Search results for: PDF to story feature
1458 Biomedical Definition Extraction Using Machine Learning with Synonymous Feature
Authors: Jian Qu, Akira Shimazu
Abstract:
OOV (Out Of Vocabulary) terms are terms that cannot be found in many dictionaries. Although it is possible to translate such OOV terms, the translations do not provide any real information for a user. We present an OOV term definition extraction method by using information available from the Internet. We use features such as occurrence of the synonyms and location distances. We apply machine learning method to find the correct definitions for OOV terms. We tested our method on both biomedical type and name type OOV terms, our work outperforms existing work with an accuracy of 86.5%.Keywords: information retrieval, definition retrieval, OOV (out of vocabulary), biomedical information retrieval
Procedia PDF Downloads 4961457 Optimal Load Factors for Seismic Design of Buildings
Authors: Juan Bojórquez, Sonia E. Ruiz, Edén Bojórquez, David de León Escobedo
Abstract:
A life-cycle optimization procedure to establish the best load factors combinations for seismic design of buildings, is proposed. The expected cost of damage from future earthquakes within the life of the structure is estimated, and realistic cost functions are assumed. The functions include: Repair cost, cost of contents damage, cost associated with loss of life, cost of injuries and economic loss. The loads considered are dead, live and earthquake load. The study is performed for reinforced concrete buildings located in Mexico City. The buildings are modeled as multiple-degree-of-freedom frame structures. The parameter selected to measure the structural damage is the maximum inter-story drift. The structural models are subjected to 31 soft-soil ground motions recorded in the Lake Zone of Mexico City. In order to obtain the annual structural failure rates, a numerical integration method is applied.Keywords: load factors, life-cycle analysis, seismic design, reinforced concrete buildings
Procedia PDF Downloads 6181456 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning
Authors: Kyle Saltmarsh
Abstract:
Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.Keywords: plates, deformation, acoustic features, machine learning
Procedia PDF Downloads 3371455 Recursion, Merge and Event Sequence: A Bio-Mathematical Perspective
Authors: Noury Bakrim
Abstract:
Formalization is indeed a foundational Mathematical Linguistics as demonstrated by the pioneering works. While dialoguing with this frame, we nonetheless propone, in our approach of language as a real object, a mathematical linguistics/biosemiotics defined as a dialectical synthesis between induction and computational deduction. Therefore, relying on the parametric interaction of cycles, rules, and features giving way to a sub-hypothetic biological point of view, we first hypothesize a factorial equation as an explanatory principle within Category Mathematics of the Ergobrain: our computation proposal of Universal Grammar rules per cycle or a scalar determination (multiplying right/left columns of the determinant matrix and right/left columns of the logarithmic matrix) of the transformable matrix for rule addition/deletion and cycles within representational mapping/cycle heredity basing on the factorial example, being the logarithmic exponent or power of rule deletion/addition. It enables us to propone an extension of minimalist merge/label notions to a Language Merge (as a computing principle) within cycle recursion relying on combinatorial mapping of rules hierarchies on external Entax of the Event Sequence. Therefore, to define combinatorial maps as language merge of features and combinatorial hierarchical restrictions (governing, commanding, and other rules), we secondly hypothesize from our results feature/hierarchy exponentiation on graph representation deriving from Gromov's Symbolic Dynamics where combinatorial vertices from Fe are set to combinatorial vertices of Hie and edges from Fe to Hie such as for all combinatorial group, there are restriction maps representing different derivational levels that are subgraphs: the intersection on I defines pullbacks and deletion rules (under restriction maps) then under disjunction edges H such that for the combinatorial map P belonging to Hie exponentiation by intersection there are pullbacks and projections that are equal to restriction maps RM₁ and RM₂. The model will draw on experimental biomathematics as well as structural frames with focus on Amazigh and English (cases from phonology/micro-semantics, Syntax) shift from Structure to event (especially Amazigh formant principle resolving its morphological heterogeneity).Keywords: rule/cycle addition/deletion, bio-mathematical methodology, general merge calculation, feature exponentiation, combinatorial maps, event sequence
Procedia PDF Downloads 1281454 CMMI Key Process Areas and FDD Practices
Authors: Rituraj Deka, Nomi Baruah
Abstract:
The development of information technology during the past few years resulted in designing of more and more complex software. The outsourcing of software development makes a higher requirement for the management of software development project. Various software enterprises follow various paths in their pursuit of excellence, applying various principles, methods and techniques along the way. The new research is proving that CMMI and Agile methodologies can benefit from using both methods within organizations with the potential to dramatically improve business performance. The paper describes a mapping between CMMI key process areas (KPAs) and Feature-Driven Development (FDD) communication perspective, so as to increase the understanding of how improvements can be made in the software development process.Keywords: Agile, CMMI, FDD, KPAs
Procedia PDF Downloads 4591453 Seismic Fragility Functions of RC Moment Frames Using Incremental Dynamic Analyses
Authors: Seung-Won Lee, JongSoo Lee, Won-Jik Yang, Hyung-Joon Kim
Abstract:
A capacity spectrum method (CSM), one of methodologies to evaluate seismic fragilities of building structures, has been long recognized as the most convenient method, even if it contains several limitations to predict the seismic response of structures of interest. This paper proposes the procedure to estimate seismic fragility curves using an incremental dynamic analysis (IDA) rather than the method adopting a CSM. To achieve the research purpose, this study compares the seismic fragility curves of a 5-story reinforced concrete (RC) moment frame obtained from both methods, an IDA method and a CSM. Both seismic fragility curves are similar in slight and moderate damage states whereas the fragility curve obtained from the IDA method presents less variation (or uncertainties) in extensive and complete damage states. This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM and can directly calculate higher mode effects. From these observations, the CSM could overestimate seismic vulnerabilities of the studied structure in extensive or complete damage states.Keywords: seismic fragility curve, incremental dynamic analysis, capacity spectrum method, reinforced concrete moment frame
Procedia PDF Downloads 4231452 Role of QR Codes in Environmental Consciousness of Apparel Consumption
Authors: Eleanor L. Kutschera
Abstract:
This study explores the possible impact that QR codes play in helping individuals make more sustainable choices regarding apparel consumption. Data was collected via an online survey to ascertain individuals’ knowledge, attitudes, and behaviors with regard to QR codes and how this impacts their decisions to purchase apparel. Results from 250 participants provide both qualitative and quantitative data that provide valuable information regarding consumers’ use of QR codes and more sustainable purchases. Specifically, results indicate that QR codes are currently under-utilized in the apparel industry but have the potential to generate more environmentally conscious purchases. Also, results posit that while the cost of the item is the most influential factor in purchasing sustainable garments, other factors such as how, where, and what it is made of are in the middle, along with the company’s story/inspiration for creation have an impact. Moreover, participants posit the use of QR codes could make them more informed and empowered consumers, and they would be more likely to make purchases that are better for the environment. Participants’ qualitative responses provide useful incentives that could increase their future sustainable purchases. Finally, this study touches on the study’s limitations, implications, and future direction of research.Keywords: digital ID, QR codes, environmental consciousness, sustainability, fashion industry, apparel consumption
Procedia PDF Downloads 1031451 An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines
Authors: Matheus Nunes, Rafael Mendes, Taygoara Felamingo Oliveira, Antonio Brasil Junior
Abstract:
Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine.Keywords: diffuser-enhanced turbines, hydrokinetic turbine, wind tunnel experiments, micro hydro
Procedia PDF Downloads 2791450 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis
Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana
Abstract:
Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis
Procedia PDF Downloads 1271449 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 611448 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence
Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur
Abstract:
To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.Keywords: cognition, deep learning, drawing behavior, interpretability
Procedia PDF Downloads 1661447 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer
Authors: Ravinder Bahl, Jamini Sharma
Abstract:
The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning
Procedia PDF Downloads 3601446 Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems
Authors: Malika Elkyal
Abstract:
We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: parallel methods, asynchronous mode, multisplitting, differential algebraic equations
Procedia PDF Downloads 5601445 Representation of Self and the Client in Social Work Students’ Report
Authors: Unity Nkateng
