Search results for: data sets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25079

Search results for: data sets

18149 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets

Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu

Abstract:

Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.

Keywords: GEO SAR, radar, simulation, ship

Procedia PDF Downloads 162
18148 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction

Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman

Abstract:

Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.

Keywords: computer based instruction, teacher candidate, attitude, technology based instruction, information and communication technologies

Procedia PDF Downloads 280
18147 The Impact of Corporate Social Responsibility and Knowledge Management Factors on Students’ Job Performance: A Case Study of Silpakorn University’s Internship Program

Authors: Naritphol Boonjyakiat

Abstract:

This research attempts to investigate the effects of corporate social responsibility and knowledge management factors on students’ job performance of the Silpakorn University’s internship program within various organizations. The goal of this study is to fill the literature gap by gaining an understanding of corporate social responsibility and the knowledge management factors that fundamentally relate to students’ job performance within the organizations. Thus, this study will focus on the outcomes that were derived from a set of secondary data that were obtained using a Silpakorn university’s data base of 200 students and selected employer assessment and evaluation forms from the companies. The results represent the perceptions of students towards the corporate social responsibility aspects and knowledge management factors within the university and their job performance evaluation from the employers in various organizations. The findings indicate that corporate social responsibility and knowledge management have significant effects on students’ job performance. This study may assist us in gaining a better understanding of the integrated aspects of university and workplace environments to discover how to optimally allocate university’s resources and management approaches to gain benefits from corporate social responsibility and knowledge management practices toward students’ job performance within an organizational experience settings. Therefore, there is a sufficient reason to believe that the findings can contribute to research in the area of CSR, KM, and job performance as essential aspect of involved stakeholder.

Keywords: corporate social responsibility, knowledge management, job performance, internship program

Procedia PDF Downloads 314
18146 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images

Authors: Khitem Amiri, Mohamed Farah

Abstract:

Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.

Keywords: hyperspectral images, deep belief network, radiometric indices, image classification

Procedia PDF Downloads 261
18145 Counselling Needs of Psychiatric Patients as Perceived by Their Medical Personnel, in Federal Neuropsychiatric Hospital, Aro, Abeokuta

Authors: F. N. Bolu-Steve, T. A. Ajiboye

Abstract:

A study was carried out on the awareness of counselling needs of psychiatric patients as perceived by medical personnel in the Federal Neuropsychiatric hospital, Aro, Abeokuta, Nigeria. The respondents comprised of medical personnel of the Neuropsychiatric hospital in Aro. Purposive sampling technique was used to select the respondents. The target population of the study consisted of all medical doctors treating the psychiatric patients. A total of 200 respondents participated in the study out of which 143 were males and 57 of them were females. With their years of experience as a medical doctors, 49.5% of them have worked between 1-5 years, 30.5% of the respondents have 6-10 years’ experience while those with 16 years and above experience are 7.0%. The major counselling need of psychiatric patients as expressed by medical doctors is the need to have information about the right balance diet. The data were analyzed using percentages, mean, frequency, Analysis of Variance (ANOVA) and t-test statistical tools. The instrument used for data collection was the structured questionnaire titled “Counselling Needs of Psychiatric Patients Questionnaire” (CNPPQ). This instrument was drafted by the researchers through the review of related literature. The reliability of the instrument was established using test-retest method. A reliability index of 0.74 was obtained. Three of the hypotheses were rejected while two of them were accepted at 0.05 alpha level of significance. Based on the findings of the study, it was recommended that broad based counselling services should be provided to psychiatric patients in order to assist them to develop positive self- image and to cope with their challenges.

