 3,339,200 and 4,339,090.4 m³, respectively. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. In this study Hydraulic Analysis of Irrigation Canals Using HEC-RAS Model was conducted in Meki-Ziway Irrigation Scheme. The HEC-RAS model was tested in terms of error estimation and used to determine canal capacity potential.Keywords: HEC-RAS, irrigation, hydraulic. canal reach, capacity
Procedia PDF Downloads 605127 Studies on Influence of Rub on Vibration Signature of Rotating Machines
Authors: K. N. Umesh, K. S. Srinivasan
Abstract:
The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures
Procedia PDF Downloads 3145126 Study of Bored Pile Retaining Wall Using Physical Modeling
Authors: Amin Eslami, Jafar Bolouri Bazaz
Abstract:
Excavation and retaining walls are of challenging issues in civil engineering. In this study, the behavior of one the important type of supporting systems called Contiguous Bored Pile (CBP) retaining wall is investigated using a physical model. Besides, a comparison is made between two modes of free end piles(soft bed) and fixed end piles (stiff bed). Also a back calculation of effective length (the real free length of pile) is done by measuring lateral deflection of piles in different stages of excavation in both a forementioned cases. Based on observed results, for the fixed end mode, the effective length to free length ratio (Leff/L0) is equal to unity in initial stages of excavation and less than 1 in its final stages in a decreasing manner. While this ratio for free end mode, remains constant during all stages of excavation and is always less than unity.Keywords: contiguous bored pile wall, effective length, fixed end, free end, free length
Procedia PDF Downloads 4015125 Countering Terrorism and Defending Human Right after 9/11: The European Perspective
Authors: Anita Blagojević
Abstract:
It is well known that the terrorist attacks on the New York City and Washington, D.C. prompted unprecedented international action to enhance international cooperation in the prevention and suppression of terrorism. In the months (and years) after September 11, the world community focused on two main efforts: first, on efforts to bring those responsible for terrorist attacks to justice, and second, on efforts to prevent future terrorist attacks. In that sense, many governments took advantage of these efforts to strengthen their national security. In that process, however, human rights and civil liberties of certain groups of people were alleged. As a consequence, part of the price paid for protecting national security against terrorist attacks was the threat of infringement on people's fundamental rights and freedoms. The aim of this paper is to analyze the role of the European Union and the Council of Europe in finding the answer to the one of the main security dilemma for the present era: how to find the balance between the protection of national security and guarantee of the people's rights and fundamental freedoms?Keywords: terrorism, antiterrorism, European Union, Council of Europe, human rights
Procedia PDF Downloads 3805124 Design of a High Performance T/R Switch for 2.4 GHz RF Wireless Transceiver in 0.13 µm CMOS Technology
Authors: Mohammad Arif Sobhan Bhuiyan, Mamun Bin Ibne Reaz
Abstract:
The rapid advancement of CMOS technology, in the recent years, has led the scientists to fabricate wireless transceivers fully on-chip which results in smaller size and lower cost wireless communication devices with acceptable performance characteristics. Moreover, the performance of the wireless transceivers rigorously depends on the performance of its first block T/R switch. This article proposes a design of a high performance T/R switch for 2.4 GHz RF wireless transceivers in 0.13 µm CMOS technology. The switch exhibits 1- dB insertion loss, 37.2-dB isolation in transmit mode and 1.4-dB insertion loss, 25.6-dB isolation in receive mode. The switch has a power handling capacity (P1dB) of 30.9-dBm. Besides, by avoiding bulky inductors and capacitors, the size of the switch is drastically reduced and it occupies only (0.00296) mm2 which is the lowest ever reported in this frequency band. Therefore, simplicity and low chip area of the circuit will trim down the cost of fabrication as well as the whole transceiver.Keywords: CMOS, ISM band, SPDT, t/r switch, transceiver
Procedia PDF Downloads 4485123 Design and Implementation of Control System in Underwater Glider of Ganeshblue
Authors: Imam Taufiqurrahman, Anugrah Adiwilaga, Egi Hidayat, Bambang Riyanto Trilaksono
Abstract:
Autonomous Underwater Vehicle glider is one of the renewal of underwater vehicles. This vehicle is one of the autonomous underwater vehicles that are being developed in Indonesia. Glide ability is obtained by controlling the buoyancy and attitude of the vehicle using the movers within the vehicle. The glider motion mechanism is expected to provide energy resistance from autonomous underwater vehicles so as to increase the cruising range of rides while performing missions. The control system on the vehicle consists of three parts: controlling the attitude of the pitch, the buoyancy engine controller and the yaw controller. The buoyancy and pitch controls on the vehicle are sequentially referring to the finite state machine with pitch angle and depth of diving inputs to obtain a gliding cycle. While the yaw control is done through the rudder for the needs of the guide system. This research is focused on design and implementation of control system of Autonomous Underwater Vehicle glider based on PID anti-windup. The control system is implemented on an ARM TS-7250-V2 device along with a mathematical model of the vehicle in MATLAB using the hardware-in-the-loop simulation (HILS) method. The TS-7250-V2 is chosen because it complies industry standards, has high computing capability, minimal power consumption. The results show that the control system in HILS process can form glide cycle with depth and angle of operation as desired. In the implementation using half control and full control mode, from the experiment can be concluded in full control mode more precision when tracking the reference. While half control mode is considered more efficient in carrying out the mission.Keywords: control system, PID, underwater glider, marine robotics
