Search results for: fluorescence techniques
6550 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques
Authors: Kishor T. Zingre, Seshadhri Srinivasan
Abstract:
Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates
Procedia PDF Downloads 1146549 Active Learning: Increase Learning through Engagement
Authors: Jihan Albayati, Kim Abdullah
Abstract:
This poster focuses on the significance of active learning strategies and their usage in the ESL classroom. Active learning is a big shift from traditional lecturing to active student engagement which can enhance and enrich student learning; therefore, engaging students is the core of this approach. Students learn more when they participate in the process of learning such as discussions, debates, analysis, synthesis, or any form of activity that requires student involvement. In order to achieve active learning, teachers can use different instructional strategies that are conducive to learning and the selection of these strategies depends on student learning outcomes. Active learning techniques must be carefully designed and integrated into the classroom to increase critical thinking and student participation. This poster provides a concise definition of active learning and its importance, instructional strategies, active learning techniques and their impact on student engagement. Also, it demonstrates the differences between passive and active learners.Keywords: active learning, learner engagement, student-centered, teaching strategies
Procedia PDF Downloads 4986548 Understanding the Life Experience of Middle Class Married Women Betrayal
Authors: Sara Sharifi Yazdi
Abstract:
The main purpose of this study is to find out about the reasons and the ways of middle-class married women betrayal via their living world. This is qualitative research, so deep semi-structured, episodic interview techniques and observation techniques were used to collect data; meanwhile, the basic theory method was used to analyze the data. The sample in this research includes 34 women with emotional and sexual relationships out of marriage. The results indicate that some set of conditions created the first spark of change in their opinions. These changes are empowered through both experiences of tolerance and exclusion, so strategies such as distance, compulsive tolerance, counteract, etc. have been used for reacting by the people in this study; besides some of the other consequences of betrayal which can be named are lack of comfort, feeling of deprivation, violence, labeling, guilty feelings of grief, and so on.Keywords: living world, rejection, admission, betrayal, sexual relationship, marriage
Procedia PDF Downloads 1476547 On the Equalization of Nonminimum Phase Electroacoustic Systems Using Digital Inverse Filters
Authors: Avelino Marques, Diamantino Freitas
Abstract:
Some important electroacoustic systems, like loudspeaker systems, exhibit a nonminimum phase behavior that poses considerable effort when applying advanced digital signal processing techniques, such as linear equalization. In this paper, the position and the number of zeros and poles of the inverse filter, FIR type or IIR type, designed using time domain techniques, are studied, compared and related to the nonminimum phase zeros of system to be equalized. Conclusions about the impact of the position of the system non-minimum phase zeros, on the length/order of the inverse filter and on the delay of the equalized system are outlined as a guide to previously decide which type of filter will be more adequate.Keywords: loudspeaker systems, nonminimum phase system, FIR and IIR filter, delay
Procedia PDF Downloads 786546 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico
Authors: Ismene Ithai Bras-Ruiz
Abstract:
Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise
Procedia PDF Downloads 1286545 Reducing Inventory Costs by Reducing Inventory Levels: Kuwait Flour Mills and Bakeries Company
Authors: Dana Al-Qattan, Faiza Goodarzi, Heba Al-Resheedan, Kawther Shehab, Shoug Al-Ansari
Abstract:
This project involves working with different types of forecasting methods and facility planning tools to help the company we have chosen to improve and reduce its inventory, increase its sales, and decrease its wastes and losses. The methods that have been used by the company have shown no improvement in decreasing the annual losses. The research made in the company has shown that no interest has been made in exploring different techniques to help the company. In this report, we introduce several methods and techniques that will help the company make more accurate forecasts and use of the available space efficiently. We expect our approach to reduce costs without affecting the quality of the product, and hence making production more viable.Keywords: production planning, inventory management, inventory control, simulation, facility planning and design, engineering economy and costs
Procedia PDF Downloads 5706544 Effect of Tillage Techniques on the Performance of Kharif Rice Varieties
Authors: Mahua Banerjee, Debtanu Maiti
Abstract:
Zero-tillage cultivation is a farming practice that reduces costs while maintaining harvests and protecting the environment. Innovative partnerships among researchers, farmers, and other actors in the agricultural value chain have enabled the adoption of zero-tillage to sow rice in the Indo-Gangetic Plains, increasing farmers' incomes, fostering more sustainable use of soil and water, and providing a platform for cropping diversification and the introduction of other resource-conserving practices. A field experiment was conducted in the farmer’s field of Ausgram I Block, Burdwan, West Bengal, India under sandy loam soil with soil pH of 5.2, which is low in Nitrogen, medium in Phosphorus and Potassium. There were three techniques of tillage-T1: Zero tillage in Rice, T2: conventional tillage in Rice, T3: Rice grown with Drum seeder and three varieties namely V1: MTU 7029 V2-MTU 1010, V3: Pratikha thus making nine treatment combinations which were replicated thrice and the experiment was laid out in Factorial Randomised Block Design. Among the three varieties, rice variety MTU 7029 gave higher yield in all the tillage techniques. The highest yield was obtained under Zero tillage followed by conventional tillage. From economic analysis it was revealed that the benefit:cost ratio was higher in Zero tillage and rice cultivation by drum seeder. Zero-till is increasingly being adopted because it gives more yield at less cost, saves labour and farmer time. Farmers will be interested in this technology once they overcome their tillage biases.Keywords: economics, Indo-Gangetic plain, rice, zero tillage, yield
Procedia PDF Downloads 3786543 Effects of Interfacial Modification Techniques on the Mechanical Properties of Natural Particle Based Polymer Composites
Authors: Bahar Basturk, Secil Celik Erbas, Sevket Can Sarikaya
Abstract:
Composites combining the particulates and polymer components have attracted great interest in various application areas such as packaging, furniture, electronics and automotive industries. For strengthening the plastic matrices, the utilization of natural fillers instead of traditional reinforcement materials has received increased attention. The properties of natural filler based polymer composites (NFPC) may be improved by applying proper surface modification techniques to the powder phase of the structures. In this study, acorn powder-epoxy and pine corn powder-epoxy composites containing up to 45% weight percent particulates were prepared by casting method. Alkali treatment and acetylation techniques were carried out to the natural particulates for investigating their influences under mechanical forces. The effects of filler type and content on the tensile properties of the composites were compared with neat epoxy. According to the quasi-static tensile tests, the pine cone based composites showed slightly higher rigidity and strength properties compared to the acorn reinforced samples. Furthermore, the structures independent of powder type and surface modification technique, showed higher tensile properties with increasing the particle content.Keywords: natural fillers, polymer composites, surface modifications, tensile properties
Procedia PDF Downloads 4696542 Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion
Authors: E. A. Alshaafi, A. Prakash
Abstract:
Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time.Keywords: ultrasonic techniques, emulsion, characterization, droplet size
Procedia PDF Downloads 1756541 Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs
Authors: Nassier A. Nassir, Robert Birch, Zhongwei Guan
Abstract:
The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric.Keywords: sry powder technique, PEKK, S-glass, thermoplastic prepreg
Procedia PDF Downloads 2046540 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy
Authors: Grishma D. Solanki, Karshan Kandoriya
Abstract:
In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.Keywords: copy-move image forgery, digital forensics, image forensics, image forgery
Procedia PDF Downloads 2896539 Integrated Approach to Attenuate Insulin Amyloidosis: Synergistic Effects of Peptide and Cysteine Protease Enzymes
Authors: Shilpa Mukundaraj, Nagaraju Shivaiah
Abstract:
Amyloidogenic conditions, driven by protein aggregation into insoluble fibrils, which pose significant challenges in the clinical condition of diabetes management, particularly through the amyloidogenic LVEALYL sequence in insulin B-chain. This study explores a dual therapeutic strategy involving cysteine protease enzymes such as papain and ficin and inhibitory peptides to target insulin amyloidosis. Combining in silico, in vitro, and in vivo methodologies, the research aims to inhibit amyloid formation and degrade preformed fibrils. Inhibitory peptides were designed using structure-guided approaches in Rosetta to specifically target the LVEALYL sequence. Concurrently, cysteine protease enzymes, including papain and ficin, were evaluated for their fibril disassembly potential. In vitro experiments, utilizing SDS- PAGE and spectroscopic techniques, confirmed