Search results for: data driven diagnosis
26690 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 13826689 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network
Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour
Abstract:
Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network
Procedia PDF Downloads 16926688 Strengthening of Bridges by Additional Prestressing
Authors: A. Bouhaloufa, T. Kadri, S. Zouaoui, A. Belhacene
Abstract:
To put more durable bridges, it is important to maintain existing structures, rather than investing in new structures. Instead of demolishing the old bridge and replace them with new, we must preserve and upgrade using better methods of diagnosis, auscultation and repair, the interest of this work is to increase the bearing capacity bridges damaged by additional prestressing, this type of reinforcement is growing continuously. In addition to excellent static strength, prestressing also has a very high resistance to fatigue, so it is suitable to solve the problem of failure of the bearing capacity of the bridges. This failure often comes to the development of overloads in quantity and quality, that is our daily traffic has increased and become very complicated, on the other hand its constituents are advanced in weight and speed and therefore almost all old bridges became unable to support the movement of the latter and remain disabled to all these problems. The main purpose of this work includes the following three aspects: - Determination of the main diseases and factors affecting the deterioration of bridges in Algeria, - Evaluation of the bearing capacity of bridges, - Proposal technical reinforcement to improve the bearing capacity of a degraded structure.Keywords: bridges, repair, auscultation, diagnosis, pathology, additional prestressing
Procedia PDF Downloads 61326687 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization
Authors: Hebberly Ahatlan
Abstract:
The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, IT/OT convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.Keywords: digitalization, IT/OT convergence, semantic interoperability, VPP, energy blockchain
Procedia PDF Downloads 18326686 Processing Big Data: An Approach Using Feature Selection
Authors: Nikat Parveen, M. Ananthi
Abstract:
Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.Keywords: big data, key value, feature selection, retrieval, performance
Procedia PDF Downloads 34126685 Childhood Apraxia of Speech and Autism: Interaction Influences and Treatment
Authors: Elad Vashdi
Abstract:
It is common to find speech deficit among children diagnosed with Autism. It can be found in the clinical field and recently in research. One of the DSM-V criteria suggests a speech delay (Delay in, or total lack of, the development of spoken language), but doesn't explain the cause of it. A common perception among professionals and families is that the inability to talk results from the autism. Autism is a name for a syndrome which just describes a phenomenon and is defined behaviorally. Since it is not based yet on a physiological gold standard, one can not conclude the nature of a deficit based on the name of the syndrome. A wide retrospective research (n=270) which included children with motor speech difficulties was conducted in Israel. The study analyzed entry evaluations in a private clinic during the years 2006-2013. The data was extracted from the reports. High percentage of children diagnosed with Autism (60%) was found. This result demonstrates the high relationship between Autism and motor speech problem. It also supports recent findings in research of Childhood apraxia of speech (CAS) occurrence among children with ASD. Only small percentage of the participants in this research (10%) were diagnosed with CAS even though their verbal deficits well fitted the guidelines for CAS diagnosis set by ASHA in 2007. This fact raises questions regarding the diagnostic procedure in Israel. The understanding that CAS might highly exist within Autism and can have a remarkable influence on the course of early development should be a guiding tool within the diagnosis procedure. CAS can explain the nature of the speech problem among some of the autistic children and guide the treatment in a more accurate way. Calculating the prevalence of CAS which includes the comorbidity with ASD reveals new numbers and suggests treating differently the CAS population.Keywords: childhood apraxia of speech, Autism, treatment, speech
Procedia PDF Downloads 27526684 Sociocultural Foundations of Psychological Well-Being among Ethiopian Adults
Authors: Kassahun Tilahun
Abstract:
Most of the studies available on adult psychological well-being have been centered on Western countries. However, psychological well-being does not have the same meaning across the world. The Euro-American and African conceptions and experiences of psychological well-being differ systematically. As a result, questions like, how do people living in developing African countries, like Ethiopia, report their psychological well-being; what would the context-specific prominent determinants of their psychological well-being be, needs a definitive answer. This study was, therefore, aimed at developing a new theory that would address these socio-cultural issues of psychological well-being. Consequently, data were obtained through interview and open ended questionnaire. A total of 438 adults, working in governmental and non-governmental organizations situated in Addis Ababa, participated in the study. Appropriate qualitative method of data analysis, i.e. thematic content analysis, was employed for analyzing the data. The thematic analysis involves a type of abductive analysis, driven both by theoretical interest and the nature of the data. Reliability and credibility issues were addressed appropriately. The finding identified five major categories of themes, which are viewed as essential in determining the conceptions and experiences of psychological well-being of Ethiopian adults. These were; socio-cultural harmony, social cohesion, security, competence and accomplishment, and the self. Detailed discussion on the rational for including these themes was made and appropriate positive psychology interventions were proposed. Researchers are also encouraged to expand this qualitative research and in turn develop a suitable instrument taping the psychological well-being of adults with different sociocultural orientations.Keywords: sociocultural, psychological, well-being Ethiopia, adults
Procedia PDF Downloads 54626683 Emergency Management of Poisoning Tracery Care Hospital in India
Authors: Rajiv Ratan Singh, Sachin Kumar Tripathi, Pradeep Kumar Yadav
Abstract:
The timely evaluation, diagnosis, and treatment of people who have been exposed to toxic chemicals is a crucial component of emergency poison management in the medical field. The various substances that can poison include chemicals, medications, and naturally occurring poisons. The toxicology of the particular drug involved, as well as the symptoms and indicators of poisoning, must be thoroughly understood to handle poisoning emergencies effectively. One of the most important aspects of emergency poison management in medicine is the prompt examination, diagnosis, and treatment of persons who have been exposed to dangerous substances. To properly manage poisoning crises, one must have a good understanding of the toxicology of the particular medication concerned, as well as the signs and indicators of poisoning. Emergency management of poisoning includes not only prompt medical attention but also patient education, follow-up care, and monitoring for any long-term consequences. To achieve the greatest results for patients, the management of poisoning is a complicated and dynamic process that calls for collaboration between medical professionals, first responders, and toxicologists. All poisoned patients who present to the emergency room are assessed and diagnosed based on a collection of symptoms and a biochemical diagnosis, and they are then provided targeted, specialized treatment for the toxin identified. This article focuses on the loxodromic strategy as the primary method of treatment for poisoned patients. The authors of this article conclude that mortality and morbidity can be reduced if patients visit the emergency room promptly and receive targeted treatment.Keywords: antidotes, blood poisoning, emergency medicine, gastric lavage, medico-legal aspects, patient care
Procedia PDF Downloads 10226682 Evaluation of Symptoms, Laboratory Findings, and Natural History of IgE Mediated Wheat Allergy
Authors: Soudeh Tabashi, Soudabeh Fazeli Dehkordy, Masood Movahedi, Nasrin Behniafard
Abstract:
Introduction: Food allergy has increased in three last decades. Since wheat is one of the major constituents of daily meal in many regions throughout the world, wheat allergy is one of the most important allergies ranking among the 8 most common types of food allergies. Our information about epidemiology and etiology of food allergies are limited. Therefore, in this study we sought to evaluate the symptoms and laboratory findings in children with wheat allergy. Materials and methods: There were 23 patients aged up to 18 with the diagnosis of IgE mediated wheat allergy that were included enrolled in this study. Using a questionnaire .we collected their information and organized them into 4 groups categories