Procedia PDF Downloads 3745122 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization
Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang
Abstract:
The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling
Procedia PDF Downloads 2555121 The Influence of Machine Tool Composite Stiffness to the Surface Waviness When Processing Posture Constantly Switching
Authors: Song Zhiyong, Zhao Bo, Du Li, Wang Wei
Abstract:
Aircraft structures generally have complex surface. Because of constantly switching postures of motion axis, five-axis CNC machine’s composite stiffness changes during CNC machining. It gives rise to different amplitude of vibration of processing system, which further leads to the different effects on surface waviness. In order to provide a solution for this problem, we take the “S” shape test specimen’s CNC machining for the object, through calculate the five axis CNC machine’s composite stiffness and establish vibration model, we analysis of the influence mechanism between vibration amplitude and surface waviness. Through carry out the surface quality measurement experiments, verify the validity and accuracy of the theoretical analysis. This paper’s research results provide a theoretical basis for surface waviness control.Keywords: five axis CNC machine, “S” shape test specimen, composite stiffness, surface waviness
Procedia PDF Downloads 3905120 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability
Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong
Abstract:
The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.Keywords: supply chain, facility location, weber problem, sustainability
Procedia PDF Downloads 1025119 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion
Authors: Krishnaiah Arkanti, Ramulu Malothu
Abstract:
The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.Keywords: equal channel angular extrusion, severe plastic deformation, copper, mechanical properties
Procedia PDF Downloads 1905118 Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel
Authors: S. Sulaiman, M. A. Razak, M. R. Ibrahim, A. A. Khan
Abstract:
An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra.Keywords: allegheny ludlum D2 tool steel, current, EDM, surface roughness, pulse duration
Procedia PDF Downloads 3795117 Investigating the Effect of the Shape of the Side Supports of the Gates of the Gotvand Reservoir Dam (from the Peak Overflows) on the Narrowing Coefficients
Authors: M. Abbasi
Abstract:
A spillway structure is used to pass excess water and floods from upstream or upstream to downstream or tributary. The spillway is considered one of the most key members of the dam, and the failure of many dams is attributed to the inefficiency of their spillway. Weirs should be selected as strong, reliable and high-performance structures, and weirs should be ready for use in all conditions and able to drain the flood so that we do not witness many casualties and financial losses when a flood occurs. The purpose of this study is to simulate the flow pattern passing over the peak spillway in order to optimize and adjust the height of the spillway walls. In this research, the effect of the shape of the side wings on the flow pattern over the peak spillways of the Gotvand reservoir dam was simulated and modelled using Flow3D software. In this research, side wings with rounded walls with six different approach angles were used. In addition, the different value of H/Hd was used to check the effect of the tank head. The results showed that with the constant H/Hd ratio and the increase of the approach angle of the side wing, the flow depth first decreases and then increases. These changes were the opposite regarding the depth average speed of the flow and the depth average concentration of the air entering the flow. At the same time, with the constant angle of approach of the side wing and with the increase of H/Hd ratio, the flow depth increases. In general, a correct understanding of the operation of overflows and a correct design can significantly reduce construction costs and solve flooding problems.Keywords: effect of the shape, gotvand reservoir dam, narrowing coefficients, supports of the gates
Procedia PDF Downloads 685116 Study of Dual Fuel Engine as Environmentally Friendly Engine
Authors: Nilam S. Octaviani, Semin
Abstract:
The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine. However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.Keywords: diesel engine, dual fuel diesel engine, emission reduction, technical characteristics
Procedia PDF Downloads 3075115 Stationary Energy Partition between Waves in a Carbyne Chain
Authors: Svetlana Nikitenkova, Dmitry Kovriguine
Abstract:
Stationary energy partition between waves in a one dimensional carbyne chain at ambient temperatures is investigated. The study is carried out by standard asymptotic methods of nonlinear dynamics in the framework of classical mechanics, based on a simple mathematical model, taking into account central and noncentral interactions between carbon atoms. Within the first-order nonlinear approximation analysis, triple-mode resonant ensembles of quasi-harmonic waves are revealed. Any resonant triad consists of a single primary high-frequency longitudinal mode and a pair of secondary low-frequency transverse modes of oscillations. In general, the motion of the carbyne chain is described by a superposition of resonant triads of various spectral scales. It is found that the stationary energy distribution is obeyed to the classical Rayleigh–Jeans law, at the expense of the proportional amplitude dispersion, except a shift in the frequency band, upwards the spectrum.Keywords: resonant triplet, Rayleigh–Jeans law, amplitude dispersion, carbyne
Procedia PDF Downloads 4445114 Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture
Authors: Chun-Qing Li, Guoyang Fu, Wei Yang
Abstract:
A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines.Keywords: corrosion, inclined surface cracks, pressurized cast iron pipes, stress intensity
Procedia PDF Downloads 3225113 Dual Set Point Governor Control Structure with Common Optimum Temporary Droop Settings for both Islanded and Grid Connected Modes
Authors: Deepen Sharma, Eugene F. Hill
Abstract:
For nearly 100 years, hydro-turbine governors have operated with only a frequency set point. This natural governor action means that the governor responds with changing megawatt output to disturbances in system frequency. More and more, power system managers are demanding that governors operate with constant megawatt output. One way of doing this is to introduce a second set point in the control structure called a power set point. The control structure investigated and analyzed in this paper is unique in the way that it utilizes a power reference set point in addition to the conventional frequency reference set point. An optimum set of temporary droop parameters derived based on the turbine-generator inertia constant and the penstock water start time for stable islanded operation are shown to be also equally applicable for a satisfactory rate of generator loading during its grid connected mode. A theoretical development shows why this is the case. The performance of the control structure has been investigated and established based on the simulation study made in MATLAB/Simulink as well as through testing the real time controller performance on a 15 MW Kaplan Turbine and generator. Recordings have been made using the labVIEW data acquisition platform. The hydro-turbine governor control structure and its performance investigated in this paper thus eliminates the need to have a separate set of temporary droop parameters, one valid for islanded mode and the other for interconnected operations mode.Keywords: frequency set point, hydro governor, interconnected operation, isolated operation, power set point
Procedia PDF Downloads 3675112 Articulating the Colonial Relation, a Conversation between Afropessimism and Anti-Colonialism
Authors: Thomas Compton
Abstract:
As Decolonialism becomes an important topic in Political Theory, the rupture between the colonized and the colonist relation has lost attention. Focusing on the anti-colonial activist Madhi Amel, we shall consider his attention to the permanence of the colonial relation and how it preempts Frank Wilderson’s formulation of (white) culturally necessary Anti-Black violence. Both projects draw attention away from empirical accounts of oppression, instead focusing on the structural relation which precipitates them. As Amel says that we should stop thinking of the ‘underdeveloped’ as beyond the colonial relation, Wilderson says we should stop think of the Black rights that have surpassed the role of the slave. However, Amel moves beyond his idol Althusser’s Structuralism toward a formulation of the colonial relation as source of domination. Our analysis will take a Lacanian turn in considering how this non-relation was formulated as a relation how this space of negativity became a ideological opportunity for Colonial domination. Wilderson’s work shall problematise this as we conclude with his criticisms of Structural accounts for the failure to consider how Black social death exists as more than necessity but a cite of white desire. Amel, a Lebanese activist and scholar (re)discovered by Hicham Safieddine, argues colonialism is more than the theft of land, but instead a privatization of collective property and form of investment which (re)produces the status of the capitalist in spaces ‘outside’ the market. Although Amel was a true Marxist-Leninsist, who exposited the economic determinacy of the Colonial Mode of Production, we are reading this account through Alenka Zupančič’s reformulation of the ‘invisible hand job of the market’. Amel points to the signifier ‘underdeveloped’ as buttressed on a pre-colonial epistemic break, as the Western investor (debt collector) sees the (post?) colony narcissistic image. However, the colony can never become site of class conflict, as the workers are not unified but existing between two countries. In industry, they are paid in Colonial subjectivisation, the promise of market (self)pleasure, at home, they are refugees. They are not, as Wilderson states, in the permanent