Search results for: cyber-physical systems
2548 Effectiveness and Efficiency of Unified Philippines Accident Reporting and Database System in Optimizing Road Crash Data Usage with Various Stakeholders
Authors: Farhad Arian Far, Anjanette Q. Eleazar, Francis Aldrine A. Uy, Mary Joyce Anne V. Uy
Abstract:
The Unified Philippine Accident Reporting and Database System (UPARDS), is a newly developed system by Dr. Francis Aldrine Uy of the Mapua Institute of Technology. The main purpose is to provide an advanced road accident investigation tool, record keeping and analysis system for stakeholders such as Philippine National Police (PNP), Metro Manila Development Authority (MMDA), Department of Public Works and Highways (DPWH), Department of Health (DOH), and insurance companies. The system is composed of 2 components, the mobile application for road accident investigators that takes advantage of available technology to advance data gathering and the web application that integrates all accident data for the use of all stakeholders. The researchers with the cooperation of PNP’s Vehicle Traffic Investigation Sector of the City of Manila, conducted the field-testing of the application in fifteen (15) accident cases. Simultaneously, the researchers also distributed surveys to PNP, Manila Doctors Hospital, and Charter Ping An Insurance Company to gather their insights regarding the web application. The survey was designed on information systems theory called Technology Acceptance Model. The results of the surveys revealed that the respondents were greatly satisfied with the visualization and functions of the applications as it proved to be effective and far more efficient in comparison with the conventional pen-and-paper method. In conclusion, the pilot study was able to address the need for improvement of the current system.Keywords: accident, database, investigation, mobile application, pilot testing
Procedia PDF Downloads 4472547 Water Treatment Using Eichhornia crassipes and Avifauna Control in The "La Mansión" Pond
Authors: Milda A. Cruz-Huaranga, Natalí Carbo-Bustinza, Javier Linkolk López-Gonzales, K. Depaz, Gina M. Tito T., Soledad Torres-Calderón
Abstract:
The objective of this study was to improve water quality in the “La Mansión” pond in order to irrigate green spaces on the Peruvian Union University campus (Lima, Peru) using the aquatic species Eichhornia Crassipes. Furthermore, tree trimming and cleaning activities were performed that reduced water pollution caused by organic deposits and feathers from wild birds. The impaired waterbody is located on the campus of the Peruvian Union University, 580 meters above sea level, with a volume of 6,405.336 m3, an area of 3,050.16 m2, 256.81 m perimeter, and 0.12 m3/s input flow. Seven 1.8 m2 floating systems were implemented, with 12 common water hyacinth plants in each system. Before implementing this system, a water quality analysis was performed to analyse the physical-chemical, microbiological, and organoleptic parameters. The pre-analysis revealed the pond’s critical condition, with electrical conductivity: 556 mg/l; phosphate: < 0.5; pH: 7.06; total solids: 412 mg/l; arsenic: <0.01; lead: 0.115; BOD5: 14; COD: 16.94; dissolved oxygen: 13; total coliforms: 24000 MCL/100 ml; and thermo-tolerant coliforms: 11000 MCL/100 ml. After implementing the system, the following results were obtained: EC: 495 mg/l; DO:9.2 mg/l; TS: 235 mg/l; BOD5: 7.7; COD: 8.47; Pb: 0.001 mg/l; TC: 460 MCL/100 ml; FC: 240 MCL/100 ml. Thus, we confirmed that the system is 78.79% efficient regarding the Peruvian ECA (Environmental Quality Standards) established for water according to DS #015-2015-MINAM. Therefore, the water is suitable for plant irrigation. Finally, we concluded that treating wastewater with the species Eichhornia Crassipes is efficient since an improvement was achieved in the impaired waterbody.Keywords: Eichhornia crassipes, plantlets, cleaning, impaired waterbody, pond
Procedia PDF Downloads 1432546 Isolation and Characterization of Bacteriophages Against Aeromonas Spp. Mediated Diseases in Indian Aquaculture
Authors: Mrunalini Sonne
Abstract:
Aquaculture uses a variety of broad spectrum antibiotics to manage and prevent a variety of diseases without understanding their mechanisms of action. This has led to water pollution in the modern world. The necessity for alternate control measures against bacterial illnesses in the aquaculture sector is highlighted by issues brought on by antibiotic-resistant bacteria and the dearth of effective control strategies. Bacteriophages (phages) have shown promise as therapeutic agents for the efficient management of bacterial infections in aquaculture. In the current study, a variety of investigations were conducted to determine if utilizing lytic phages to reduce Aeromonas spp. infection in fish aquaculture was appropriate. Motile Aeromonas septicaemia is a fish disease that has caused financial harm to the aquaculture sector. Currently, the production of aquaculture depends significantly on antibiotics, which adds to the worldwide problem of the rise of bacteria that are resistant to medicines and resistance genes. To decrease the usage of antibiotics in aquaculture systems, it is crucial to create efficient antibiotic substitutes. Bacteriophages are capable of acting as a natural antagonist, mostly because of their great specificity, capacity for self-replication, and ability to quickly eradicate dangerous bacteria. There is a need for research that goes beyond just isolating and characterising lytic bacteriophages to examine their morphology, stability, and efficacy in various environmental conditions. Bacteriophage (or phage) therapy is a promising technique to control dangerous microbes in farmed fish. More phage therapy research in aquaculture is required in order to effectively employ phage treatment to lessen infection in fish brought on by Aeromonas.Keywords: aquaculture, bacteriophages, fish, freshwater