Keywords: counselling, needs, psychiatric, medical personnel, patients

Procedia PDF Downloads 406
18144 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: deep learning, long short term memory, energy, renewable energy load forecasting

Procedia PDF Downloads 248
18143 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 81
18142 International Financial Reporting Standard Adoption and Value Relevance of Earnings in Listed Consumer Goods Companies in Nigerian

Authors: Muktar Haruna

Abstract:

This research work examines the International Financial Reporting Standard (IFRS) adoption and value relevance of earnings of listed consumer goods companies in the Nigerian. The population of the study comprises 22 listed consumer goods companies, out of which 15 were selected as sample size of the study. The scope of the study is a 12-year period covering from 2006 to 2018. Secondary data from the annual report of sampled companies were used, which consists of earnings per share (EPS), the book value of equity per share (BVE) as independent variables; firm size (FSZ) as a control variable, and market share price of sampled companies from Nigerian stock exchange as dependent variable. Multiple regressions were used to analyze the data. The results of the study showed that IFRS did not improve the value relevance of earnings after the adoption, which translates to a decrease in value relevance of accounting numbers in the post-adoption period. The major recommendation is that the Nigerian Reporting Council should ensure full compliance to all provisions of IFRS and provide uniformity in the presentation of non-current assets in the statement of financial position, where some present only net current assets leaving individual figures for current assets and liabilities invisible.

Keywords: IFRS, adoption, value relevance, earning per share, book value of equity per share

Procedia PDF Downloads 134
18141 A Study on Adsorption Ability of MnO2 Nanoparticles to Remove Methyl Violet Dye from Aqueous Solution

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, Kh. Khandan-Barani

Abstract:

The textile industries are becoming a major source of environmental contamination because an alarming amount of dye pollutants are generated during the dyeing processes. Organic dyes are one of the largest pollutants released into wastewater from textile and other industrial processes, which have shown severe impacts on human physiology. Nano-structure compounds have gained importance in this category due their anticipated high surface area and improved reactive sites. In recent years several novel adsorbents have been reported to possess great adsorption potential due to their enhanced adsorptive capacity. Nano-MnO2 has great potential applications in environment protection field and has gained importance in this category because it has a wide variety of structure with large surface area. The diverse structures, chemical properties of manganese oxides are taken advantage of in potential applications such as adsorbents, sensor catalysis and it is also used for wide catalytic applications, such as degradation of dyes. In this study, adsorption of Methyl Violet (MV) dye from aqueous solutions onto MnO2 nanoparticles (MNP) has been investigated. The surface characterization of these nano particles was examined by Particle size analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and X-Ray Diffraction (XRD). The effects of process parameters such as initial concentration, pH, temperature and contact duration on the adsorption capacities have been evaluated, in which pH has been found to be most effective parameter among all. The data were analyzed using the Langmuir and Freundlich for explaining the equilibrium characteristics of adsorption. And kinetic models like pseudo first- order, second-order model and Elovich equation were utilized to describe the kinetic data. The experimental data were well fitted with Langmuir adsorption isotherm model and pseudo second order kinetic model. The thermodynamic parameters, such as Free energy of adsorption (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were also determined and evaluated.

Keywords: MnO2 nanoparticles, adsorption, methyl violet, isotherm models, kinetic models, surface chemistry

Procedia PDF Downloads 246
18140 Income Diversification of Small Holder Farmers in Bosso Local Government Area of Niger State, Nigeria

Authors: Oladipo Joseph Ajayi, Yakubu Muhammed, Caleb Galadima

Abstract:

This study was conducted to examine the income diversification of smallholder farmers in Bosso Local Government area of Niger state, Nigeria. The specific objectives were to examine the socio-economic characteristics of the farmers, identify the sources of income among the farmers, determine the pattern of income diversification and evaluate the determinants of income diversification of farmers in the study area. A multi-stage sampling technique was used to select 94 respondents for the study. Primary data were used, and these were collected with aid of a well structured interview schedule. Descriptive statistics, diversity index, and Tobit regression model were employed to analyze the data. The mean age of the farmers was 44 years. The average household size was 8 members per household, and the average farming experience was 12 years. 21.27 percent did not have formal education. It was further found that 69.1 percent of the respondents had an income diversity index of 0.3-0.4. This indicated that their level of income diversification was moderately low. The determinants of income diversification in the study area were education, household size, marital status, and primary income. These variables were positively related to income diversification. The study revealed that diversification into various income sources has helped to increase household income to sustain the family demands even though their level of income diversification was low within the study area.