social death of the slave, but they are less than the white worker. This is formulated as citizen (white), non-citizen (colonized), anti-citizen (Black/slave). Here we may also think of how indentured Indians were used as instruments of colonial violence. Wilderson’s aphorism “there is no analogy to anti-Black violence” lays bare his fundamental opposition between colonial and specifically anti-Black violence. It is not only that the debt collector, landowner, or other owners of production pleasures themselves as if their hand is invisible. The absolute negativity between colony and colonized provides a new frontier for desire, the development of a colonial mode of production. An invention inside the colonial structure that is generative of class substitution. We shall explore how Amel ignores the role of the slave but how Wilderson forecloses the history African anti-colonial.Keywords: afropessimism, fanon, marxism, postcolonialism
Procedia PDF Downloads 1555111 Blister Formation Mechanisms in Hot Rolling
Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe
Abstract:
Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.Keywords: FEG-SEM, nucleation, oxide morphology, surface defect
Procedia PDF Downloads 1455110 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor
Authors: Junior B. N. Adohinzin, Ling Xu
Abstract:
Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen. Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.Keywords: membrane bioreactor (MBR), moving bed biofilm reactor (MBBR), nutrients removal, simultaneous nitrification and denitrification
Procedia PDF Downloads 3475109 Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode
Authors: Azhar Ulhaq, Zubair Yameen, Almas Anjum
Abstract:
Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink.Keywords: energy storage system, island, wind, STATCOM, self-excited induction generator, SEIG, transient
Procedia PDF Downloads 1545108 Increasing of Gain in Unstable Thin Disk Resonator
Authors: M. Asl. Dehghan, M. H. Daemi, S. Radmard, S. H. Nabavi
Abstract:
Thin disk lasers are engineered for efficient thermal cooling and exhibit superior performance for this task. However the disk thickness and large pumped area make the use of this gain format in a resonator difficult when constructing a single-mode laser. Choosing an unstable resonator design is beneficial for this purpose. On the other hand, the low gain medium restricts the application of unstable resonators to low magnifications and therefore to a poor beam quality. A promising idea to enable the application of unstable resonators to wide aperture, low gain lasers is to couple a fraction of the out coupled radiation back into the resonator. The output coupling gets dependent on the ratio of the back reflection and can be adjusted independently from the magnification. The excitation of the converging wave can be done by the use of an external reflector. The resonator performance is numerically predicted. First of all the threshold condition of linear, V and 2V shape resonator is investigated. Results show that the maximum magnification is 1.066 that is very low for high quality purposes. Inserting an additional reflector covers the low gain. The reflectivity and the related magnification of a 350 micron Yb:YAG disk are calculated. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically by the Fox and Li algorithm. Results show that with back reflection mechanism in combination with increasing the number of beam incidents on disk, high gain and high magnification can occur.Keywords: unstable resonators, thin disk lasers, gain, external reflector
Procedia PDF Downloads 4135107 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser
Abstract:
Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride
Procedia PDF Downloads 1915106 Effects of Major and Minor Modes to Emotional Perceptions of 'Happy' and 'Sad' in Piano Music among Students Aged 9-17
Authors: Nurezlin Mohd Azib, Pan Kok Chang
Abstract:
This quantitative study investigates the effects of major and minor modes, and contributing musical parameter of tempo, to the emotional perceptions of ‘happy’ and ‘sad’ in piano music among subjects aged 9-17 years old. The study was conducted in two phases; survey-questionnaire, and listening activity. Subjects (N=31) were sampled from piano music students’ population in Bangi, Selangor. In the survey-questionnaire, subjects answered 20 questions on demographic characteristics, music listening and preference, and understanding of emotional perception in music. In the listening activity, subjects listened to 20 untitled piano music excerpts and rated the emotion perceived for each excerpt, whether ‘happy’ or ‘sad’. Results from survey-questionnaire show that most percentage of subjects are 11 years old, in Grade 1, of 3 years of learning piano, prefer classical music, always listen to music, prefer both major and minor modes’ music, and find it easy to understand emotion in music, as well as major and minor modes. Results from listening activity show that 60 % of major mode music are perceived as ‘major-happy’, while 60 % too, of minor mode music are perceived as ‘minor-sad’. However, Chi-square test of independence statistical analysis indicates that there are no association and significant relationship between modes (major and minor) and ‘happy’, as well as ‘sad’ perceptions (x2 (1, N = 20) = 0.80, p = 0.371), at the significance level of p ≤ 0.05. Contrastingly, there are association and significant relationship between tempo (fast and slow), and ‘happy’, as well as ‘sad’ perceptions (x2 (1, N = 20) = 9.899, p = 0.005). Therefore, it is concluded that tempo plays an important role in effects of major and minor mode to ‘happy’ and ‘sad’ emotional perceptions in piano music among subjects aged 9 to 17 in this study.Keywords: effects, emotional perceptions, major and minor modes, piano music