of: demographic data identification, signs and symptoms, comorbidities, and laboratory data. Then patients were followed up for 6 month and their lab data were compared together. Results: Most of the patients (82%) presented the symptoms of wheat allergy in the first year of their life. The skin and the respiratory system were the most commonly involved organs with an incidence of 86% and 78% respectively. Most of the patients with wheat allergy were also sensitive to the other type of foods and their sensitivity to egg were most common type (47%). in 57% of patients, IgE levels were decreased during the 6 month follow-up period. Conclusion: We do not have enough information about data on epidemiology and response to therapy of wheat allergy and to best of our knowledge no study has addressed this issue in Iran so far. This study is the first source of information about IgE mediated wheat allergy in Iran and It can provide an opening for future studies about wheat allergy and its treatments.Keywords: wheat allergy, food allergy, IgE, food allergy
Procedia PDF Downloads 19426681 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia
Authors: The Danh Phan
Abstract:
House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise
Procedia PDF Downloads 23126680 The Dose to Organs in Lumbar-Abdominal Computed Tomography Imaging Using TLD
Authors: M. Zehtabian, Z. Molaiemanesh, Z. Shafahi, M. Papie, M. Zahraie Moghaddam, M. Mehralizadeh, M. R. Vahidi, S. Sina
Abstract:
The introduction of CT scans has been a great improvement in diagnosis of different diseases. However, this imaging modality can expose the patients to cumulative radiation doses which may increase the risks of some health problems like cancer. In this study, the dose delivered to different organs in lumbar-abdominal imaging was measured by putting the TLD-100, and TLD-100H chips inside the Alderson Rando phantom. The lumbar-abdominal image of the phantom was obtained, while TLD chips were inside the holes of the phantom. According to the results obtained in this study using TLD-100 chips, the average dose received by liver, bladder, rectum, kidneys, and uterus were found to be 12.9 mSv, 8.9 mSv, 10.1 mSv, 11.0 mSv, 11.2 mSv, and 10.5 mSv respectively, while the measurements performed by TLD-100H show that the average dose to liver, bladder, rectum, kidneys, and uterus were found to be 12.4 mSv, 9.2 mSv, 9.5 mSv, 10.5 mSv, 10.7 mSv, and 9.9 mSv respectively. The results of this study indicates that the dose measured by the TLD-100H chips are in close agreement with those obtained by TLD-100.Keywords: CT scan, dose, TLD-100, diagnosis
Procedia PDF Downloads 63826679 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 15026678 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU
Procedia PDF Downloads 29026677 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering
Authors: Tianyang Xu
Abstract:
Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics
Procedia PDF Downloads 13226676 Implementation and Comparative Analysis of PET and CT Image Fusion Algorithms
Authors: S. Guruprasad, M. Z. Kurian, H. N. Suma
Abstract:
Medical imaging modalities are becoming life saving components. These modalities are very much essential to doctors for proper diagnosis, treatment planning and follow up. Some modalities provide anatomical information such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and some provides only functional information such as Positron Emission Tomography (PET). Therefore, single modality image does not give complete information. This paper presents the fusion of structural information in CT and functional information present in PET image. This fused image is very much essential in detecting the stages and location of abnormalities and in particular very much needed in oncology for improved diagnosis and treatment. We have implemented and compared image fusion techniques like pyramid, wavelet, and principal components fusion methods along with hybrid method of DWT and PCA. The performances of the algorithms are evaluated quantitatively and qualitatively. The system is implemented and tested by using MATLAB software. Based on the MSE, PSNR and ENTROPY analysis, PCA and DWT-PCA methods showed best results over all experiments.Keywords: image fusion, pyramid, wavelets, principal component analysis
Procedia PDF Downloads 28426675 Cytology Is a Promising Tool for the Diagnosis of High-Grade Serous Ovarian Carcinoma from Ascites
Authors: Miceska Simona, Škof Erik, Frković Grazio Snježana, Jeričević Anja, Smrkolj Špela, Cvjetićanin Branko, Novaković Srdjan, Grčar Kuzmanov Biljana, Kloboves-Prevodnik Veronika
Abstract:
Objectives: High-grade serous ovarian cancer (HGSOC) is characterized by the dissemination of the tumor cells (TC) in the peritoneal cavity forming malignant ascites at the time of diagnosis or recurrence. Still, cytology itself has been underutilized as a modality for the diagnosis of HGSOC from ascites, and histological examination from the tumor tissue is yet the only validated method used. The objective of this study was to evaluate the reliability of cytology in the diagnosis of HGSOC in relation to the histopathological examination. Methods: The study included 42 patients with histologically confirmed HGSOC, accompanied by malignant ascites. To confirm the malignancy of the TC in the ascites and to define their immunophenotype, immunohistochemical reaction (IHC) of the following antigens: Calretinin, MOC, WT1, PAX8, p53, p16 & Ki-67 was evaluated on ascites cytospins and tissue blocks. For complete cytological determination of HGSOC, BRCA 1/2 gene mutation was determined from ascites, tissue block, and blood. BRCA1/2 mutation from blood was performed to define the type of mutation, somatic vs germline. Results: Among 42 patients, the immunophenotype of HGSOC from ascites was confirmed in 36 cases (86%). For more profound analysis, the patients were divided in 3 groups regarding the number of TC present in the ascites: patients with less than 10% TC, 10% TC, and more than 10% TC. From all included patients, in the group with less than 10% TC, there were 10 cases, and only 5 of them(50%) showed HGSOC phenotype; 12 cases had equally 10% of TC, and 11 cases (92%) showed HGSOC phenotype; 20 cases had more than 10% TC and all of them (100%) confirmed the HGSOC immunophenotype from ascites. Only 33 patients were eligible for further BRCA1/2 analysis. Eleven BRCA1/2 mutations were detected from thetissue block: 6 germline and 5 somatic. In 2 cases with less than 10% TC, BRCA1/2 mutation was not detected; 4 cases had 10% TC, and 2 of them (50%) confirmed the mutation; 4 cases had more than 10% TC, and all showed 100% reliability with the tumor tissue. Conclusions: Cytology is a highly reliable method for determining the immunophenotype of HGSOC and BRCA1/2 mutation if more than 10% of tumor cells are present in the ascites. This may present an additional non-invasive clinical approach for fast and effective diagnose in the future, especially in inoperable conditions or relapses.Keywords: cytology, ascites, high-grade serous ovarian cancer, immunophenotype, BRCA1/2
Procedia PDF Downloads 18826674 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)
Authors: Mohamed Hamada Abdelkader Fayed
Abstract:
Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy
Procedia PDF Downloads 21526673 A Cost-Benefit Analysis of Routinely Performed Transthoracic Echocardiography in the Setting of Acute Ischemic Stroke
Authors: John Rothrock
Abstract:
Background: The role of transthoracic echocardiography (TTE) in the diagnosis and management of patients with acute ischemic stroke remains controversial. While many stroke subspecialist reserve TTE for selected patients, others consider the procedure obligatory for most or all acute stroke patients. This study was undertaken to assess the cost vs. benefit of 'routine' TTE. Methods: We examined a consecutive series of patients who were admitted to a single institution in 2019 for acute ischemic stroke and underwent TTE. We sought to determine the frequency with which the results of TTE led to a new diagnosis of cardioembolism, redirected therapeutic cerebrovascular management, and at least potentially influenced the short or long-term clinical outcome. We recorded the direct cost associated with TTE. Results: There were 1076 patients in the study group, all of whom underwent TTE. TTE identified an unsuspected source of possible/probable cardioembolism in 62 patients (6%), confirmed an initially suspected source (primarily endocarditis) in an additional 13 (1%) and produced findings that stimulated subsequent testing diagnostic of possible/probable cardioembolism in 7 patients ( < 1%). TTE results potentially influenced the clinical outcome in a total of 48 patients (4%). With a total direct cost of $1.51 million, the mean cost per case wherein TTE results potentially influenced the clinical outcome in a positive manner was $31,375. Diagnostically and therapeutically, TTE was most beneficial in 67 patients under the age of 55 who presented with 'cryptogenic' stroke, identifying patent foramen ovale in 21 (31%); closure was performed in 19. Conclusions: The utility of TTE in the setting of acute ischemic stroke is modest, with its yield greatest in younger patients with cryptogenic stroke. Given the greater sensitivity of transesophageal echocardiography in detecting PFO and evaluating the aortic arch, TTE’s role in stroke diagnosis would appear to be limited.Keywords: cardioembolic, cost-benefit, stroke, TTE