Keywords: diversification, income, households, smallholder farmers

Procedia PDF Downloads 233
18139 Intervention to Reduce Unhealthy Food and Increasing Food Safety Among Thai Children

Authors: Mayurachat Kanyamee, Srisuda Rassameepong, Narunest Chulakarn

Abstract:

This experimental pretest-posttest control group design aimed to examine the effects of a family-based intervention on increasing fruit and vegetable intake and reduce fat and sugar intake and nutritional status among school-age children. Children were randomized to experimental 68 children and control 68 children. The experimental group received the intervention based on Social Cognitive Theory. The control group received the school’s usual educational program regarding healthy eating behavior. Data were collected via three questionnaires including: demographic characteristics; fruit and vegetable intake; and fat and sugar intake at baseline, sixteen weeks after baseline. Analysis of the data included the use of descriptive statistic and independent t-test. Results revealed the significant differences between the experimental and control group, regarding: fruit and vegetable intake, fat and sugar intake and nutritional status at sixteenth week after baseline. The findings suggest a family-based intervention, based on SCT, appears to be effective to improve eating behavior, and nutritional status of school -age children. So, the intervention can be applied to improve eating behavior among other groups of children.

Keywords: family-based intervention, children, unhealthy food, food safety

Procedia PDF Downloads 259
18138 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 418
18137 Urban Green Space Analysis Incorporated at Bodakdev, Ahmedabad City Based on the RS and GIS Techniques

Authors: Nartan Rajpriya

Abstract:

City is a multiplex ecological system made up of social, economic and natural sub systems. Green space system is the foundation of the natural system. It is also suitable part of natural productivity in the urban structure. It is dispensable for constructing a high quality human settlements and a high standard ecocity. Ahmedabad is the fastest growing city of India. Today urban green space is under strong pressure in Ahmedabad city. Due to increasing urbanization, combined with a spatial planning policy of densification, more people face the prospect of living in less green residential environments. In this research analyzes the importance of available Green Space at Bodakdev Park, Ahmedabad, using remote sensing and GIS technologies. High resolution IKONOS image and LISS IV data has been used in this project. This research answers the questions like: • Temporal changes in urban green space area. • Proximity to heavy traffic or roads or any recreational facilities. • Importance in terms of health. • Availability of quality infrastructure. • Available green space per area, per sq. km and per total population. This projects incorporates softwares like ArcGIS, Ecognition and ERDAS Imagine, GPS technologies etc. Methodology includes the field work and collection of other relevant data while preparation of land use maps using the IKONOS imagery which is corrected using GPS.

Keywords: urban green space, ecocity, IKONOS, LISS IV

Procedia PDF Downloads 377
18136 Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique

Authors: Adinarayana Gorajana, Venkata Srikanth Meka, Sanjay Garg, Lim Sue May

Abstract:

This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system.

Keywords: docetaxel, freeze drying, soluplus, solid dispersion technique

Procedia PDF Downloads 490
18135 Hazardous Waste Management at Chemistry Section in Dubai Police Forensic Lab

Authors: Adnan Lanjawi

Abstract:

This paper is carried out to investigate the management of hazardous waste in the chemistry section which belongs to Dubai Police forensic laboratory. The chemicals are the main contributor toward the accumulation of hazardous waste in the section. This is due to the requirement to use it in analysis, such as of explosives, drugs, inorganic and fire debris cases. This leads to negative effects on the environment and to the employees’ health and safety. The research investigates the quantity of chemicals there, the labels, the storage room and equipment used. The target is to reduce the need for disposal by looking at alternative options, such as elimination, substitution and recycling. The data was collected by interviewing the top managers there who have been working in the lab more than 20 years. Also, data was collected by observing employees and how they carry out experiments. Therefore, a survey was made to assess their knowledge about the hazardous waste. The management of hazardous chemicals in the chemistry section needs to be improved. The main findings illustrate that about 110 bottles of reference substances were going to be disposed of in 2014. These bottles were bought for about 100,000 UAE Dirhams (£17,600). This means that the management of substances purchase is not organised. There is no categorisation programme in place, which makes the waste control very difficult. In addition, the findings show that chemical are segregated according to alphabetical order, whereas the efficient way is to separate them according to their nature and property. In addition, the research suggested technology and experiments to follow to reduce the need for using solvents and chemicals in the sample preparation.

Keywords: control, hazard, laboratories, waste,

Procedia PDF Downloads 396
18134 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity

Procedia PDF Downloads 199
18133 Genetic Analysis of Growth Traits in White Boni Sheep under the Central Highlands Region of Yemen

Authors: Abed Al-Bial, S. Alazazie, A. Shami

Abstract:

The data were collected from 1992 to 2009 of White Boni sheep maintained at the Regional Research Station in the Central Highlands of Yemen. Data were analyzed to study the growth related traits and their genetic control. The least square means for body weights were 2.26±0.67, 11.14±0.46 and 19.21±1.25 kg for birth weight (BW), weaning weight (WW), six-month weight (WM6), respectively. The pre- and post-weaning average daily weight gains (ADG1 and ADG2) were 106.04±4.98g and 46.21±8.36 g/ day. Significant differences associated with the year of lambing were observed in body weight and weight gain at different stages of growth. Males were heavier and had a higher weight gain than females at almost all stages of growth and differences tended to increase with age. Single-born lambs had a distinct advantage over those born in twin births at all stages of growth. The lambs in the dam’s second to fourth parities were generally of heavier weight and higher daily weight gain than those in other parities. The heritabilities of all body weights, weight gains at different stages of growth were moderate (0.11-0.43). The phenotypic and genetic correlation among the different body weights were positive and high. The genetic correlations of the pre- and post-weaning average daily gains with body weights were hight to moderate, except BW with ADG2.

Keywords: breed, genetics, growth traits, heritability, sheep

Procedia PDF Downloads 493
18132 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 390
18131 A Quantitative Survey Research on the Development and Assessment of Attitude toward Mathematics Instrument

Authors: Soofia Malik

Abstract:

The purpose of this study is to develop an instrument to measure undergraduate students’ attitudes toward mathematics (MAT) and to assess the data collected from the instrument for validity and reliability. The instrument is developed using five subscales: anxiety, enjoyment, self-confidence, value, and technology. The technology dimension is added as the fifth subscale of attitude toward mathematics because of the recent trend of incorporating online homework in mathematics courses as well as due to heavy reliance of higher education on using online learning management systems, such as Blackboard and Moodle. The sample consists of 163 (M = 82, F = 81) undergraduates enrolled in College Algebra course in the summer 2017 semester at a university in the USA. The data is analyzed to answer the research question: if and how do undergraduate students’ attitudes toward mathematics load using Principal Components Analysis (PCA)? As a result of PCA, three subscales emerged namely: anxiety/self-confidence scale, enjoyment, and value scale. After deleting the last five items or the last two subscales from the initial MAT scale, the Cronbach’s alpha was recalculated using the scores from 20 items and was found to be α = .95. It is important to note that the reliability of the initial MAT form was α = .93. This means that employing the final MAT survey form would yield consistent results in repeated uses. The final MAT form is, therefore, more reliable as compared to the initial MAT form.