Abstract:
New forms of academic writing such as apprenticeship genres are developing in the field of applied linguistics. However, these perspectives have not adequately addressed the issue of social work students in Botswana. The paper addresses the issue of academic writing with special attention to the types of documents written by University of Botswana (UB) social work students on their fieldwork placement. The research method for this study combines two major research tools in the qualitative inquiry which are text analysis and interviews in order to investigate the context in which the texts are produced. 12 students were consulted and gave their consent for the study. 26 case reports were collected from the Department of Social work at the University of Botswana. The findings show that the case reports students write during their fieldwork placements have 6 moves, which focus on the clients’ story and describe what the students have done and achieved. The significance is that the discrepancy between professional writing and students writing raise questions about the extent to which students are being prepared for professional writing. Students have indicated that their academic writing varies according to the preferences of individual lecturers rather than the requirement of the work situation.Keywords: apprenticeship genres, client's voice, material processes, relational possesive processes
Procedia PDF Downloads 2441444 The Construction of Multilingual Online Gaming Community
Authors: Dina Alnefaie
Abstract:
This poster presents a study of a Discord private server with thirteen multilingual gamers, aiming to explore the elements that construct a multilingual online gaming community. The study focuses on the communication practices of four Saudi female and male gamers, using various data collection methods, including online observations through recorded videos and screenshots, interviews, and informal conversations for one year. The primary findings show that translanguaging was a prominent feature of their verbal and textual communication practices. Besides, these practices that mostly accompany cultural ones were used to facilitate communication and express their identities in an intercultural context.Keywords: online community construction, perceptions, multilingualism, digital identity
Procedia PDF Downloads 851443 Technological Innovations and African Export Performances
Authors: Lukman Oyelami
Abstract:
Studies have identified trade as a veritable tool for inclusive economic growth and poverty reduction in developing countries. However, contrary to the overwhelming pieces of evidence of the Asian tiger as a success story of beneficial trade, many African countries still experience poverty unabatedly despite active engagement in trade. Consequently, this study seeks to investigate the contributory effect of technological innovation on total export performance and specifically manufacturing exports of African countries. This is with a view to exploring manufacturing exports as a viable option for diversification. To achieve the empirical investigation this study, require Systems Generalized Method of Moments (sys-GMM) estimation technique was adopted based on the econometric realities inherent in the data utilized. However, the static technique of panel estimation of the Fixed Effects (FE) model was utilized for baseline analysis and robustness check. The conclusion from this study is that innovation generally impacts export performance of African countries positively, however, manufacturing export shows more sensitivity to innovation than total export. And, this provides a clear pathway for export diversification for many African countries that run a resource-based economy.Keywords: innovation, export, GMM, Africa
Procedia PDF Downloads 2201442 The Land of a Thousand Temples and the Place Where America’s Day Begins: A Religious Point of View
Authors: Ulysses Story
Abstract:
The two vast island regions of Indonesia and Micronesia are linked through ancient connections and share similar cultural and spiritual values. The islands of Bali and Guam are the focus of this paper, and the research explores the foundational values and beliefs of each island community and the challenges they face in the modern world. Each community has been sustained for thousands of years through rich cultural and spiritual philosophies that give them meaning and purpose in their lives and help connect individuals and families to each other, to the natural world, and to spiritual forces. Each share a similar history of colonial rule marked with violence and struggle. This research is informed through ethnographic methodologies, drawing particularly on participant observation and in-depth interviews conducted in both Bali and Guam. An appreciation of the collective viewpoint of these communities was gained through cultural immersion in the philosophies of Inafamaolek in Guam and Tri Hita Karana in Bali. The research highlights how spiritual and cultural values and philosophies serve indigenous people as they strive to hold on to their foundational beliefs and practices and yet move forward in the modern world.Keywords: Inafamaolek, Guam, Tri Hita Karana, Bali