Procedia PDF Downloads 12626672 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 3226671 Autosomal Dominant Polycystic Kidney Patients May Be Predisposed to Various Cardiomyopathies
Authors: Fouad Chebib, Marie Hogan, Ziad El-Zoghby, Maria Irazabal, Sarah Senum, Christina Heyer, Charles Madsen, Emilie Cornec-Le Gall, Atta Behfar, Barbara Ehrlich, Peter Harris, Vicente Torres
Abstract:
Background: Mutations in PKD1 and PKD2, the genes encoding the proteins polycystin-1 (PC1) and polycystin-2 (PC2) cause autosomal dominant polycystic kidney disease (ADPKD). ADPKD is a systemic disease associated with several extrarenal manifestations. Animal models have suggested an important role for the polycystins in cardiovascular function. The aim of the current study is to evaluate the association of various cardiomyopathies in a large cohort of patients with ADPKD. Methods: Clinical data was retrieved from medical records for all patients with ADPKD and cardiomyopathies (n=159). Genetic analysis was performed on available DNA by direct sequencing. Results: Among the 58 patients included in this case series, 39 patients had idiopathic dilated cardiomyopathy (IDCM), 17 had hypertrophic obstructive cardiomyopathy (HOCM), and 2 had left ventricular noncompaction (LVNC). The mean age at cardiomyopathy diagnosis was 53.3, 59.9 and 53.5 years in IDCM, HOCM and LVNC patients respectively. The median left ventricular ejection fraction at initial diagnosis of IDCM was 25%. Average basal septal thickness was 19.9 mm in patients with HOCM. Genetic data was available in 19, 8 and 2 cases of IDCM, HOCM, and LVNC respectively. PKD1 mutations were detected in 47.4%, 62.5% and 100% of IDCM, HOCM and LVNC cases. PKD2 mutations were detected only in IDCM cases and were overrepresented (36.8%) relative to the expected frequency in ADPKD (~15%). The prevalence of IDCM, HOCM, and LVNC in our ADPKD clinical cohort was 1:17, 1:39 and 1:333 respectively. When compared to the general population, IDCM and HOCM was approximately 10-fold more prevalent in patients with ADPKD. Conclusions: In summary, we suggest that PKD1 or PKD2 mutations may predispose to idiopathic dilated or hypertrophic cardiomyopathy. There is a trend for patients with PKD2 mutations to develop the former and for patients with PKD1 mutations to develop the latter. Predisposition to various cardiomyopathies may be another extrarenal manifestation of ADPKD.Keywords: autosomal dominant polycystic kidney (ADPKD), polycystic kidney disease, cardiovascular, cardiomyopathy, idiopathic dilated cardiomyopathy, hypertrophic cardiomyopathy, left ventricular noncompaction
Procedia PDF Downloads 31126670 Relationship between Trauma and Acute Scrotum: Test Torsion and Epididymal Appendix Torsion
Authors: Saimir Heta, Kastriot Haxhirexha, Virtut Velmishi, Nevila Alliu, Ilma Robo
Abstract:
Background: Testicular rotation can occur at any age. The possibility to save the testicle is the fastest possible surgical intervention which is indicated by the presence of acute pain even at rest. The time element is more important to diagnose and proceed further with surgical intervention. Testicular damage is a consequence which mainly depends on the moment of onset of symptoms, at the time when the symptoms are diagnosed, the earliest action to be performed is surgical intervention. Sometimes medical tests are needed to confirm a diagnosis, or to help identify another cause for symptoms; for example, the urine test, that is used to check for infection, associated with the scrotal ultrasound test. Control of blood flow to the longitudinal supply vessels of the testicles is indicated. The sign that indicates testicular rotation is a reduction in blood flow. This is the element which is distinguished from ultrasound examination. Surgery may be needed to determine if the patient’s symptoms are caused by the rotation of the testis or any other condition. Discussion: As a surgical intervention of the emergency, the torsion of the test depends very much on the duration of the torsion, as the success in the life of the testicle depends on the fastest surgical intervention. From the previous clinic, it is noted that in any case presented to the pediatric patient diagnosed with testicular rotation, there is always a link with personal history that the patient refers to the presence of a previous episode of testicular trauma. Literature supports this fact very logically. Conclusions: Salvation without testicular atrophy depends closely on establishing the diagnosis of testicular rotation as soon as possible. Following the logic above, it can be said that the diagnosis for rotation should be performed as soon as possible, to avoid consequences that will not be favorable for the patient.Keywords: acute scrotum, test torsion, newborns, clinical presentation
