Search results for: prewitt edge detection algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7264

Search results for: prewitt edge detection algorithm

304 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence is invaluable in identifying crime. It has been observed that an algorithm based on artificial intelligence (AI) is highly effective in detecting risks, preventing criminal activity, and forecasting illegal activity. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. Researchers and other authorities have used the available data as evidence in court to convict a person. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISA). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The MADIK is implemented using the Java Agent Development Framework and implemented using Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISA and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5 percent of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: artificial intelligence, computer science, criminal investigation, digital forensics

Procedia PDF Downloads 218
303 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 410
302 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 368
301 Acrylamide Concentration in Cakes with Different Caloric Sweeteners

Authors: L. García, N. Cobas, M. López

Abstract:

Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.

Keywords: beet sugar, cane sugar, panela, yogurt cake

Procedia PDF Downloads 69
300 Testing the Limits of NPI Constraints: ERP and Oscillatory Evidence from 'zenme' (no matter what) in Mandarin Chinese

Authors: Lingda Kong

Abstract:

Most research has predominantly focused on the processing of NPIs in non-veridical contexts, much less is known about how the [+Negation] constraint of NPIs functions in veridical contexts where truth conditions are explicitly asserted. This study aimed to investigate whether and how discourse context modulates the [+Negation] constraint during the processing of the Mandarin Chinese NPI ‘zenme’ (no matter what) in veridical contexts. Using a 2 × 2 design (Polarity: affirmative vs. Negative; Contextual congruency: congruent vs. incongruent), EEG data were recorded from 37 native Chinese speakers as they read compound sentences containing ‘zenme’ (no matter what). The results revealed a distinct ERP pattern at different sentence positions: At the critical word “dounenggou” (can), affirmative conditions elicited reduced posterior positivity (480-584ms) compared to negative conditions, reflecting rapid detection of polarity features. At sentence-final positions, a significant interaction was observed between polarity and contextual congruency in the N400 time window (366-488ms), with polarity differences only evident in incongruent contexts. The N400 effect suggests that mismatches between expected polarity and contextual information require additional processing effort, which becomes evident in incongruent conditions. Additionally, a Late Negative Network effect (422-800ms) was observed in the right hemisphere, where incongruent contexts elicited greater negativity than congruent contexts, reflecting the brain’s increased effort to resolve contradictions. Time-frequency analyses revealed increased power in the theta band (4-7Hz, 600-800ms) and alpha band (8-12Hz, 850-1000ms) for incongruent versus congruent conditions. In the beta band (17-24Hz, 700-950ms), affirmative-incongruent conditions elicited greater power than affirmative-congruent conditions, further confirming the involvement of higher cognitive processes in resolving polarity mismatches. These findings suggest that the processing of ‘zenme’ (no matter what) involves dynamic interactions between structural constraints and discourse context. While initial processing stages are sensitive to polarity violations, later stages integrate contextual information, particularly in veridical environments. This temporal progression from structure-based to context-driven processing extends existing models of NPI processing by revealing how discourse context modulates formal licensing requirements under explicitly asserted truth conditions. These results offer new insights into the cognitive mechanisms underlying polarity-sensitive items in Mandarin Chinese and their interaction with discourse-level constraints.

Keywords: NPI processing, ERP, polarity sensitivity, discourse context

Procedia PDF Downloads 6
299 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 264
298 Monitoring of Wound Healing Through Structural and Functional Mechanisms Using Photoacoustic Imaging Modality

Authors: Souradip Paul, Arijit Paramanick, M. Suheshkumar Singh

Abstract:

Traumatic injury is the leading worldwide health problem. Annually, millions of surgical wounds are created for the sake of routine medical care. The healing of these unintended injuries is always monitored based on visual inspection. The maximal restoration of tissue functionality remains a significant concern of clinical care. Although minor injuries heal well with proper care and medical treatment, large injuries negatively influence various factors (vasculature insufficiency, tissue coagulation) and cause poor healing. Demographically, the number of people suffering from severe wounds and impaired healing conditions is burdensome for both human health and the economy. An incomplete understanding of the functional and molecular mechanism of tissue healing often leads to a lack of proper therapies and treatment. Hence, strong and promising medical guidance is necessary for monitoring the tissue regeneration processes. Photoacoustic imaging (PAI), is a non-invasive, hybrid imaging modality that can provide a suitable solution in this regard. Light combined with sound offers structural, functional and molecular information from the higher penetration depth. Therefore, molecular and structural mechanisms of tissue repair will be readily observable in PAI from the superficial layer and in the deep tissue region. Blood vessel formation and its growth is an essential tissue-repairing components. These vessels supply nutrition and oxygen to the cell in the wound region. Angiogenesis (formation of new capillaries from existing blood vessels) contributes to new blood vessel formation during tissue repair. The betterment of tissue healing directly depends on angiogenesis. Other optical microscopy techniques can visualize angiogenesis in micron-scale penetration depth but are unable to provide deep tissue information. PAI overcomes this barrier due to its unique capability. It is ideally suited for deep tissue imaging and provides the rich optical contrast generated by hemoglobin in blood vessels. Hence, an early angiogenesis detection method provided by PAI leads to monitoring the medical treatment of the wound. Along with functional property, mechanical property also plays a key role in tissue regeneration. The wound heals through a dynamic series of physiological events like coagulation, granulation tissue formation, and extracellular matrix (ECM) remodeling. Therefore tissue elasticity changes, can be identified using non-contact photoacoustic elastography (PAE). In a nutshell, angiogenesis and biomechanical properties are both critical parameters for tissue healing and these can be characterized in a single imaging modality (PAI).

Keywords: PAT, wound healing, tissue coagulation, angiogenesis

Procedia PDF Downloads 109
297 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 393
296 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction

Authors: Mohammad Ghahramani, Fahimeh Saei Manesh

Abstract:

Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.

Keywords: soccer, analytics, machine learning, database

Procedia PDF Downloads 242
295 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach

Authors: Alvaro Figueira, Bruno Cabral

Abstract:

Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.

Keywords: data mining, e-learning, grade prediction, machine learning, student learning path

Procedia PDF Downloads 127
294 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 243
293 Analysis of Differentially Expressed Genes in Spontaneously Occurring Canine Melanoma

Authors: Simona Perga, Chiara Beltramo, Floriana Fruscione, Isabella Martini, Federica Cavallo, Federica Riccardo, Paolo Buracco, Selina Iussich, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari, Paola Modesto

Abstract:

Introduction: Human and canine melanoma have common clinical, histologic characteristics making dogs a good model for comparative oncology. The identification of specific genes and a better understanding of the genetic landscape, signaling pathways, and tumor–microenvironmental interactions involved in the cancer onset and progression is essential for the development of therapeutic strategies against this tumor in both species. In the present study, the differential expression of genes in spontaneously occurring canine melanoma and in paired normal tissue was investigated by targeted RNAseq. Material and Methods: Total RNA was extracted from 17 canine malignant melanoma (CMM) samples and from five paired normal tissues stored in RNA-later. In order to capture the greater genetic variability, gene expression analysis was carried out using two panels (Qiagen): Human Immuno-Oncology (HIO) and Mouse-Immuno-Oncology (MIO) and the miSeq platform (Illumina). These kits allow the detection of the expression profile of 990 genes involved in the immune response against tumors in humans and mice. The data were analyzed through the CLCbio Genomics Workbench (Qiagen) software using the Canis lupus familiaris genome as a reference. Data analysis were carried out both comparing the biologic group (tumoral vs. healthy tissues) and comparing neoplastic tissue vs. paired healthy tissue; a Fold Change greater than two and a p-value less than 0.05 were set as the threshold to select interesting genes. Results and Discussion: Using HIO 63, down-regulated genes were detected; 13 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Eighteen genes were up-regulated, 14 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Using the MIO, 35 down regulated-genes were detected; only four of these were down-regulated, also comparing neoplastic sample vs. paired healthy tissue. Twelve genes were up-regulated in both types of analysis. Considering the two kits, the greatest variation in Fold Change was in up-regulated genes. Dogs displayed a greater genetic homology with humans than mice; moreover, the results have shown that the two kits are able to detect different genes. Most of these genes have specific cellular functions or belong to some enzymatic categories; some have already been described to be correlated to human melanoma and confirm the validity of the dog as a model for the study of molecular aspects of human melanoma.

Keywords: animal model, canine melanoma, gene expression, spontaneous tumors, targeted RNAseq

Procedia PDF Downloads 202
292 Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions

Authors: Catarina Bento, Ana Carolina Gonçalves, Fábio Jesus, Luís Rodrigues Silva

Abstract:

Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity.