Procedia PDF Downloads 711441 A Theoretical Hypothesis on Ferris Wheel Model of University Social Responsibility
Authors: Le Kang
Abstract:
According to the nature of the university, as a free and responsible academic community, USR is based on a different foundation —academic responsibility, so the Pyramid and the IC Model of CSR could not fully explain the most distinguished feature of USR. This paper sought to put forward a new model— Ferris Wheel Model, to illustrate the nature of USR and the process of achievement. The Ferris Wheel Model of USR shows the university creates a balanced, fairness and neutrality systemic structure to afford social responsibilities; that makes the organization could obtain a synergistic effect to achieve more extensive interests of stakeholders and wider social responsibilities.Keywords: USR, achievement model, ferris wheel model, social responsibilities
Procedia PDF Downloads 7251440 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions
Authors: M. Tehranizadeh, E. Shoushtari Rezvani
Abstract:
Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.Keywords: soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building
Procedia PDF Downloads 5501439 Pragmatic Development of Chinese Sentence Final Particles via Computer-Mediated Communication
Authors: Qiong Li
Abstract:
This study investigated in which condition computer-mediated communication (CMC) could promote pragmatic development. The focal feature included four Chinese sentence final particles (SFPs), a, ya, ba, and ne. They occur frequently in Chinese, and function as mitigators to soften the tone of speech. However, L2 acquisition of SFPs is difficult, suggesting the necessity of additional exposure to or explicit instruction on Chinese SFPs. This study follows this line and aims to explore two research questions: (1) Is CMC combined with data-driven instruction more effective than CMC alone in promoting L2 Chinese learners’ SFP use? (2) How does L2 Chinese learners’ SFP use change over time, as compared to the production of native Chinese speakers? The study involved 19 intermediate-level learners of Chinese enrolled at a private American university. They were randomly assigned to two groups: (1) the control group (N = 10), which was exposed to SFPs through CMC alone, (2) the treatment group (N = 9), which was exposed to SFPs via CMC and data-driven instruction. Learners interacted with native speakers on given topics through text-based CMC over Skype. Both groups went through six 30-minute CMC sessions on a weekly basis, with a one-week interval after the first two CMC sessions and a two-week interval after the second two CMC sessions (nine weeks in total). The treatment group additionally received a data-driven instruction after the first two sessions. Data analysis focused on three indices: token frequency, type frequency, and acceptability of SFP use. Token frequency was operationalized as the raw occurrence of SFPs per clause. Type frequency was the range of SFPs. Acceptability was rated by two native speakers using a rating rubric. The results showed that the treatment group made noticeable progress over time on the three indices. The production of SFPs approximated the native-like level. In contrast, the control group only slightly improved on token frequency. Only certain SFPs (a and ya) reached the native-like use. Potential explanations for the group differences were discussed in two aspects: the property of Chinese SFPs and the role of CMC and data-driven instruction. Though CMC provided the learners with opportunities to notice and observe SFP use, as a feature with low saliency, SFPs were not easily noticed in input. Data-driven instruction in the treatment group directed the learners’ attention to these particles, which facilitated the development.Keywords: computer-mediated communication, data-driven instruction, pragmatic development, second language Chinese, sentence final particles
Procedia PDF Downloads 4181438 A Study of Behavioral Phenomena Using an Artificial Neural Network
Authors: Yudhajit Datta
Abstract:
Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story
Procedia PDF Downloads 3811437 Revealing Corruption through Strategic Narration in Mandla Langa’s Memory of Stones (2000)
Authors: Dzunisani Sibuyi
Abstract:
This article demonstrates how corruption is revealed in Mandla Langa’s Memory of Stones (2000) through the deployment of narrational strategies by applying narrative theories by Gerard Genette’s Narrative Discourse and Narrative Discourse Revisited, as well as Mikhail Bakhtin’s Dialogic Imagination to the text. This is accomplished by analysing Langa’s use of extradiegetic-heterodiegetic and intradiegetic-homodiegetic narrational strategies respectively employed by the anonymous narrator and character narrator Mpanza. The narration provided by these narrators is multi-voiced in its approach to the events depicting corruption from various completing and explanatory perspectives. In addition, Langa also employs narrative techniques of narrating times such as simultaneous, subsequent, and interpolated narration to highlight corruption taking place, which is highlighted by situating the story in its presentness moments coinciding with the corruption action. As a result, by emphasising the events portraying the plight of the main characters and their struggle to resist and defeat corrupt leaders, the narration strategically reveals corruption.Keywords: narrational strategies, narrating voice, dialogism, corruption, Gérard Genette, Mandla Langa, Mikhail Bakhtin, time(s) of the narration