Keywords: college algebra, Cronbach's alpha reliability coefficient, Principal Components Analysis, PCA, technology in mathematics

Procedia PDF Downloads 111
18130 To Ensure Maximum Voter Privacy in E-Voting Using Blockchain, Convolutional Neural Network, and Quantum Key Distribution

Authors: Bhaumik Tyagi, Mandeep Kaur, Kanika Singla

Abstract:

The advancement of blockchain has facilitated scholars to remodel e-voting systems for future generations. Server-side attacks like SQL injection attacks and DOS attacks are the most common attacks nowadays, where malicious codes are injected into the system through user input fields by illicit users, which leads to data leakage in the worst scenarios. Besides, quantum attacks are also there which manipulate the transactional data. In order to deal with all the above-mentioned attacks, integration of blockchain, convolutional neural network (CNN), and Quantum Key Distribution is done in this very research. The utilization of blockchain technology in e-voting applications is not a novel concept. But privacy and security issues are still there in a public and private blockchains. To solve this, the use of a hybrid blockchain is done in this research. This research proposed cryptographic signatures and blockchain algorithms to validate the origin and integrity of the votes. The convolutional neural network (CNN), a normalized version of the multilayer perceptron, is also applied in the system to analyze visual descriptions upon registration in a direction to enhance the privacy of voters and the e-voting system. Quantum Key Distribution is being implemented in order to secure a blockchain-based e-voting system from quantum attacks using quantum algorithms. Implementation of e-voting blockchain D-app and providing a proposed solution for the privacy of voters in e-voting using Blockchain, CNN, and Quantum Key Distribution is done.

Keywords: hybrid blockchain, secure e-voting system, convolutional neural networks, quantum key distribution, one-time pad

Procedia PDF Downloads 75
18129 The Design of English Materials to Communicate the Identity of Mueang Distict, Samut Songkram for Ecotourism

Authors: Kitda Praraththajariya

Abstract:

The main purpose of this research was to study how to communicate the identity of the Mueang district, Samut Songkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of Amphur (District) Mueang, Samut Songkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. 2. The communication of the identity of Amphur Mueang, Samut Songkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of Amphur Mueang, Samut Songkram province 2) Wat Phet Samut Worrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep Amphur Mueang, Samut Songkram province for ecotourism.

Keywords: foreigner tourists, signified, semiotics, ecotourism

Procedia PDF Downloads 226
18128 Kebbi State University of Science and Technology, Aliero, Kebbi State

Authors: Ugbajah Maryjane

Abstract:

The study examined the production of grass cutter and the constraints in Anambra state, Nigeria. Specifically, it described socio-economic characteristics of the respondents, determinants of net farm income and constraints to grass cutter production. Multistage and random sampling methods were used to select 50 respondents for this study. Primary data were collected by means of structured questionnaire. Non-parametric and parametric statistical tools including frequency percentage mean ranking counts, cost and returns and returns and multiple regression were deployed for data analysis. Majority 84% produce on small scale, 64 % had formal education 68% had 3-4 years of farming experience hence small scaled production were common. The income (returns) on investment was used as index of profitability, gross margin (#5,972,280), net farm income (#5,327,055.2) net return on investment (2.5) and return on investment 3.1. Net farm income was significantly influence by stock size and years of farming experience. Grass cutter farmers production problem would be ameliorated by the expression of extension education awareness campaigns to discourage unhealthy practices such as indiscriminant bush burning, use of toxic chemicals as baits, and provision of credits to the farmers.

Keywords: socio-economic factors, profitability, awareness, toxic chemicals, credits

Procedia PDF Downloads 397
18127 Antibiotic Prescribing in the Acute Care in Iraq

Authors: Ola A. Nassr, Ali M. Abd Alridha, Rua A. Naser, Rasha S. Abbas

Abstract:

Background: Excessive and inappropriate use of antimicrobial agents among hospitalized patients remains an important patient safety and public health issue worldwide. Not only does this behavior incur unnecessary cost but it is also associated with increased morbidity and mortality. The objective of this study is to obtain an insight into the prescribing patterns of antibiotics in surgical and medical wards, to help identify a scope for improvement in service delivery. Method: A simple point prevalence survey included a convenience sample of 200 patients admitted to medical and surgical wards in a government teaching hospital in Baghdad between October 2017 and April 2018. Data were collected by a trained pharmacy intern using a standardized form. Patient’s demographics and details of the prescribed antibiotics, including dose, frequency of dosing and route of administration, were reported. Patients were included if they had been admitted at least 24 hours before the survey. Patients under 18 years of age, having a diagnosis of cancer or shock, or being admitted to the intensive care unit, were excluded. Data were checked and entered by the authors into Excel and were subjected to frequency analysis, which was carried out on anonymized data to protect patient confidentiality. Results: Overall, 88.5% of patients (n=177) received 293 antibiotics during their hospital admission, with a small variation between wards (80%-97%). The average number of antibiotics prescribed per patient was 1.65, ranging from 1.3 for medical patients to 1.95 for surgical patients. Parenteral third-generation cephalosporins were the most commonly prescribed at a rate of 54.3% (n=159) followed by nitroimidazole 29.4% (n=86), quinolones 7.5% (n=22) and macrolides 4.4% (n=13), while carbapenems and aminoglycosides were the least prescribed together accounting for only 4.4% (n=13). The intravenous route was the most common route of administration, used for 96.6% of patients (n=171). Indications were reported in only 63.8% of cases. Culture to identify pathogenic organisms was employed in only 0.5% of cases. Conclusion: Broad-spectrum antibiotics are prescribed at an alarming rate. This practice may provoke antibiotic resistance and adversely affect the patient outcome. Implementation of an antibiotic stewardship program is warranted to enhance the efficacy, safety and cost-effectiveness of antimicrobial agents.

Keywords: Acute care, Antibiotic misuse, Iraq, Prescribing

Procedia PDF Downloads 111
18126 Cross Analysis of Gender Discrimination in Print Media of Subcontinent via James Paul Gee Model

Authors: Luqman Shah

Abstract:

The myopic gender discrimination is now a well-documented and recognized fact. However, gender is only one facet of an individual’s multiple identities. The aim of this work is to investigate gender discrimination highlighted in print media in the subcontinent with a specific focus on Pakistan and India. In this study, an approach is adopted by using the James Paul Gee model for the identification of gender discrimination. As a matter of fact, gender discrimination is not consistent in its nature and intensity across global societies and varies as social, geographical, and cultural background change. The World has been changed enormously in every aspect of life, and there are also obvious changes towards gender discrimination, prejudices, and biases, but still, the world has a long way to go to recognize women as equal as men in every sphere of life. The history of the world is full of gender-based incidents and violence. Now the time came that this issue must be seriously addressed and to eradicate this evil, which will lead to harmonize society and consequently heading towards peace and prosperity. The study was carried out by a mixed model research method. The data was extracted from the contents of five Pakistani English newspapers out of a total of 23 daily English newspapers, and likewise, five Indian daily English newspapers out of 52 those were published 2018-2019. Two news stories from each of these newspapers, in total, twenty news stories were taken as sampling for this research. Content and semiotic analysis techniques were used to analyze through James Paul Gee's seven building tasks of language. The resources of renowned e-papers are utilized, and the highlighted cases in Pakistani newspapers of Indian gender-based stories and vice versa are scrutinized as per the requirement of this research paper. For analysis of the written stretches of discourse taken from e-papers and processing of data for the focused problem, James Paul Gee 'Seven Building Tasks of Language' is used. Tabulation of findings is carried to pinpoint the issue with certainty. Findings after processing the data showed that there is a gross human rights violation on the basis of gender discrimination. The print media needs a more realistic representation of what is what not what seems to be. The study recommends the equality and parity of genders.