Procedia PDF Downloads 1112545 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures
Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui
Abstract:
The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.Keywords: multi-cores DSP, scheduling, SMT solver, workflow
Procedia PDF Downloads 2902544 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand
Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul
Abstract:
Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals
Procedia PDF Downloads 3972543 Behavioural Studies on Multidirectional Reinforced 4-D Orthogonal Composites on Various Preform Configurations
Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan
Abstract:
The main advantage of multi-directionally reinforced composites is the freedom to orient selected fibre types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D preforms fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.Keywords: multi-directionally reinforced composites, 4-D orthogonal preform, course weave, fine weave, fibre bundle spools, unit cell, fibre architecture, fibre volume fraction, fibre distribution
Procedia PDF Downloads 2362542 Drama Education: Towards Building Multicultural Adolescent Peer Relationships
Authors: Tahnee West
Abstract:
Drama education is increasingly understood as a useful tool in promoting positive social change and cultural awareness. The effects of both positive and negative peer relationships are also a researched facet of education systems. Despite this, very little research has been conducted in the intersection of these two areas, even given current, significant public interest surrounding multicultural relationships. This research addresses a problem faced by educators and students: facilitating meaningful multicultural relationships. The research explores the following question in an Australian context: in what ways does Drama education affect peer relationships between culturally diverse students? In doing so, the study explores the various challenges and experiences of a multicultural group of adolescents, in terms of forming and maintaining effective intercultural friendships, while participating in a series of drama workshops. The project presents a starting point for providing educators with strategies for inclusivity and relationship development amongst diverse student populations. Findings show that Drama education can positively affect culturally diverse young people’s peer relationships; interactions between participants and data collected in focus groups throughout the eight-week Drama program show a steady improvement in sense of trust, support, tolerance, empathy, familiarity with other participants, and enjoyment. Data also points to a positive correlation between the Drama activities and improved conflict resolution and communication skills, as well as an improved understanding of the other participants’ cultures. Diversities and commonalities within the group were explored, with similarities encouraging social cohesion, and decreasing cultural ‘cliques’.Keywords: cultural diversity, drama education, friendship, multicultural, peer relationships
Procedia PDF Downloads 1482541 Novel Urban Regulation Panorama in Latin America
Authors: Yeimis Milton, Palomino Pichihua
Abstract:
The city, like living organisms, originates from codes, structured information in the form of rules that condition the physical form and performance of urban space. Usually, the so-called urban codes clash with the spontaneous nature of the city, with the urban Kháos that contextualizes the free creation (poiesis) of human collectives. This contradiction is especially evident in Latin America, which, like other developing regions, lacks adequate instruments to guide urban growth. Thus constructing a hybrid between the formal and informal city, categories that are difficult to separate one from the other. This is a comparative study focusing on the urban codes created to address the pandemic. The objective is to build an overview of these innovations in the region. The sample is made up of official norms published in pandemic, directly linked to urban planning and building control (urban form). The countries analyzed are Brazil, Mexico, Argentina, Peru, Colombia, and Chile. The study uncovers a shared interest in facing future urban problems, in contrast to the inconsistency of proposed legal instruments. Factors such as the lack of articulation, validity time, and ambiguity, among others, accentuate this problem. Likewise, it evidences that the political situation of each country has a significant influence on the development of these norms and the possibility of their long-term impact. In summary, the global emergency has produced opportunities to transform urban systems from their internal rules; however, there are very few successful examples in this field. Therefore, Latin American cities have the task of learning from this defeat in order to lay the foundations for a more resilient and sustainable urban future.Keywords: pandemic, regulation, urban planning, latin America