Procedia PDF Downloads 1051436 Feature of Employment Injuries and Maintenance Works of Construction Machinery
Authors: Naoko Kanazawa, Tran Thi Bich Nguyet, Yoshiyuki Higuchi, Hideki Hamada
Abstract:
Construction machines’ condition is maintained with the regularly inspections, preventive maintenance and repairs by skillful and qualified engineers. If an accident occurs, there will be enormous influence such as human injuries, delays in the term of construction. In this paper, we revealed the characteristics such as inspection, maintenance and repair works for construction machines, and we also clarified the trends of employment injuries based on actual data by simple and cross tabulation methods, and investigated the relation with their works, injured body parts and accident types.Keywords: construction machines, employment injuries, maintenance and repair, safety and health
Procedia PDF Downloads 3081435 Orientation towards Social Entrepreneurship-Prioritary: Givens for Overcoming Social Inequality
Authors: Revaz Gvelesiani
Abstract:
Nowadays, social inequality increasingly strengthens the trend from business entrepreneurship to social entrepreneurship. It can be said that business entrepreneurs, according to their interests, move towards social entrepreneurship. Effectively operating markets create mechanisms, which lead to 'good' behavior. This is the most important feature of the rationally functioning society. As for the prospects of social entrepreneurship, expansion of entrepreneurship concept at the social arena may lead to such an outcome, when people who are skeptical about business, become more open towards entrepreneurship as a type of activity. This is the way which by means of increased participation in entrepreneurship promotes fair distribution of wealth. Today 'entrepreneurship for all' is still a dream, although the one, which may come true.Keywords: social entrepreneurship, business entrepreneurship, functions of entrepreneurship, social inequality, social interests, interest groups, interest conflicts
Procedia PDF Downloads 3621434 A Qualitative Exploration of the Strategic Management of Employee Resistance to Organisational Change
Authors: Muneeb Banday, Anukriti Dixit
Abstract:
Change in organizations is viewed as a conversion process of the organizational functioning. One of the crucial elements of this conversion process is the employee resistance to organizational change. The existing literature on change resistance has generally treated resistance as a barrier or an opportunity for successful implementation of change. However, there is little empirical research exploring how resistance to change is managed. This may be partially due to difficulty in getting information on resistance to change. The top management does not divulge such information to avoid negative evaluation whereas employees face huge risk in sharing information related to resistance. The focus of the study is to understand how the organization under study dealt with the employee resistance to change. The conversion process is a story of how the organization went from one stage to another. We used narrative approach to change. Data was collected data through company visits and interviews. The interviews were transcribed, coded, and themes were identified. We focused on the strands that left huge scope for alternative interpretations than the dominant narrative of change prevalent in the organization. The study reveals that the top management strategically uses the legitimacy of leadership, roles of key employees, and rationality of change to manage resistance.Keywords: employee resistance, legitimacy of leadership, narrative analysis, organisational change
Procedia PDF Downloads 2751433 Rubbish to Rupees: The Story of Bishanpur Tzeco Panchayat, Bhagalpur District, State- Bihar, India
Authors: Arvind Kumar
Abstract:
Bishanpur Tzecho Panchayat presents exemplary evidence of community efforts backed by convergent action by the district water and sanitation mission in management of solid waste enhancing prosperity in the area and improvement in the quality of life. BishanpurTzeco Panchayat faced a major problem of waste management with garbage, cow dung piling up in public places leading to protests by residents. To address this problem, in collaboration with the Agriculture University and support of district administration, PHED ( Public Health & Engineering Department) and the district and block coordinators of SBM ( Swachh Bharat Mission), communities decided to go for vermicomposting to get rid of the menace of cow dung and other solid home and farm waste. Today, Bishanpur is largely garbage free, as the people realize the value of waste and how can it contribute to their well-being and prosperity. The people of the Panchayat have demonstrated that waste is a resource. Bishanpur Tzecho is a panchayat of Goradih Block of Bhagalpur district, the silk city of Bihar, India.Keywords: solid waste management in Bishanpur Tzeco Panchayat, Bhagalpur district, State- Bihar, India