Procedia PDF Downloads 15026669 A Leader-Follower Kinematic-Based Control System for a Cable-Driven Hyper-Redundant Manipulator
Authors: Abolfazl Zaraki, Yoshikatsu Hayashi, Harry Thorpe, Vincent Strong, Gisle-Andre Larsen, William Holderbaum
Abstract:
Thanks to the high maneuverability of the cable-driven hyper-redundant manipulators (HRMs), this class of robots has shown a superior capability in highly confined and unstructured space applications. Although the large number of degrees of freedom (DOF) of HRMs enhances the motion flexibility and the robot’s reachability range, it highly increases the complexity of the kinematic configuration which makes the kinematic control problem very challenging or even impossible to solve. This paper presents our current progress achieved on the development of a kinematic-based leader-follower control system which is designed to control not only the robot’s body posture but also to control the trajectory of the robot’s movement in a semi-autonomous manner (the human operator is retained in the robot’s control loop). To obtain the forward kinematic model, the coordinate frames are established by the classical Denavit–Hartenburg (D-H) convention for a hyper-redundant serial manipulator which has a controlled cables-driven mechanism. To solve the inverse kinematics of the robot, unlike the conventional methods, a leader-follower mechanism, based on the sequential inverse kinematic, is followed. Using this mechanism, the inverse kinematic problem is solved for all sequential joints starting from the head joint to the base joint of the robot. To verify the kinematic design and simulate the robot motion, the MATLAB robotic toolbox is used. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and trajectory in our confined space application.Keywords: hyper-redundant robots, kinematic analysis, semi-autonomous control, serial manipulators
Procedia PDF Downloads 15726668 Integration of “FAIR” Data Principles in Longitudinal Mental Health Research in Africa: Lessons from a Landscape Analysis
Authors: Bylhah Mugotitsa, Jim Todd, Agnes Kiragga, Jay Greenfield, Evans Omondi, Lukoye Atwoli, Reinpeter Momanyi
Abstract:
The INSPIRE network aims to build an open, ethical, sustainable, and FAIR (Findable, Accessible, Interoperable, Reusable) data science platform, particularly for longitudinal mental health (MH) data. While studies have been done at the clinical and population level, there still exists limitations in data and research in LMICs, which pose a risk of underrepresentation of mental disorders. It is vital to examine the existing longitudinal MH data, focusing on how FAIR datasets are. This landscape analysis aimed to provide both overall level of evidence of availability of longitudinal datasets and degree of consistency in longitudinal studies conducted. Utilizing prompters proved instrumental in streamlining the analysis process, facilitating access, crafting code snippets, categorization, and analysis of extensive data repositories related to depression, anxiety, and psychosis in Africa. While leveraging artificial intelligence (AI), we filtered through over 18,000 scientific papers spanning from 1970 to 2023. This AI-driven approach enabled the identification of 228 longitudinal research papers meeting inclusion criteria. Quality assurance revealed 10% incorrectly identified articles and 2 duplicates, underscoring the prevalence of longitudinal MH research in South Africa, focusing on depression. From the analysis, evaluating data and metadata adherence to FAIR principles remains crucial for enhancing accessibility and quality of MH research in Africa. While AI has the potential to enhance research processes, challenges such as privacy concerns and data security risks must be addressed. Ethical and equity considerations in data sharing and reuse are also vital. There’s need for collaborative efforts across disciplinary and national boundaries to improve the Findability and Accessibility of data. Current efforts should also focus on creating integrated data resources and tools to improve Interoperability and Reusability of MH data. Practical steps for researchers include careful study planning, data preservation, machine-actionable metadata, and promoting data reuse to advance science and improve equity. Metrics and recognition should be established to incentivize adherence to FAIR principles in MH researchKeywords: longitudinal mental health research, data sharing, fair data principles, Africa, landscape analysis