Keywords: biological potential, coloured phenolics, non-coloured phenolics, sweet cherry

Procedia PDF Downloads 258
291 Improving the Technology of Assembly by Use of Computer Calculations

Authors: Mariya V. Yanyukina, Michael A. Bolotov

Abstract:

Assembling accuracy is the degree of accordance between the actual values of the parameters obtained during assembly, and the values specified in the assembly drawings and technical specifications. However, the assembling accuracy depends not only on the quality of the production process but also on the correctness of the assembly process. Therefore, preliminary calculations of assembly stages are carried out to verify the correspondence of real geometric parameters to their acceptable values. In the aviation industry, most calculations involve interacting dimensional chains. This greatly complicates the task. Solving such problems requires a special approach. The purpose of this article is to carry out the problem of improving the technology of assembly of aviation units by use of computer calculations. One of the actual examples of the assembly unit, in which there is an interacting dimensional chain, is the turbine wheel of gas turbine engine. Dimensional chain of turbine wheel is formed by geometric parameters of disk and set of blades. The interaction of the dimensional chain consists in the formation of two chains. The first chain is formed by the dimensions that determine the location of the grooves for the installation of the blades, and the dimensions of the blade roots. The second dimensional chain is formed by the dimensions of the airfoil shroud platform. The interaction of the dimensional chain of the turbine wheel is the interdependence of the first and second chains by means of power circuits formed by a plurality of middle parts of the turbine blades. The timeliness of the calculation of the dimensional chain of the turbine wheel is the need to improve the technology of assembly of this unit. The task at hand contains geometric and mathematical components; therefore, its solution can be implemented following the algorithm: 1) research and analysis of production errors by geometric parameters; 2) development of a parametric model in the CAD system; 3) creation of set of CAD-models of details taking into account actual or generalized distributions of errors of geometrical parameters; 4) calculation model in the CAE-system, loading of various combinations of models of parts; 5) the accumulation of statistics and analysis. The main task is to pre-simulate the assembly process by calculating the interacting dimensional chains. The article describes the approach to the solution from the point of view of mathematical statistics, implemented in the software package Matlab. Within the framework of the study, there are data on the measurement of the components of the turbine wheel-blades and disks, as a result of which it is expected that the assembly process of the unit will be optimized by solving dimensional chains.

Keywords: accuracy, assembly, interacting dimension chains, turbine

Procedia PDF Downloads 375
290 Aquatic Sediment and Honey of Apis mellifera as Bioindicators of Pesticide Residues

Authors: Luana Guerra, Silvio C. Sampaio, Vladimir Pavan Margarido, Ralpho R. Reis

Abstract:

Brazil is the world's largest consumer of pesticides. The excessive use of these compounds has negative impacts on animal and human life, the environment, and food security. Bees, crucial for pollination, are exposed to pesticides during the collection of nectar and pollen, posing risks to their health and the food chain, including honey contamination. Aquatic sediments are also affected, impacting water quality and the microbiota. Therefore, the analysis of aquatic sediments and bee honey is essential to identify environmental contamination and monitor ecosystems. The aim of this study was to use samples of honey from honeybees (Apis mellifera) and aquatic sediment as bioindicators of environmental contamination by pesticides and their relationship with agricultural use in the surrounding areas. The sample collections of sediment and honey were carried out in two stages. The first stage was conducted in the Bituruna municipality region in the second half of the year 2022, and the second stage took place in the regions of Laranjeiras do Sul, Quedas do Iguaçu, and Nova Laranjeiras in the first half of the year 2023. In total, 10 collection points were selected, with 5 points in the first stage and 5 points in the second stage, where one sediment sample and one honey sample were collected for each point, totaling 20 samples. The honey and sediment samples were analyzed at the Laboratory of the Paraná Institute of Technology, with ten samples of honey and ten samples of sediment. The selected extraction method was QuEChERS, and the analysis of the components present in the sample was performed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The pesticides Azoxystrobin, Epoxiconazole, Boscalid, Carbendazim, Haloxifope, Fomesafen, Fipronil, Chlorantraniliprole, Imidacloprid, and Bifenthrin were detected in the sediment samples from the study area in Laranjeiras do Sul, Paraná, with Carbendazim being the compound with the highest concentration (0.47 mg/kg). The honey samples obtained from the apiaries showed satisfactory results, as they did not show any detection or quantification of the analyzed pesticides, except for Point 9, which had the fungicide tebuconazole but with a concentration Keywords: contamination, water research, agrochemicals, beekeeping activity

Procedia PDF Downloads 42
289 Development and Total Error Concept Validation of Common Analytical Method for Quantification of All Residual Solvents Present in Amino Acids by Gas Chromatography-Head Space

Authors: A. Ramachandra Reddy, V. Murugan, Prema Kumari

Abstract:

Residual solvents in Pharmaceutical samples are monitored using gas chromatography with headspace (GC-HS). Based on current regulatory and compendial requirements, measuring the residual solvents are mandatory for all release testing of active pharmaceutical ingredients (API). Generally, isopropyl alcohol is used as the residual solvent in proline and tryptophan; methanol in cysteine monohydrate hydrochloride, glycine, methionine and serine; ethanol in glycine and lysine monohydrate; acetic acid in methionine. In order to have a single method for determining these residual solvents (isopropyl alcohol, ethanol, methanol and acetic acid) in all these 7 amino acids a sensitive and simple method was developed by using gas chromatography headspace technique with flame ionization detection. During development, no reproducibility, retention time variation and bad peak shape of acetic acid peaks were identified due to the reaction of acetic acid with the stationary phase (cyanopropyl dimethyl polysiloxane phase) of column and dissociation of acetic acid with water (if diluent) while applying temperature gradient. Therefore, dimethyl sulfoxide was used as diluent to avoid these issues. But most the methods published for acetic acid quantification by GC-HS uses derivatisation technique to protect acetic acid. As per compendia, risk-based approach was selected as appropriate to determine the degree and extent of the validation process to assure the fitness of the procedure. Therefore, Total error concept was selected to validate the analytical procedure. An accuracy profile of ±40% was selected for lower level (quantitation limit level) and for other levels ±30% with 95% confidence interval (risk profile 5%). The method was developed using DB-Waxetr column manufactured by Agilent contains 530 µm internal diameter, thickness: 2.0 µm, and length: 30 m. A constant flow of 6.0 mL/min. with constant make up mode of Helium gas was selected as a carrier gas. The present method is simple, rapid, and accurate, which is suitable for rapid analysis of isopropyl alcohol, ethanol, methanol and acetic acid in amino acids. The range of the method for isopropyl alcohol is 50ppm to 200ppm, ethanol is 50ppm to 3000ppm, methanol is 50ppm to 400ppm and acetic acid 100ppm to 400ppm, which covers the specification limits provided in European pharmacopeia. The accuracy profile and risk profile generated as part of validation were found to be satisfactory. Therefore, this method can be used for testing of residual solvents in amino acids drug substances.

Keywords: amino acid, head space, gas chromatography, total error

Procedia PDF Downloads 156
288 Dogs Chest Homogeneous Phantom for Image Optimization

Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano

Abstract:

In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.

Keywords: radiation protection, phantom, veterinary radiology, computed radiography

Procedia PDF Downloads 420
287 The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials

Authors: Irina Veselova, Maria Makedonskaya, Olga Eremina, Alexandr Sidorov, Eugene Goodilin, Tatyana Shekhovtsova

Abstract:

Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m).

Keywords: biomaterials, fluorescent and SERS-recognition, neurotransmitters, solid-phase turn-on sensor system

Procedia PDF Downloads 409
286 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 184
285 Unmanned Aerial System Development for the Remote Reflectance Sensing Using Above-Water Radiometers

Authors: Sunghun Jung, Wonkook Kim

Abstract:

Due to the difficulty of the utilization of satellite and an aircraft, conventional ocean color remote sensing has a disadvantage in that it is difficult to obtain images of desired places at desired times. These disadvantages make it difficult to capture the anomalies such as the occurrence of the red tide which requires immediate observation. It is also difficult to understand the phenomena such as the resuspension-precipitation process of suspended solids and the spread of low-salinity water originating in the coastal areas. For the remote sensing reflectance of seawater, above-water radiometers (AWR) have been used either by carrying portable AWRs on a ship or installing those at fixed observation points on the Ieodo ocean research station, Socheongcho base, and etc. In particular, however, it requires the high cost to measure the remote reflectance in various seawater environments at various times and it is even not possible to measure it at the desired frequency in the desired sea area at the desired time. Also, in case of the stationary observation, it is advantageous that observation data is continuously obtained, but there is the disadvantage that data of various sea areas cannot be obtained. It is possible to instantly capture various marine phenomena occurring on the coast using the unmanned aerial system (UAS) including vertical takeoff and landing (VTOL) type unmanned aerial vehicles (UAV) since it could move and hover at the one location and acquire data of the desired form at a high resolution. To remotely estimate seawater constituents, it is necessary to install an ultra-spectral sensor. Also, to calculate reflected light from the surface of the sea in consideration of the sun’s incident light, a total of three sensors need to be installed on the UAV. The remote sensing reflectance of seawater is the most basic optical property for remotely estimating color components in seawater and we could remotely estimate the chlorophyll concentration, the suspended solids concentration, and the dissolved organic amount. Estimating seawater physics from the remote sensing reflectance requires the algorithm development using the accumulation data of seawater reflectivity under various seawater and atmospheric conditions. The UAS with three AWRs is developed for the remote reflection sensing on the surface of the sea. Throughout the paper, we explain the details of each UAS component, system operation scenarios, and simulation and experiment results. The UAS consists of a UAV, a solar tracker, a transmitter, a ground control station (GCS), three AWRs, and two gimbals.