dose-dependent degradation 50 to 300ug in vitro and 60mg/kg in vivo of amyloid aggregates by these enzymes, with significant disaggregation observed at higher concentrations 20mg. Peptide inhibitors effectively reduced fibril formation, as evidenced by reduced Thioflavin T fluorescence and circular dichroism spectroscopy. Complementary in silico analyses, including molecular docking and dynamic simulations, provided structural insights into enzyme binding interactions with amyloidogenic regions. Key residues involved in substrate recognition and cleavage were identified, with computational findings aligning strongly with experimental data. These insights confirmed the specificity of papain and ficin in targeting insulin fibrils. For translational potential, an in vivo rat model was developed, involving subcutaneous insulin amyloid injections to induce localized amyloid deposits. Over six days of enzyme treatment, a marked reduction in amyloid burden was observed through histological findings and biochemical assay superoxide dismutase can provide insights into oxidative damage due to amyloid deposition. Furthermore, inflammatory markers IL-6, TNFα were significantly attenuated in treated groups, emphasizing the dual role of enzymes in amyloid clearance and inflammation modulation. This integrative study highlights the promise of cysteine protease enzymes and inhibitory peptides as complementary therapeutic strategies for managing insulin amyloidosis. By targeting both the formation and persistence of amyloid fibrils, this dual approach offers a novel and effective avenue for amyloidosis treatment.Keywords: insulin amyloidosis, peptide inhibitors, cysteine protease enzymes, amyloid degradation
Procedia PDF Downloads 66538 Nanoscale Metal-Organic Framework Coated Carbon Nitride Nanosheet for Combination Cancer Therapy
Authors: Rui Chen, Jinfeng Zhang, Chun-Sing Lee
Abstract:
In the past couple of decades, nanoscale metal-organic frameworks (NMOFs) have been highlighted as promising delivery platforms for biomedical applications, which combine many potent features such as high loading capacity, progressive biodegradability and low cytotoxicity. While NMOF has been extensively used as carriers for drugs of different modalities, so far there is no report on exploiting the advantages of NMOF for combination therapy. Herein, we prepared core-shell nanoparticles, where each nanoparticle contains a single graphitic-phase carbon nitride (g-C3N4) nanosheet encapsulated by a zeolitic-imidazolate frameworks-8 (ZIF-8) shell. The g-C3N4 nanosheets are effective visible-light photosensitizer for photodynamic therapy (PDT). When hosting DOX (doxorubicin), the as-synthesized core-shell nanoparticles could realize combinational photo-chemo therapy and provide dual-color fluorescence imaging. Therefore, we expect NMOFs-based core-shell nanoparticles could provide a new way to achieve much-enhanced cancer therapy.Keywords: carbon nitride, combination therapy, drug delivery, nanoscale metal-organic frameworks
Procedia PDF Downloads 4256537 Mathematical Programming Models for Portfolio Optimization Problem: A Review
Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad
Abstract:
Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches
Procedia PDF Downloads 3506536 CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement
Authors: Syed Islam, Yiyun Huang, Sebastian Magierowski, Ebrahim Ghafar-Zadeh
Abstract:
This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable rangeof multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.Keywords: DNA, nanopore, amplifier, ADC, multichannel
Procedia PDF Downloads 4546535 Determination of Dynamic Soil Properties Using Multichannel Analysis of Surface Wave (MASW) Techniques in Earth-Filled Dam
Authors: Noppadon Sintuboon, Benjamas Sawatdipong, Anchalee Kongsuk
Abstract:
This study was conducted to investigate the engineering parameters: compressional wave: Vp, shear wave: Vs, and density: ρ related to the dynamically geotechnical properties of soils compaction in the core of earth-filled dam located in northern part of Thailand by using multichannel analysis of surface wave (MASW) techniques. The Vp, Vs, and ρ from MASW were 1,624 - 1,649 m/s, 301-323 m/s, and 1,829 kg/m3, respectively. Those parameters were calculated to Poison’s ratio: ν (0.48), shear modulus: G (1.66 x 108 - 1.92 x 108 kg/m2), Vp/Vs ratio (5.10 – 5.39) and Standard Penetration Test (SPT) showing the dynamic characteristics of soil deformation and stress resulting from dynamic loads. The results of this study will be useful in primary evaluating the current condition and foundation of the dam and can be compared to the data from the laboratory in the future.Keywords: earth-filled dam, MASW, dynamic elastic constant, shear wave
Procedia PDF Downloads 3006534 Stress Reduction Techniques for First Responders: Scientifically Proven Methods
Authors: Esther Ranero Carrazana, Maria Karla Ramirez Valdes
Abstract:
First responders, including firefighters, police officers, and emergency medical personnel, are frequently exposed to high-stress scenarios that significantly increase their risk of mental health issues such as depression, anxiety, and post-traumatic stress disorder (PTSD). Their work involves life-threatening situations, witnessing suffering, and making critical decisions under pressure, all contributing to psychological strain. The objectives of this research on "Stress Reduction Techniques for First Responders: Scientifically Proven Methods" are as follows. One of them is to evaluate the effectiveness of stress reduction techniques. The primary objective is to assess the efficacy of various scientifically proven stress reduction techniques explicitly tailored for first responders. Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness are scrutinized for their ability to mitigate stress-related symptoms. Furthermore, we evaluate and enhance the understanding of stress mechanisms in first responders by exploring how different techniques influence the physiological and psychological responses to stress. The study aims to deepen the understanding of stress mechanisms in high-risk professions. Additionally, the study promotes psychological resilience by seeking to identify and recommend methods that can significantly enhance the psychological resilience of first responders, thereby supporting their mental health and operational efficiency in high-stress environments. Guide training and policy development is an additional objective to provide evidence-based recommendations that can be used to guide training programs and policy development aimed at improving the mental health and well-being of first responders. Lastly, the study aims to contribute valuable insights to the existing body of knowledge in stress management, specifically tailored to the unique needs of first responders. This study involved a comprehensive literature review assessing the effectiveness of various stress reduction techniques tailored for first responders. Techniques evaluated include Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness, focusing on their ability to alleviate stress-related symptoms. The review indicates promising results for several stress reduction methods. HRV Training demonstrates the potential to reflect stress vulnerability and enhance physiological and behavioral flexibility. Interoception and Exteroception help modulate the stress response by enhancing awareness of the body's internal state and its interaction with the environment. Sensory integration plays a crucial role in adaptive responses to stress by focusing on individual senses and their integration. Therefore, body perception awareness addresses stress and anxiety through enhanced body perception and mindfulness. The evaluated techniques show significant potential in reducing stress and improving the mental health of first responders. Implementing these scientifically supported methods into routine training could significantly enhance their psychological resilience and operational effectiveness in high-stress environments.Keywords: first responders, HRV training, mental health, sensory integration, stress reduction
Procedia PDF Downloads 426533 Homing of B Cells via Afferent Lymphatics
Authors: Sara Pereira-Nogueira, Tim Worbs, Marc Permanyer-Bosser, Reinhold Förster
Abstract:
While the entry mechanism of lymphocytes into the lymph node via the blood are well described, it is still largely unknown how cells enter lymph nodes that arrive via afferent lymphatics. In order to address this, our group has established a micro-injection technique in mice through which cells are delivered directly into the lymphatic vessel immediately afferent to the popliteal lymph node. Injected cells can then be tracked via multi-colour fluorescence or 2-photon microscopy, and their localization can be analysed within the popliteal or downstream lymph nodes by immunohistology. Since naïve B cells express the chemokine receptor CXCR5 we intra-lymphatically co-injected B cells derived from wildtype and Cxcr5-deficient mice. While CXCR5 does not play a role in guiding B cells out of the subcapsular sinus, it affects their positioning within the lymph node parenchyma, since CXCR5-deficient B cells are impaired in migrating into the B cell follicle. The knowledge obtained by studying B-cell migration may prove beneficial in clinical settings regarding tumor metastasis or autoimmune diseases.Keywords: afferent lymphatics, B cell migration, chemokine, intra-lymphatic injection
Procedia PDF Downloads 2666532 A Survey on Genetic Algorithm for Intrusion Detection System
Authors: Prikhil Agrawal, N. Priyanka
Abstract:
With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security
Procedia PDF Downloads 2996531 Understanding Sixteen Basic Desires and Modern Approaches to Agile Team Motivation: Case Study
Authors: Anna Suvorova
Abstract:
Classical motivation theories hold that there are two kinds of motivation, intrinsic and extrinsic. Leaders are looking for effective motivation techniques, but frequently external influences do not work or, even worse, reduce team productivity. We see only the tip of the iceberg -human behavior. However, beneath the surface of the water are factors that directly affect our behavior -desires. Believing that employees need to be motivated, companies design a motivation system based on the principle: do it and get a reward. As a matter of fact, we all have basic desires. Everybody is motivated but to different extents. Following the principle "intrinsic motivation over extrinsic rewards", we need to create an environment that will support intrinsic motivation and potential of employees, and team, rather than individual work.Keywords: motivation profile, motivation techniques, agile HR, basic desires, agile people, human behavior, people management
Procedia PDF Downloads 1146530 Multi-Sensor Concept in Optical Surface Metrology
Authors: Özgür Tan
Abstract:
In different fields of industry, there is a huge demand to acquire surface information in the dimension of micrometer up to centimeter in order to characterize functional behavior of products. Thanks to the latest developments, there are now different methods in surface metrology, but it is not possible to find a unique measurement technique which fulfils all the requirements. Depending on the interaction with the surface, regardless of optical or tactile, every method has its own advantages and disadvantages which are given by nature. However new concepts like ‘multi-sensor’, tools in surface metrology can be improved to solve most of the requirements simultaneously. In this paper, after having presented different optical techniques like confocal microscopy, focus variation and white light interferometry, a new approach is presented which combines white-light interferometry with chromatic confocal probing in a single product. Advantages of different techniques can be used for challenging applications.Keywords: flatness, chromatic confocal, optical surface metrology, roughness, white-light interferometry
Procedia PDF Downloads 2606529 Electrochemiluminescent Detection of DNA Damage Induced by Tetrachloro-1,4- Benzoquinone Using DNA Sensor
Authors: Tian-Fang Kang, Xue Sun
Abstract:
DNA damage induced by tetrachloro-1,4-benzoquinone (TCBQ), a reactive metabolite of pentachloro-phenol (PCP), was investigated using a glassy carbon electrode (GCE) modified with calf thymus double-stranded DNA (ds-DNA) in this work. DNA modified films were constructed by layer-by-layer adsorption of polycationic poly(diallyldimethyl- ammonium chloride) (PDDA) and negatively charged ds-DNA on the surface of a glassy carbon electrode. The DNA intercalator [Ru(bpy)2(dppz)]2+ (bpy=2, 2′-bipyridine, dppz0dipyrido [3, 2-a: 2′,3′-c] phenazine) was chosen as an electrochemical probe to detect DNA damage. After the sensor was incubated in 0.1 M pH 7.3 phosphate buffer solution (PBS) for 30min, the intact PDDA/DNA film produced a sensitive electrochemiluminescent (ECL) signal. However, after the sensor was incubated in 100 μM TCBQ or a mixed solution of 100 μM TCBQ and 2 mM H2O2, ECL signal decreased significantly. During the incubation of DNA in TCBQ or TCBQ-H2O2 solution, the double-helix of DNA was damaged, which resulted in the decrease of Ru-dppz bound to DNA. Additionally, the results were verified independently by fluorescence experiments. This paper provides a sensitive method to directly screen DNA damage induced by chemicals in the environment.Keywords: DNA damage, detection, electrochemiluminescence, sensor
Procedia PDF Downloads 4106528 Leachate Discharges: Review Treatment Techniques
Authors: Abdelkader Anouzla, Soukaina Bouaouda, Roukaya Bouyakhsass, Salah Souabi, Abdeslam Taleb
Abstract:
During storage and under the combined action of rainwater and natural fermentation, these wastes produce over 800.000 m3 of landfill leachates. Due to population growth and changing global economic activities, the amount of waste constantly generated increases, making more significant volumes of leachate. Leachate, when leaching into the soil, can negatively impact soil, surface water, groundwater, and the overall environment and human life. The leachate must first be treated because of its high pollutant load before being released into the environment. This article reviews the different leachate treatments in September 2022 techniques. Different techniques can be used for this purpose, such as biological, physical-chemical, and membrane methods. Young leachate is biodegradable; in contrast, these biological processes lose their effectiveness with leachate aging. They are characterized by high ammonia nitrogen concentrations that inhibit their activity. Most physical-chemical treatments serve as pre-treatment or post-treatment to complement conventional treatment processes or remove specific contaminants. After the introduction, the different types of pollutants present in leachates and their impacts have been made, followed by a discussion highlighting the advantages and disadvantages of the various treatments, whether biological, physicochemical, or membrane. From this work, due to their simplicity and reasonable cost compared to other treatment procedures, biological treatments offer the most suitable alternative to limit the effects produced by the pollutants in landfill leachates.Keywords: landfill leachate, landfill pollution, impact, wastewater