Procedia PDF Downloads 8926667 Experimental Investigation of Nanofluid Heat Transfer in a Plate Type Heat Exchanger
Authors: Eyuphan Manay
Abstract:
In this study, it was aimed to determine the convective heat transfer characteristics of water-based silicon dioxide nanofluids (SiO₂) with particle volume fractions of 0.2 and 0.4% vol. Nanofluids were tested in a plate type heat exchanger with six plates. Plate type heat exchanger was manufactured from stainless steel. Water was driven in the hot flow side, and nanofluids were driven in the cold flow side. The thermal energy of the hot water was taken by nanofluids. Effect of the inlet temperature of the hot water was investigated on heat transfer performance of the nanofluids while the inlet temperature of the nanofluids was fixed. In addition, the effects of the particle volume fraction and the cold flow rate on the performance of the system were tested. Results showed that increasing inlet temperature of the hot flow caused heat transfer to enhance. The suspended solid particles into the carrier fluid also remarkably enhanced heat transfer, and, an increase in the particle volume fraction resulted in an increase in heat transfer.Keywords: heat transfer enhancement, SiO₂-water, nanofluid, plate heat exchanger
Procedia PDF Downloads 20326666 Chinese Students’ Use of Corpus Tools in an English for Academic Purposes Writing Course: Influence on Learning Behaviour, Performance Outcomes and Perceptions
Authors: Jingwen Ou
Abstract:
Writing for academic purposes in a second or foreign language poses a significant challenge for non-native speakers, particularly at the tertiary level, where English academic writing for L2 students is often hindered by difficulties in academic discourse, including vocabulary, academic register, and organization. The past two decades have witnessed a rising popularity in the application of the data-driven learning (DDL) approach in EAP writing instruction. In light of such a trend, this study aims to enhance the integration of DDL into English for academic purposes (EAP) writing classrooms by investigating the perception of Chinese college students regarding the use of corpus tools for improving EAP writing. Additionally, the research explores their corpus consultation behaviors during training to provide insights into corpus-assisted EAP instruction for DDL practitioners. Given the uprising popularity of DDL, this research aims to investigate Chinese university students’ use of corpus tools with three main foci: 1) the influence of corpus tools on learning behaviours, 2) the influence of corpus tools on students’ academic writing performance outcomes, and 3) students’ perceptions and potential perceptional changes towards the use of such tools. Three corpus tools, CQPWeb, Sketch Engine, and LancsBox X, are selected for investigation due to the scarcity of empirical research on patterns of learners’ engagement with a combination of multiple corpora. The research adopts a pre-test / post-test design for the evaluation of students’ academic writing performance before and after the intervention. Twenty participants will be divided into two groups: an intervention and a non-intervention group. Three corpus training workshops will be delivered at the beginning, middle, and end of a semester. An online survey and three separate focus group interviews are designed to investigate students’ perceptions of the use of corpus tools for improving academic writing skills, particularly the rhetorical functions in different essay sections. Insights from students’ consultation sessions indicated difficulties with DDL practice, including insufficiency of time to complete all tasks, struggle with technical set-up, unfamiliarity with the DDL approach and difficulty with some advanced corpus functions. Findings from the main study aim to provide pedagogical insights and training resources for EAP practitioners and learners.Keywords: corpus linguistics, data-driven learning, English for academic purposes, tertiary education in China
Procedia PDF Downloads 6026665 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor
Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh
Abstract:
Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging
Procedia PDF Downloads 26026664 The Relationship between Level of Anxiety and the Development of Children with Growth Hormone Deficiency
Authors: Ewa Mojs, Katarzyna Wiechec, Maia Kubiak, Wlodzimierz Samborski
Abstract:
Interactions between mother’s psychological condition and child’s health status are complex and derive from the nature of the mother-child relationship. The aim of the study was to analyze the issue of anxiety amongst mothers of short children in the aspect of growth hormone therapy. The study was based on a group of 101 mothers of originally short-statured children – 70 with growth hormone deficiency (GHD) treated with recombinant human growth hormone (rhGH) and 31 undergoing the diagnostic process, without any treatment. Collected medical data included child's gender, height and weight, chronological age, bone age delay, and rhGH therapy duration. For all children, the height SDS and BMI SDS were calculated. To evaluate anxiety in mothers, the Spielberger State-Trait Anxiety Inventory (STAI) was used. Obtained results revealed low trait anxiety levels, with no statistically significant differences between the groups. State anxiety levels were average when mothers of all children were analyzed together, but when divided into groups, statistical differences appeared. Mothers of children without diagnosis and treatment had significantly higher levels of state anxiety than mothers of children with GHD receiving appropriate therapy. These results show, that the occurrence of growth failure in children is not related to high maternal trait anxiety, but the lack of diagnosis and lack of appropriate treatment generates higher levels of maternal state anxiety than the process of rh GH therapy in the offspring. Commencement of growth hormone therapy induce a substantial reduction of the state anxiety in mothers, and the duration of treatment causes its further decrease.Keywords: anxiety, development, growth hormone deficiency, motherhood
Procedia PDF Downloads 28126663 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries
Authors: Gaurav Kumar Sinha
Abstract:
In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency
Procedia PDF Downloads 6426662 Determination of Circulating Tumor Cells in Breast Cancer Patients by Electrochemical Biosensor
Authors: Gökçe Erdemir, İlhan Yaylım, Serap Erdem-Kuruca, Musa Mutlu Can
Abstract:
It has been determined that the main reason for the death of cancer disease is caused by metastases rather than the primary tumor. The cells that leave the primary tumor and enter the circulation and cause metastasis in the secondary organs are called "circulating tumor cells" (CTCs). The presence and number of circulating tumor cells has been associated with poor prognosis in many major types of cancer, including breast, prostate, and colorectal cancer. It is thought that knowledge of circulating tumor cells, which are seen as the main cause of cancer-related deaths due to metastasis, plays a key role in the diagnosis and treatment of cancer. The fact that tissue biopsies used in cancer diagnosis and follow-up are an invasive method and are insufficient in understanding the risk of metastasis and the progression of the disease have led to new searches. Liquid biopsy tests performed with a small amount of blood sample taken from the patient for the detection of CTCs are easy and reliable, as well as allowing more than one sample to be taken over time to follow the prognosis. However, since these cells are found in very small amounts in the blood, it is very difficult to capture them and specially designed analytical techniques and devices are required. Methods based on the biological and physical properties of the cells are used to capture these cells in the blood. Early diagnosis is very important in following the prognosis of tumors of epithelial origin such as breast, lung, colon and prostate. Molecules such as EpCAM, vimentin, and cytokeratins are expressed on the surface of cells that pass into the circulation from very few primary tumors and reach secondary organs from the circulation, and are used in the diagnosis of cancer in the early stage. For example, increased EpCAM expression in breast and prostate cancer has been associated with prognosis. These molecules can be determined in some blood or body fluids to be taken from patients. However, more sensitive methods are required to be able to determine when they are at a low level according to the course of the disease. The aim is to detect these molecules found in very few cancer cells with the help of sensitive, fast-sensing biosensors, first in breast cancer cells reproduced in vitro and then in blood samples taken from breast cancer patients. In this way, cancer cells can be diagnosed early and easily and effectively treated.Keywords: electrochemical biosensors, breast cancer, circulating tumor cells, EpCAM, Vimentin, Cytokeratins
Procedia PDF Downloads 26126661 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking
Authors: Sachin Sharma
Abstract:
A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.Keywords: energy efficient, quality of service, wireless sensor networks, MAC
Procedia PDF Downloads 348