Procedia PDF Downloads 2185105 The Effect of Evil Eye in the Individuals' Journey for Personhood within a Christian Orthodox Society
Authors: Nikolaos Souvlakis
Abstract:
The present paper negotiates the effect of 'the evil eye' on individuals' mental health while at the same time poses the problem of how the evil eye fits into the anthropological arena as a key question that forges a fundamental link between religion, anthropology and mental health professions. It is the argument of the paper that the evil eye is an essential and fundamental human phenomenon and therefore any scholarly field involved in its study must consider the insight it provides into the development of personhood. The study was an anthropological study in the geographical area of Corfu, a Greek Orthodox society uninfluenced by the Ottoman Islamic Culture. The paper aims to deepen our understanding of the evil eye as it analyses the interaction between the evil eye and gaze and how they affect the development of personhood; based on the empirical data collected from the fieldwork. Therefore, the paper adopts a psychoanalytic anthropology approach to facilitate a better understanding of the evil eye through the accounts of individuals’ journeys in the process of their development of personhood. Finally, the paper aims to offer a detailed analysis of the particular element of eye (‘I’) and, more specifically, of ‘the others’, as they relate to the phenomenon of the evil eye.Keywords: gaze, evil eye, mental health, personhood
Procedia PDF Downloads 1305104 3D Images Representation to Provide Information on the Type of Castella Beams Hole
Authors: Cut Maisyarah Karyati, Aries Muslim, Sulardi
Abstract:
Digital image processing techniques to obtain detailed information from an image have been used in various fields, including in civil engineering, where the use of solid beam profiles in buildings and bridges has often been encountered since the early development of beams. Along with this development, the founded castellated beam profiles began to be more diverse in shape, such as the shape of a hexagon, triangle, pentagon, circle, ellipse and oval that could be a practical solution in optimizing a construction because of its characteristics. The purpose of this research is to create a computer application to edge detect the profile of various shapes of the castella beams hole. The digital image segmentation method has been used to obtain the grayscale images and represented in 2D and 3D formats. This application has been successfully made according to the desired function, which is to provide information on the type of castella beam hole.Keywords: digital image, image processing, edge detection, grayscale, castella beams
Procedia PDF Downloads 1425103 Hydromagnetic Linear Instability Analysis of Giesekus Fluids in Taylor-Couette Flow
Authors: K. Godazandeh, K. Sadeghy
Abstract:
In the present study, the effect of magnetic field on the hydrodynamic instability of Taylor-Couette flow between two concentric rotating cylinders has been numerically investigated. At the beginning the basic flow has been solved using continuity, Cauchy equations (with regards to Lorentz force) and the constitutive equations of a viscoelastic model called "Giesekus" model. Small perturbations, considered to be normal mode, have been superimposed to the basic flow and the unsteady perturbation equations have been derived consequently. Neglecting non-linear terms, the general eigenvalue problem obtained has been solved using pseudo spectral method (combination of Chebyshev polynomials). The objective of the calculations is to study the effect of magnetic fields on the onset of first mode of instability (axisymmetric mode) for different dimensionless parameters of the flow. The results show that the stability picture is highly influenced by the magnetic field. When magnetic field increases, it first has a destabilization effect which changes to stabilization effect due to more increase of magnetic fields. Therefor there is a critical magnetic number (Hartmann number) for instability of Taylor-Couette flow. Also, the effect of magnetic field is more dominant in large gaps. Also based on the results obtained, magnetic field shows a more considerable effect on the stability at higher Weissenberg numbers (at higher elasticity), while the "mobility factor" changes show no dominant role on the intense of suction and injection effect on the flow's instability.Keywords: magnetic field, Taylor-Couette flow, Giesekus model, pseudo spectral method, Chebyshev polynomials, Hartmann number, Weissenberg number, mobility factor
Procedia PDF Downloads 3915102 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing
Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis
Abstract:
The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.Keywords: additive manufacture, new designs, orthoses, finite elements
Procedia PDF Downloads 2115101 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model
Authors: Li Chen, Alex Skvortsov, Chris Norwood
Abstract:
Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model
Procedia PDF Downloads 287