Procedia PDF Downloads 906527 3D Object Detection for Autonomous Driving: A Comprehensive Review
Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy
Abstract:
Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning
Procedia PDF Downloads 626526 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients
Procedia PDF Downloads 3756525 Effect of Anion Variation on the CO2 Capture Performance of Pyridinium Containing Poly(ionic liquid)s
Authors: Sonia Zulfiqar, Daniele Mantione, Muhammad Ilyas Sarwar, Alexander Rothenberger, David Mecerreyes
Abstract:
Climate change due to escalating carbon dioxide concentration in the atmosphere is an issue of paramount importance that needs immediate attention. CO2 capture and sequestration (CCS) is a promising route to mitigate climate change and adsorption is the most widely recognized technology owing to possible energy savings relative to the conventional absorption techniques. In this conference, the potential of a new family of solid sorbents for CO2 capture and separation will be presented. Novel pyridinium containing poly(ionic liquid)s (PILs) were synthesized with varying anions i.e bis(trifluoromethylsulfonyl)imide and hexafluorophosphate. The resulting polymers were characterized using NMR, XRD, TGA, BET surface area and microscopic techniques. Furthermore, CO2 adsorption measurements at two different temperatures were also carried out and revealed great potential of these PILs as CO2 scavengers.Keywords: climate change, CO2 capture, poly(ionic liquid)s, CO2/N2 selectivity
Procedia PDF Downloads 3736524 Parallels Between Indian Art Music and Western Art Music: The Suppression of the Notion of the 'Melody'
Authors: Kedarnath Awati
Abstract:
Some parallels between Indian Art Music and Western Art Music, such as the identity of the basic heptatonic scale structure, are quite obvious and need no further discussion. Other parallels are far less obvious, and it is one of them that the author is interested in. Specifically, the author would like to make a serious claim that in both types of music, there is an unspoken dependence on melody. Yes, it is true that the techniques that the two systems use for elaboration are very, very different: Western music uses the techniques of harmony, counterpoint, orchestration and motivic variation, while the Indian systems, both the Hindustani and the Carnatic traditions use the technique of raagdaari. The reason that this point is barely spoken about is that both in the West as well as in India, artists tend to think of melody as something elementary or as something 'given'. The Indian musicians would much rather dwell upon this or that meend or taan or other technical device, while the West thinks that melody is passé and would rather discuss the merits and demerits of spectralism and perhaps serialism. The author would like to explore this theme further in his paper.Keywords: Indian art music, Western art music, melody, raagdaari, motivic variation.
Procedia PDF Downloads 656523 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 1096522 In vitro Estimation of Genotoxic Lesions in Peripheral Blood Lymphocytes of Rat Exposed to Organophosphate Pesticides
Authors: A. Ojha, Y. K. Gupta
Abstract:
Organophosphate (OP) pesticides are among the most widely used synthetic chemicals for controlling a wide variety of pests throughout the world. Chlorpyrifos (CPF), methyl parathion (MPT), and malathion (MLT) are among the most extensively used OP pesticides in India. DNA strand breaks and DNA-protein crosslinks (DPC) are toxic lesions associated with the mechanisms of toxicity of genotoxic compounds. In the present study, we have examined the potential of CPF, MPT, and MLT individually and in combination, to cause DNA strand breakage and DPC formation. Peripheral blood lymphocytes of rat were exposed to 1/4 and 1/10 LC50 dose of CPF, MPT, and MLT for 2, 4, 8, and 12h. The DNA strand break was measured by the comet assay and expressed as DNA damage index while DPC estimation was done by fluorescence emission. There was significantly marked increase in DNA damage and DNA-protein crosslink formation in time and dose dependent manner. It was also observed that MPT caused the highest level of DNA damage as compared to other studied OP compounds. Thus, from present study, we can conclude that studied pesticides have genotoxic potential. The pesticides mixture does not potentiate the toxicity of each other. Nonetheless, additional in vivo data are required before a definitive conclusion can be drawn regarding hazard prediction to humans.Keywords: organophosphate, pesticides, DNA damage, DNA protein crosslink, genotoxic
Procedia PDF Downloads 3566521 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations
Authors: Gebreegziabher Hailu
Abstract:
This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods
Procedia PDF Downloads 27