Procedia PDF Downloads 4171432 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 141431 Quantum Cum Synaptic-Neuronal Paradigm and Schema for Human Speech Output and Autism
Authors: Gobinathan Devathasan, Kezia Devathasan
Abstract:
Objective: To improve the current modified Broca-Wernicke-Lichtheim-Kussmaul speech schema and provide insight into autism. Methods: We reviewed the pertinent literature. Current findings, involving Brodmann areas 22, 46, 9,44,45,6,4 are based on neuropathology and functional MRI studies. However, in primary autism, there is no lucid explanation and changes described, whether neuropathology or functional MRI, appear consequential. Findings: We forward an enhanced model which may explain the enigma related to autism. Vowel output is subcortical and does need cortical representation whereas consonant speech is cortical in origin. Left lateralization is needed to commence the circuitry spin as our life have evolved with L-amino acids and left spin of electrons. A fundamental species difference is we are capable of three syllable-consonants and bi-syllable expression whereas cetaceans and songbirds are confined to single or dual consonants. The 4 key sites for speech are superior auditory cortex, Broca’s two areas, and the supplementary motor cortex. Using the Argand’s diagram and Reimann’s projection, we theorize that the Euclidean three dimensional synaptic neuronal circuits of speech are quantized to coherent waves, and then decoherence takes place at area 6 (spherical representation). In this quantum state complex, 3-consonant languages are instantaneously integrated and multiple languages can be learned, verbalized and differentiated. Conclusion: We postulate that evolutionary human speech is elevated to quantum interaction unlike cetaceans and birds to achieve the three consonants/bi-syllable speech. In classical primary autism, the sudden speech switches off and on noted in several cases could now be explained not by any anatomical lesion but failure of coherence. Area 6 projects directly into prefrontal saccadic area (8); and this further explains the second primary feature in autism: lack of eye contact. The third feature which is repetitive finger gestures, located adjacent to the speech/motor areas, are actual attempts to communicate with the autistic child akin to sign language for the deaf.Keywords: quantum neuronal paradigm, cetaceans and human speech, autism and rapid magnetic stimulation, coherence and decoherence of speech
Procedia PDF Downloads 1951430 Analytical Investigation on Seismic Behavior of Infilled Reinforced Concrete Frames Strengthened with Precast Diagonal Concrete Panels
Authors: Ceyhun Aksoylu, Rifat Sezer
Abstract:
In this study, a strengthening method applicable without any evacuation process was investigated. In this analytical study, the pushover analysis results carry out by using the software of SAP2000. For this purpose, 1/3 scaled, 1-bay and 2-story R/C seven frames having usual deficiencies faults produced, one of which were not strengthened, but having brick-infill wall and the other 3 frames with infill walls strengthened with various shaped of high strength-precast diagonal concrete panels. The prepared analytical models investigated under reversed-cyclic loading that resembles the seismic effect. As a result of the analytical study, the properties of the reinforced concrete frames, such as strength, rigidity, energy dissipation capacity, etc. were determined and the strengthened models were compared with the unstrengthened one having the same properties. As a result of this study, the contributions of precast diagonal concrete applied on the infill walls of the existing frame systems against seismic effects were introduced with its advantages and disadvantages.Keywords: RC frame, seismic effect, infill wall, strengthening, precast diagonal concrete panel, pushover analysis
Procedia PDF Downloads 3481429 Morphology Feature of Nanostructure Bainitic Steel after Tempering Treatment
Authors: Chih Yuan Chen, Chien Chon Chen, Jin-Shyong Lin
Abstract:
The microstructure characterization of tempered nanocrystalline bainitic steel is investigated in the present study. It is found that two types of plastic relaxation, dislocation debris and nanotwin, occurs in the displacive transformation due to relatively low transformation temperature and high carbon content. Because most carbon atoms trap in the dislocation, high dislocation density can be sustained during the tempering process. More carbides only can be found in the high tempered temperature due to intense recovery progression.Keywords: nanostructure bainitic steel, tempered, TEM, nano-twin, dislocation debris, accommodation
Procedia PDF Downloads 536