Keywords: above-water radiometers (AWR), ground control station (GCS), unmanned aerial system (UAS), unmanned aerial vehicle (UAV)

Procedia PDF Downloads 168
284 Comparative Vector Susceptibility for Dengue Virus and Their Co-Infection in A. aegypti and A. albopictus

Authors: Monika Soni, Chandra Bhattacharya, Siraj Ahmed Ahmed, Prafulla Dutta

Abstract:

Dengue is now a globally important arboviral disease. Extensive vector surveillance has already established A.aegypti as a primary vector, but A.albopictus is now accelerating the situation through gradual adaptation to human surroundings. Global destabilization and gradual climatic shift with rising in temperature have significantly expanded the geographic range of these species These versatile vectors also host Chikungunya, Zika, and yellow fever virus. Biggest challenge faced by endemic countries now is upsurge in co-infection reported with multiple serotypes and virus co-circulation. To foster vector control interventions and mitigate disease burden, there is surge for knowledge on vector susceptibility and viral tolerance in response to multiple infections. To address our understanding on transmission dynamics and reproductive fitness, both the vectors were exposed to single and dual combinations of all four dengue serotypes by artificial feeding and followed up to third generation. Artificial feeding observed significant difference in feeding rate for both the species where A.albopictus was poor artificial feeder (35-50%) compared to A.aegypti (95-97%) Robust sequential screening of viral antigen in mosquitoes was followed by Dengue NS1 ELISA, RT-PCR and Quantitative PCR. To observe viral dissemination in different mosquito tissues Indirect immunofluorescence assay was performed. Result showed that both the vectors were infected initially with all dengue(1-4)serotypes and its co-infection (D1 and D2, D1 and D3, D1 and D4, D2 and D4) combinations. In case of DENV-2 there was significant difference in the peak titer observed at 16th day post infection. But when exposed to dual infections A.aegypti supported all combinations of virus where A.albopictus only continued single infections in successive days. There was a significant negative effect on the fecundity and fertility of both the vectors compared to control (PANOVA < 0.001). In case of dengue 2 infected mosquito, fecundity in parent generation was significantly higher (PBonferroni < 0.001) for A.albopicus compare to A.aegypti but there was a complete loss of fecundity from second to third generation for A.albopictus. It was observed that A.aegypti becomes infected with multiple serotypes frequently even at low viral titres compared to A.albopictus. Possible reason for this could be the presence of wolbachia infection in A.albopictus or mosquito innate immune response, small RNA interference etc. Based on the observations it could be anticipated that transovarial transmission may not be an important phenomenon for clinical disease outcome, due to the absence of viral positivity by third generation. Also, Dengue NS1 ELISA can be used for preliminary viral detection in mosquitoes as more than 90% of the samples were found positive compared to RT-PCR and viral load estimation.

Keywords: co-infection, dengue, reproductive fitness, viral quantification

Procedia PDF Downloads 209
283 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana

Authors: Gautier Viaud, Paul-Henry Cournède

Abstract:

Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.

Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models

Procedia PDF Downloads 305
282 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence

Authors: Garry Gorman, Nigel McKelvey, James Connolly

Abstract:

This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.

Keywords: computer science education, artificial intelligence, growth mindset, pedagogy

Procedia PDF Downloads 93
281 The Administration of Infection Diseases During the Pandemic COVID-19 and the Role of the Differential Diagnosis with Biomarkers VB10

Authors: Sofia Papadimitriou

Abstract:

INTRODUCTION: The differential diagnosis between acute viral and bacterial infections is an important cost-effectiveness parameter at the stage of the treatment process in order to achieve the maximum benefits in therapeutic intervention by combining the minimum cost to ensure the proper use of antibiotics.The discovery of sensitive and robust molecular diagnostic tests in response to the role of the host in infections has enhanced the accurate diagnosis and differentiation of infections. METHOD: The study used a sample of six independent blood samples (total=756) which are associated with human proteins-proteins, each of which at the transcription stage expresses a different response in the host network between viral and bacterial infections.Τhe individual blood samples are subjected to a sequence of computer filters that identify a gene panel corresponding to an autonomous diagnostic score. The data set and the correspondence of the gene panel to the diagnostic patents a new Bangalore -Viral Bacterial (BL-VB). FINDING: We use a biomarker based on the blood of 10 genes(Panel-VB) that are an important prognostic value for the detection of viruses from bacterial infections with a weighted average AUROC of 0.97(95% CL:0.96-0.99) in eleven independent samples (sets n=898). We discovered a base with a patient score (VB 10 ) according to the table, which is a significant diagnostic value with a weighted average of AUROC 0.94(95% CL: 0.91-0.98) in 2996 patient samples from 56 public sets of data from 19 different countries. We also studied VB 10 in a new cohort of South India (BL-VB,n=56) and found 97% accuracy in confirmed cases of viral and bacterial infections. We found that VB 10 (a)accurately identifies the type of infection even in unspecified cases negative to the culture (b) shows its clinical condition recovery and (c) applies to all age groups, covering a wide range of acute bacterial and viral infectious, including non-specific pathogens. We applied our VB 10 rating to publicly available COVID 19 data and found that our rating diagnosed viral infection in patient samples. RESULTS: Τhe results of the study showed the diagnostic power of the biomarker VB 10 as a diagnostic test for the accurate diagnosis of acute infections in recovery conditions. We look forward to helping you make clinical decisions about prescribing antibiotics and integrating them into your policies management of antibiotic stewardship efforts. CONCLUSIONS: Overall, we are developing a new property of the RNA-based biomarker and a new blood test to differentiate between viral and bacterial infections to assist a physician in designing the optimal treatment regimen to contribute to the proper use of antibiotics and reduce the burden on antimicrobial resistance, AMR.

Keywords: acute infections, antimicrobial resistance, biomarker, blood transcriptome, systems biology, classifier diagnostic score

Procedia PDF Downloads 160
280 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA

Authors: Catelyn Coyle, Helena Kwakwa

Abstract:

Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.

Keywords: HCV, routine testing, linkage to care, community health centers

Procedia PDF Downloads 358
279 Incidence of Cardiovascular Abnormality in Hypertensive Patients Undergoing Neurosurgical Procedures: A Prospective, Observational Study

Authors: Harshini Medikondu, Shiv Lal Soni, Nidhi Bidhyut Panda

Abstract:

Hypertension is a critical global health issue and a significant contributor to cardiovascular and cerebrovascular complications, particularly in patients undergoing neurosurgical procedures. Hypertensive patients are at heightened risk of structural and functional cardiac abnormalities, which may adversely affect perioperative outcomes. This prospective observational study aimed to assess the incidence, patterns, and reversibility of cardiovascular abnormalities in hypertensive patients undergoing intracranial neurosurgical interventions. Seventy-five hypertensive patients, aged 18–65 years, were enrolled after meeting strict inclusion criteria. Comprehensive preoperative evaluations were performed, including electrocardiograms (ECG), transthoracic echocardiography (TTE), and serum B-type natriuretic peptide (pro-BNP) measurements. Preoperative ECG findings showed abnormalities in 60% of patients, with left ventricular hypertrophy (LVH) being the most prevalent (24%), followed by ST-segment changes (14.7%). Echocardiographic assessment revealed systolic dysfunction in 30% of patients, with a mean left ventricular ejection fraction (LVEF) of 50.4 ± 5.6%. Diastolic dysfunction, observed in 62% of patients, was graded as mild to moderate in most cases. Elevated pro-BNP levels (mean: 354.7 ± 235.2 pg/mL) reflected significant cardiac stress in the study cohort. Postoperative evaluations on day 7 or at discharge demonstrated substantial improvements in cardiac function. LVEF increased significantly to a mean of 52.4 ± 4.3% (p < 0.0001), and pro-BNP levels reduced significantly (mean: 351.9 ± 232.8 pg/mL, p < 0.0001). However, diastolic dysfunction showed limited reversibility, with most patients continuing to exhibit mild to moderate dysfunction postoperatively. Subgroup analysis indicated that patients undergoing aneurysm clipping had a higher prevalence of systolic dysfunction, while tumor resection patients were more likely to exhibit diastolic abnormalities. A significant negative correlation was noted between the duration of hypertension and postoperative recovery, particularly with LVEF and pro-BNP levels, underscoring the progressive impact of chronic hypertension on cardiac function. This study highlights the importance of early detection and perioperative management of cardiovascular abnormalities in hypertensive neurosurgical patients. Preoperative TTE and biomarkers such as pro-BNP provide valuable insights into cardiac function and can guide personalized interventions to optimize patient outcomes. While systolic dysfunction showed notable reversibility with appropriate care, persistent diastolic dysfunction warrants further investigation to improve management strategies. In conclusion, hypertensive neurosurgical patients frequently present with significant cardiovascular abnormalities, many of which are reversible with timely intervention. The findings underscore the need for comprehensive cardiovascular assessment and tailored care to improve perioperative outcomes and long-term prognosis.