Keywords: gender discrimination, print media, Paul Gee model, subcontinent

Procedia PDF Downloads 204
18125 Traditional and New Residential Architecture in the Approach of Sustainability in the Countryside after the Earthquake

Authors: Zeynep Tanriverdi̇

Abstract:

Sustainable architecture is a design approach that provides healthy, comfortable, safe, clean space production as well as utilizes minimum resources for efficient and economical use of natural resources and energy. Traditional houses located in rural areas are sustainable structures built at the design and implementation stage in accordance with the climatic environmental data of the region and also effectively using natural energy resources. The fact that these structures are located in an earthquake geography like Türkiye brings their earthquake resistance to the agenda. Since the construction of these structures, which contain the architectural and technological cultural knowledge of the past, is shaped according to the characteristics of the regions where they are located, their resistance to earthquakes also differs. Analyses in rural areas after the earthquake show that there are light-damaged structures that can survive, severely damaged structures, and completely destroyed structures. In this regard, experts can implement repair, consolidation, and reconstruction applications, respectively. While simple repair interventions are carried out in accordance with the original data in traditional houses that have shown great resistance to earthquakes, reinforcement work blended with new technologies can be applied in damaged structures. In reconstruction work, a wide variety of applications can be seen with the possibilities of modern technologies. In rural areas experiencing earthquakes around the world, there are experimental new housing applications that are renewable, environmentally friendly, and sustainable with modern construction techniques in the light of scientific data. With these new residences, it is aimed to create earthquake-resistant, economical, healthy, and pain-relieving therapy spaces for people whose daily lives have been interrupted by disasters. In this study, the preservation of high earthquake-prone rural areas will be discussed through the knowledge transfer of traditional architecture and also permanent housing practices using new sustainable technologies to improve the area. In this way, it will be possible to keep losses to a minimum with sustainable, reliable applications prepared for the worst aspects of the disaster situation and to establish a link between the knowledge of the past and the new technologies of the future.

Keywords: sustainability, conservation, traditional construction systems and materials, new technologies, earthquake resistance

Procedia PDF Downloads 48
18124 Prone Positioning and Clinical Outcomes of Mechanically Ventilated Patients with Severe Acute Respiratory Distress Syndrome

Authors: Maha Salah Abdullah Ismail, Mahmoud M. Alsagheir, Mohammed Salah Abd Allah

Abstract:

Acute respiratory distress syndrome (ARDS) is characterized by permeability pulmonary edema and refractory hypoxemia. Lung-protective ventilation is still the key of better outcome in ARDS. Prone position reduces the trans-pulmonary pressure gradient, recruiting collapsed regions of the lung without increasing airway pressure or hyperinflation. Prone ventilation showed improved oxygenation and improved outcomes in severe hypoxemic patients with ARDS. This study evaluates the effect of prone positioning on mechanically ventilated patients with ARDS. A quasi-experimental design was carried out at Critical Care Units, on 60 patients. Two tools were utilized to collect data; Socio demographic, medical and clinical outcomes data sheet. Results of the present study indicated that prone position improves oxygenation in patients with severe respiratory distress syndrome. The study recommended that use prone position in patients with severe ARDS, as early as possible and for long sessions. Also, replication of this study on larger probability sample at the different geographical location is highly recommended.

Keywords: acute respiratory distress syndrome, critical care, mechanical ventilation, prone position

Procedia PDF Downloads 525
18123 A Resolution on Ideal University Teachers Perspective of Turkish Students

Authors: Metin Özkan

Abstract:

In the last decade, Turkish higher education has been expanded dramatically. With this expansion, Turkey has come a long way in establishing an efficient system of higher education which is moving into a ‘mass’ system with institutions spanning the whole country. This expansion as a quantitative target leads to questioning the quality of higher education services. Especially, the qualities of higher education services depend on mainly quality of educators. Qualities of educators are most important in Turkish higher education system due to rapid rise in the number of universities and students. Therefore, it is seen important that reveals the portrait of ideal university teacher from the point of view student enrolled in Turkish higher education system. The purpose of this current study is to determine the portrait of ideal university teacher according to the views of Turkish Students. This research is carried out with descriptive scanning method and combined and mixed of qualitative and quantitative methodologies. Research data of qualitative section were collected at Gaziantep University with the participation of 45 students enrolled in 15 different faculties. Quantitative section was performed on 217 students. The data were obtained through semi-structured interview and “Ideal University Teacher Assessment” form developed by the researcher. The interview form consists of basically two parts. The first part of the interview was about personal information, the second part included questions about the characteristic of ideal university teacher. The questions which constitute the second part of the interview are; "what is a good university teacher like?” and “What human qualities and professional skills should a university teacher have? ". Assessment form which was created from the qualitative data obtained from interviews was used to attain scaling values for pairwise comparison and ranking judgment. According to study results, it has been found that ideal university teacher characteristics include the features like patient, tolerant, comprehensive and tolerant. Ideal university teacher, besides, implement the teaching methods like encouraging the students’ critical thinking, accepting the students’ recommendations on how to conduct the lesson and making use of the new technologies etc. Motivating and respecting the students, adopting a participative style, adopting a sincere way of manner also constitute the ideal university features relationships with students.

Keywords: faculty, higher education, ideal university teacher, teacher behavior

Procedia PDF Downloads 198
18122 Assessment of Land Surface Temperature Using Satellite Remote Sensing

Authors: R. Vidhya, M. Navamuniyammal M. Sivakumar, S. Reeta

Abstract:

The unplanned urbanization affects the environment due to pollution, conditions of the atmosphere, decreased vegetation and the pervious and impervious soil surface. Considered to be a cumulative effect of all these impacts is the Urban Heat Island. In this paper, the urban heat island effect is studied for the Chennai city, TamilNadu, South India using satellite remote sensing data. LANDSAT 8 OLI and TIRS DATA acquired on 9th September 2014 were used to Land Surface Temperature (LST) map, vegetation fraction map, Impervious surface fraction, Normalized Difference Water Index (NDWI), Normalized Difference Building Index (NDBI) and Normalized Difference Vegetation Index (NDVI) map. The relationship among LST, Vegetation fraction, NDBI, NDWI, and NDVI was calculated. The Chennai city’s Urban Heat Island effect is significant, and the results indicate LST has strong negative correlation with the vegetation present and positive correlation with NDBI. The vegetation is the main factor to control urban heat island effect issues in urban area like Chennai City. This study will help in developing measures to land use planning to reduce the heat effects in urban area based on remote sensing derivatives.

Keywords: land surface temperature, brightness temperature, emissivity, vegetation index

Procedia PDF Downloads 261
18121 A Quality Improvement Project to Assess the Impact of Orthognathic Surgery on the Quality of Life of Patients: Pre-Operatively versus Post-Operatively

Authors: Fiona Lourenco, William Allen

Abstract:

Dentofacial deformities are primarily surgically treated via orthognathic surgery. Health-related quality of life is concerned with aspects of quality of life that relate specifically to an individual’s health. Design and Setting: Retrospective analysis of patients who had orthognathic surgery from January 2018 - December 2022 at the trust using the previously validated Orthognathic Quality of Life questionnaire (OQoL). Materials and Methods: 32 Patient questionnaires (which included pre-operative and post-operative separate sections) were obtained via telephone survey. The data was analysed using the two-tailed paired t-test and Wilcoxon signed-rank test. Results: The change in perception post-surgery was highly significant (both tests resulted in p<0.001 for overall analysis as well as for each domain). Overall, a 74% improvement in QoL was seen following orthognathic surgery. Reports of improvement in each domain were as follows: 71% in the social aspect of the deformity domain, 76% in facial aesthetics, 60% in function, and 57% improvement in awareness of facial deformity. Conclusion: The assessment of QoL is becoming progressively imperative in clinical research. The above data shows that orthognathic surgery has a significant improvement in the QoL of patients post-operatively. The results demonstrate improvement in all domains, with perceptions in facial aesthetics seeing the highest change post-operatively.

Keywords: dentofacial, oral, facial asymmetry, orthognathic surgery, quality of life

Procedia PDF Downloads 63
18120 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder

Procedia PDF Downloads 280