Keywords: hypertension, cardiac abnormalities, echocardiography, neurosurgical procedures

Procedia PDF Downloads 3
278 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques

Authors: Imed Feki, Faouzi Msahli

Abstract:

Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.

Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique

Procedia PDF Downloads 611
277 Physicochemical Properties and Toxicity Studies on a Lectin from the Bulb of Dioscorea bulbifera

Authors: Uchenna Nkiruka Umeononihu, Adenike Kuku, Oludele Odekanyin, Olubunmi Babalola, Femi Agboola, Rapheal Okonji

Abstract:

In this study, a lectin from the bulb of Dioscorea bulbifera was purified, characterised, and its acute and sub-acute toxicity was investigated with a view to evaluate its toxic effects in mice. The protein from the bulb was extracted by homogenising 50 g of the bulb in 500 ml of phosphate buffered saline (0.025 M) of pH 7.2, stirred for 3 hr, and centrifuged at the speed of 3000 rpm. Blood group and sugar specificity assays of the crude extract were determined. The lectin was purified in a two-step procedure- gel filtration on Sephadex G-75 and affinity chromatography on Sepharose 4-B arabinose. The degree of purity of the purified lectin was ascertained by SDS-polyacrylamide gel electrophoresis. Detection of covalently bound carbohydrate was carried out with Periodic Acid-Schiffs (PAS) reagent staining technique. Effects of temperature, pH, and EDTA on the lectin were carried out using standard methods. This was followed by acute toxicity studies via oral and subcutaneous routes using mice. The animals were monitored for mortality and signs of toxicity. The sub-acute toxicity studies were carried out using rats. Different concentrations of the lectin were administered twice daily for 5 days via the subcutaneous route. The animals were sacrificed on the sixth day; blood samples and liver tissues were collected. Biochemical assays (determination of total protein, direct bilirubin, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), catalase (CAT), and superoxide dismutase (SOD)) were carried out on the serum and liver homogenates. The collected organs (heart, liver, kidney, and spleen) were subjected to histopathological analysis. The results showed that lectin from the bulbs of Dioscorea bulbifera agglutinated non-specifically the erythrocytes of the human ABO system as well as rabbit erythrocytes. The haemagglutinating activity was strongly inhibited by arabinose and dulcitol with minimum inhibitory concentrations of 0.781 and 6.25, respectively. The lectin was purified to homogeneity with native and subunit molecular weights of 56,273 and 29,373 Daltons, respectively. The lectin was thermostable up to 30 0C and lost 25 %, 33.3 %, and 100 % of its heamagglutinating activity at 40°C, 50°C, and 60°C, respectively. The lectin was maximally active at pH 4 and 5 but lost its total activity at pH eight, while EDTA (10 mM) had no effect on its haemagglutinating activity. PAS reagent staining showed that the lectin was not a glycoprotein. The sub-acute studies on rats showed elevated levels of ALT, AST, serum bilirubin, total protein in serum and liver homogenates suggesting damage to liver and spleen. The study concluded that the aerial bulb of D. bulbifera lectin was non-specific in its heamagglutinating activity and dimeric in its structure. The lectin shared some physicochemical characteristics with lectins from other Dioscorecea species and was moderately toxic to the liver and spleen of treated animals.

Keywords: Dioscorea bulbifera, heamagglutinin, lectin, toxicity

Procedia PDF Downloads 136
276 Tailoring Quantum Oscillations of Excitonic Schrodinger’s Cats as Qubits

Authors: Amit Bhunia, Mohit Kumar Singh, Maryam Al Huwayz, Mohamed Henini, Shouvik Datta

Abstract:

We report [https://arxiv.org/abs/2107.13518] experimental detection and control of Schrodinger’s Cat like macroscopically large, quantum coherent state of a two-component Bose-Einstein condensate of spatially indirect electron-hole pairs or excitons using a resonant tunneling diode of III-V Semiconductors. This provides access to millions of excitons as qubits to allow efficient, fault-tolerant quantum computation. In this work, we measure phase-coherent periodic oscillations in photo-generated capacitance as a function of an applied voltage bias and light intensity over a macroscopically large area. Periodic presence and absence of splitting of excitonic peaks in the optical spectra measured by photocapacitance point towards tunneling induced variations in capacitive coupling between the quantum well and quantum dots. Observation of negative ‘quantum capacitance’ due to a screening of charge carriers by the quantum well indicates Coulomb correlations of interacting excitons in the plane of the sample. We also establish that coherent resonant tunneling in this well-dot heterostructure restricts the available momentum space of the charge carriers within this quantum well. Consequently, the electric polarization vector of the associated indirect excitons collective orients along the direction of applied bias and these excitons undergo Bose-Einstein condensation below ~100 K. Generation of interference beats in photocapacitance oscillation even with incoherent white light further confirm the presence of stable, long-range spatial correlation among these indirect excitons. We finally demonstrate collective Rabi oscillations of these macroscopically large, ‘multipartite’, two-level, coupled and uncoupled quantum states of excitonic condensate as qubits. Therefore, our study not only brings the physics and technology of Bose-Einstein condensation within the reaches of semiconductor chips but also opens up experimental investigations of the fundamentals of quantum physics using similar techniques. Operational temperatures of such two-component excitonic BEC can be raised further with a more densely packed, ordered array of QDs and/or using materials having larger excitonic binding energies. However, fabrications of single crystals of 0D-2D heterostructures using 2D materials (e.g. transition metal di-chalcogenides, oxides, perovskites etc.) having higher excitonic binding energies are still an open challenge for semiconductor optoelectronics. As of now, these 0D-2D heterostructures can already be scaled up for mass production of miniaturized, portable quantum optoelectronic devices using the existing III-V and/or Nitride based semiconductor fabrication technologies.

Keywords: exciton, Bose-Einstein condensation, quantum computation, heterostructures, semiconductor Physics, quantum fluids, Schrodinger's Cat

Procedia PDF Downloads 186
275 Clinical Characteristics of Autistic children Receiving Care in Rehabilitation Centers in Sana'a City, Yemen

Authors: Hamdan Hamood Aldumaini, Amjad Hussein Meqdam, Shamsaldeen kassim Ali, Hamed Mohammed Al-Yousefi, Haron Ahmed Al-Badawi

Abstract:

Background: Autism Spectrum Disorder (ASD) is a complex developmental challenge characterized by significant impairments in social interaction, communication, and behavioral patterns. Diagnosing ASD is challenging due to the lack of definitive medical tests, making early identification crucial. Therefore, increasing people's awareness about autism leads to early diagnosis and better prognosis. Objective: Our study aims to identify the initial symptoms prompting families to seek medical advice, determine the timeline between symptom onset and formal diagnosis, and explore methods for assessing the severity of ASD. Subjects and Methods: The study design employed was a descriptive cross-sectional design, which was suitable for the nature of the research. The data collection took place from March 5, 2022, to April 5, 2022, in Autism Rehabilitation Centers in Sana'a, Yemen. The study population consisted of all children who were diagnosed with autism and visited Autism rehabilitation centers in Sana'a city. The sample size was determined using Epi info version 7, and a total population of 587 autistic children attending the treatment was calculated, but only 250 children were included in this study (176 were male vs. 74 female). Result: In terms of sociability problems, it was found that a significant proportion of Yemeni children with autism experienced difficulties in this area. Specifically, 39.6% were classified as having severe sociability problems, while 28.4% were classified as having moderate issues. Sensory-cognitive awareness problems were also prevalent among the respondents, with 29.6% exhibiting severe difficulties in this domain. Health and physical problems were identified as significant concerns for Yemeni children with autism. The results indicated that 38.4% of the participants experienced severe health and physical issues. Identifying the first symptoms of autism is crucial for early detection and intervention. According to the study, speech delay was the most commonly observed first abnormality, reported by 71.3% of parents. Communication difficulties with others were the second most noticed abnormality, reported by 54.9% of parents. Repetitive movements were the third most commonly observed abnormality, reported by 18% of parents. Regarding the awareness among parents of ASD, our study showed that a significant portion (62%) of parents lack awareness about Autism Spectrum Disorder (ASD) and its causes. Surprisingly, a majority of these parents (over 80%) believe that autism is a curable condition. Additionally, more than half (51.2%) of the parents surveyed reported insufficient knowledge about medication options available to support therapy and rehabilitation for their autistic children.

Keywords: autism characteristics, rehabilitation centres, yemen, children

Procedia PDF Downloads 51