Procedia PDF Downloads 1032540 Integrated Design in Additive Manufacturing Based on Design for Manufacturing
Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon
Abstract:
Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.Keywords: additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability
Procedia PDF Downloads 3192539 Trading off Accuracy for Speed in Powerdrill
Authors: Filip Buruiana, Alexander Hall, Reimar Hofmann, Thomas Hofmann, Silviu Ganceanu, Alexandru Tudorica
Abstract:
In-memory column-stores make interactive analysis feasible for many big data scenarios. PowerDrill is a system used internally at Google for exploration in logs data. Even though it is a highly parallelized column-store and uses in memory caching, interactive response times cannot be achieved for all datasets (note that it is common to analyze data with 50 billion records in PowerDrill). In this paper, we investigate two orthogonal approaches to optimize performance at the expense of an acceptable loss of accuracy. Both approaches can be implemented as outer wrappers around existing database engines and so they should be easily applicable to other systems. For the first optimization we show that memory is the limiting factor in executing queries at speed and therefore explore possibilities to improve memory efficiency. We adapt some of the theory behind data sketches to reduce the size of particularly expensive fields in our largest tables by a factor of 4.5 when compared to a standard compression algorithm. This saves 37% of the overall memory in PowerDrill and introduces a 0.4% relative error in the 90th percentile for results of queries with the expensive fields. We additionally evaluate the effects of using sampling on accuracy and propose a simple heuristic for annotating individual result-values as accurate (or not). Based on measurements of user behavior in our real production system, we show that these estimates are essential for interpreting intermediate results before final results are available. For a large set of queries this effectively brings down the 95th latency percentile from 30 to 4 seconds.Keywords: big data, in-memory column-store, high-performance SQL queries, approximate SQL queries
Procedia PDF Downloads 2632538 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran
Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr
Abstract:
Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.Keywords: climate, change, thermal, power plants
Procedia PDF Downloads 872537 Nutrition Strategy Using Traditional Tibetan Medicine in the Preventive Measurement
Authors: Ngawang Tsering
Abstract:
Traditional Tibetan medicine is primarily focused on promoting health and keeping away diseases from its unique in prescribing specific diet and lifestyle. The prevalence of chronic diseases has been rising day by day and kills a number of people due to the lack of proper nutritional design in modern times. According to traditional Tibetan medicine, chronic diseases such as diabetes, cancer, cardiovascular diseases, respiratory diseases, and arthritis are heavily associated with an unwholesome diet and inappropriate lifestyles. Diet and lifestyles are the two main conditions of diseases and healthy life. The prevalence of chronic diseases is one of the challenges, with massive economic impact and expensive health issues. Though chronic diseases are challenges, it has a solution in the preventive measurements by using proper nutrition design based on traditional Tibetan medicine. Until today, it is hard to evaluate whether traditional Tibetan medicine nutrition strategy could play a major role in preventive measurement as of the lack of current research evidence. However, compared with modern nutrition, it has an exclusive valuable concept, such as a holistic way and diet or nutrition recommendation based on different aspects. Traditional Tibetan medicine is one of the oldest ancient existing medical systems known as Sowa Rigpa (Science of Healing) highlights different aspects of dietetics and nutrition, namely geographical, seasonal, age, personality, emotional, food combination, the process of individual metabolism, potency, and amount of food. This article offers a critical perspective on the preventive measurement against chronic diseases through nutrition design using traditional Tibetan medicine and also needs attention for a deeper understanding of traditional Tibetan medicine in the modern world.Keywords: traditional Tibetan medicine, nutrition, chronic diseases, preventive measurement, holistic approach, integrative
Procedia PDF Downloads 1612536 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge
Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux
Abstract:
Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes the excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause a serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR-based phylogenetic analysis was also carried out for. The average operating and environmental parameters, as well as specific nitrification rate of a plant, was investigated during the study. During the investigation, the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with the influent ammonia concentration of 31.69 and 24.47 mg/l. The influent flow rates (ML/day) was 96.81 during the period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had a correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as a good indicator of the plant overall nitrification performance.Keywords: Ammonia monooxygenase α-subunit gene, amoA, ammonia-oxidizing bacteria, AOB, nitrite-oxidizing bacteria, NOB, specific nitrification rate
Procedia PDF Downloads 4642535 Development of a Web-Based Application for Intelligent Fertilizer Management in Rice Cultivation
Authors: Hao-Wei Fu, Chung-Feng Kao
Abstract:
In the era of rapid technological advancement, information technology (IT) has become integral to modern life, exerting significant influence across diverse sectors and serving as a catalyst for development in various industries. Within agriculture, the integration of IT offers substantial benefits, notably enhancing operational efficiency. Real-time monitoring systems, for instance, have been widely embraced in agriculture, effectively improving crop management practices. This study specifically addresses the management of rice panicle fertilizer, presenting the development of a web application tailored to handle data associated with rice panicle fertilizer management. Leveraging the normalized difference red edge index, this application optimizes the quantity of rice panicle fertilizer used, providing recommendations to agricultural stakeholders and service providers in the agricultural information sector. The overarching objective is to minimize costs while maximizing yields. Furthermore, a robust database system has been established to store and manage relevant data for future reference in rice cultivation management. Additionally, the study utilizes the Representational State Transfer software architectural style to construct an application programming interface (API), facilitating data creation, retrieval, updating, and deletion for users via the HyperText Transfer Protocol methods. Future plans involve integrating this API with third-party services to incorporate it into larger frameworks, thus catering to the diverse requirements of various third-party services.Keywords: application programming interface, HyperText Transfer Protocol, nitrogen fertilizer intelligent management, web-based application
Procedia PDF Downloads 652534 Resonant Auxetic Metamaterial for Automotive Applications in Vibration Isolation
Authors: Adrien Pyskir, Manuel Collet, Zoran Dimitrijevic, Claude-Henri Lamarque
Abstract:
During the last decades, great efforts have been made to reduce acoustic and vibrational disturbances in transportations, as it has become a key feature for comfort. Today, isolation and design have neutralized most of the troublesome vibrations, so that cars are quieter and more comfortable than ever. However, some problems remain unsolved, in particular concerning low-frequency isolation and the frequency-dependent stiffening of materials like rubber. To sum it up, a balance has to be found between a high static stiffness to sustain the vibration source’s mass, and low dynamic stiffness, as wideband as possible. Systems meeting these criteria are yet to be designed. We thus investigated solutions inspired by metamaterials to control efficiently low-frequency wave propagation. Structures exhibiting a negative Poisson ratio, also called auxetic structures, are known to influence the propagation of waves through beaming or damping. However, their stiffness can be quite peculiar as well, as they can present regions of zero stiffness on the stress-strain curve for compression. In addition, auxetic materials can be easily adapted in many ways, inducing great tuning potential. Using finite element software COMSOL Multiphysics, a resonant design has been tested through statics and dynamics simulations. These results are compared to experimental results. In particular, the bandgaps featured by these structures are analyzed as a function of design parameters. Great stiffness properties can be observed, including low-frequency dynamic stiffness loss and broadband transmission loss. Such features are very promising for practical isolation purpose, and we hope to adopt this kind of metamaterial into an effective industrial damper.Keywords: auxetics, metamaterials, structural dynamics, vibration isolation
Procedia PDF Downloads 1532533 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping
Authors: Chao Yi, Cunyue Lu, Lingwei Quan
Abstract:
Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.Keywords: piezoelectric stack, linear motor, rigid clamping, elliptical trajectory
Procedia PDF Downloads 1572532 Determining the Information Technologies Usage and Learning Preferences of Construction
Authors: Naci Büyükkaracığan, Yıldırım Akyol
Abstract:
Information technology is called the technology which provides transmission of information elsewhere regardless of time, location, distance. Today, information technology is providing the occurrence of ground breaking changes in all areas of our daily lives. Information can be reached quickly to millions of people with help of information technology. In this Study, effects of information technology on students for educations and their learning preferences were demonstrated with using data obtained from questionnaires administered to students of 2015-2016 academic year at Selcuk University Kadınhanı Faik İçil Vocational School Construction Department. The data was obtained by questionnaire consisting of 30 questions that was prepared by the researchers. SPSS 21.00 package programme was used for statistical analysis of data. Chi-square tests, Mann-Whitney U test, Kruskal-Wallis and Kolmogorov-Smirnov tests were used in the data analysis for Descriptiving statistics. In a study conducted with the participation of 61 students, 93.4% of students' reputation of their own information communication device (computer, smart phone, etc.) That have been shown to be at the same rate and to the internet. These are just a computer of itself, then 45.90% of the students. The main reasons for the students' use of the Internet, social networking sites are 85.24%, 13.11% following the news of the site, as seen. All student assignments in information technology, have stated that they use in the preparation of the project. When students acquire scientific knowledge in the profession regarding their preferred sources evaluated were seen exactly when their preferred internet. Male students showed that daily use of information technology while compared to female students was statistically significantly less. Construction Package program where students are eager to learn about the reputation of 72.13% and 91.80% identified in the well which they agreed that an indispensable element in the professional advancement of information technology.Keywords: information technologies, computer, construction, internet, learning systems
Procedia PDF Downloads 3012531 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities
Authors: Claire Biasco, Thaier Hayajneh
Abstract:
A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.Keywords: blockchain, IoT, smart city, DAO
Procedia PDF Downloads 1272530 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems
Authors: Raouf Alizadeh, Kadijeh Hemmati
Abstract:
The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior
Procedia PDF Downloads 3242529 Biosynthesis, Characterization and Interplay of Bacteriocin-nanoparticles to Combat Infectious Drug Resistant Pathogens
Authors: Asma Ansari, Afsheen Aman, Shah Ali Ul Qader
Abstract:
In the past few years, numerous concerns have been raised against increased bacterial resistance towards effective drugs and become a debated issue all over the world. With the emergence of drug resistant pathogens, the interaction of natural antimicrobial compounds and antibacterial nanoparticles has emerged as a potential candidate for combating infectious diseases. Microbial diversity in the biome provides an opportunity to screen new species which are capable of producing large number of antimicrobial compounds. Among these antimicrobial compounds, bacteriocins are highly specific and efficient antagonists. A combination of bacteriocin along with nanoparticles could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the current study, silver nanoparticles were synthesized through biological reduction using various isolated bacterial, fungal and yeast strains. Spectroscopy and scanning electron microscopy (SEM) was performed for the confirmation of nanoparticles. Bacteriocin was characterized and purified to homogeneity through gel permeation chromatography. The estimated molecular weight of bacteriocin was 10 kDa. Amino acid analysis and N-terminal sequencing revealed the novelty of the protein. Then antibacterial potential of silver nanoparticles and broad inhibitory spectrum bacteriocin was determined through agar well diffusion assay. These synthesized bacteriocin-Nanoparticles exhibit a good potential for clinical applications as compared to bacteriocin alone. This combination of bacteriocin with nanoparticles will be used as a new sort of biocide in the field of nano-proteomics. The advancement of nanoparticles-mediated drug delivery system will open a new age for rapid eradication of pathogens from biological systems.Keywords: BAC-IB17, multidrug resistance, purification, silver nanoparticles
Procedia PDF Downloads 4972528 The Effects of Traditional Thai Massage Technique Delivered by Parents on Stereotypical Behaviors in Children with Autism: A Pilot Study
Authors: Chanada Aonsri, Wichai Eungpinichpong
Abstract:
Stereotypical behavior is one of the learning and social skills development problems that affect children with autism. Previous studies found that traditional Thai massage (TTM) could reduce stereotypical behaviors in autistic children. However, the effects of TTM delivered by the parents of autistic children have not been explored. This pilot study investigated the effects of TTM by parents on stereotypical behaviors in children with autism. A one-group pretest-posttest design was applied for 15 children, aged 4-16 years, with their parents' permissions. They participated in the study at the Special Education program of the Special Education Center of Khon Kaen University, Thailand. After being trained in a specialized TTM for children, the parents delivered 50-minute TTM to children once a day, twice a week for eight weeks. The severity of autism and autistic behaviors were measured using the Childhood Autism Rating Scale (CARS), and the Autism Treatment Evaluation Checklist (ATEC), respectively. The functions of autonomic nervous systems were measured using Heart Rate Variability (HRV) to indicated physical and mental disorders such as stress. The data at baseline and the 8th week were analyzed using either an independent t-test or Wilcoxon signed-rank test. The study found that 16 sessions of TTM significantly improved measured data for autism in all children including the CARS (p<0.001), ATEC, speech/language/communication (p<0.001), sociability (p<0.001), sensory/cognitive awareness (p<0.001), health/physical/behavior (p < 0.001), and HRV (p<0.001). The results indicated that TTM performed by parents could be useful as an adjunct therapy for autistic children as it can reduce stereotypical behaviors and stress.Keywords: traditional Thai massage, stereotypical behaviors, Autistic children, parent
Procedia PDF Downloads 722527 Measuring the Influence of Functional Proximity on Environmental Urban Performance via IMM: Four Study Cases in Milan
Authors: Massimo Tadi, M. Hadi Mohammad Zadeh, Ozge Ogut
Abstract:
Although how cities’ forms are structured is studied, more efforts are needed on systemic comprehensions and evaluations of the urban morphology through quantitative metrics that are able to describe the performance of a city in relation to its formal properties. More research is required in this direction in order to better describe the urban form characteristics and their impact on the environmental performance of cities and to increase their sustainability stewardship. With the aim of developing a better understanding of the built environment’s systemic structure, the intention of this paper is to present a holistic methodology for studying the behavior of the built environment and investigate the methods for measuring the effect of urban structure to the environmental performance. This goal will be pursued through an inquiry into the morphological components of the urban systems and the complex relationships between them. Particularly, this paper focuses on proximity, referring to the proximity of different land-uses, is a concept with which Integrated Modification Methodology (IMM) explains how land-use allocation might affect the choice of mobility in neighborhoods, and especially, encourage or discourage non-motived mobility. This paper uses proximity to demonstrate that the structure attributes can quantifiably relate to the performing behavior in the city. The target is to devise a mathematical pattern from the structural elements and correlate it directly with urban performance indicators concerned with environmental sustainability. The paper presents some results of this rigorous investigation of urban proximity and its correlation with performance indicators in four different areas in the city of Milan, each of them characterized by different morphological features.Keywords: built environment, ecology, sustainable indicators, sustainability, urban morphology
Procedia PDF Downloads 1722526 Synthesis and Characterization of Pure and Doped Li7La3Zr2O12 Li-Ion Conducting Solid Electrolyte for Lithium Batteries
Authors: Shari Ann S. Botin, Ruziel Larmae T. Gimpaya, Rembrant Rockwell Gamboa, Rinlee Butch M. Cervera
Abstract:
In recent years, demand for the use of solid electrolytes as alternatives to liquid electrolytes has increased due to recurring battery safety and stability issues, in addition to an increase in energy density requirement which can be made possible by using solid electrolytes. Among the solid electrolyte systems, Li7La3Zr2O12 (LLZ) is one of the most promising as it exhibits good chemical stability against Li metal and has a relatively high ionic conductivity. In this study, pure and doped LLZ were synthesized via conventional solid state reaction. The precursor chemicals (such as LiOH, La2O3, Ga2O3 and ZrO2) were ground and then calcined at 900 °C, pressed into pellets and finally sintered at 1000 °C to 1200 °C. The microstructure and ionic conductivity of the obtained samples have been investigated. Results show that for pure LLZ, sintering at lower temperature (1000 °C) produced tetragonal LLZ while sintering at higher temperatures (≥ 1150 °C) produced cubic LLZ based from the XRD results. However, doping with Ga produces an easier formation of LLZ with cubic structure at lower sintering duration. On the other hand, the lithium conductivity of the samples was investigated using electrochemical impedance spectroscopy at room temperature. Among the obtained samples, Ga-doped LLZ sintered at 1150 °C obtained the highest ionic conductivity reaching to about 1x10⁻⁴ S/cm at room temperature. In addition, fabrication and initial investigation of an all-solid state Lithium Battery using the synthesized LLZ sample with the use of commercial cathode materials have been investigated.Keywords: doped LLZ, lithium-ion battery, pure LLZ, solid electrolytes
Procedia PDF Downloads 2662525 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 1762524 Synergistic Effect of Doxorubicin-Loaded Silver Nanoparticles – Polymeric Conjugates on Breast Cancer Cells
Authors: Nancy M. El-Baz, Laila Ziko, Rania Siam, Wael Mamdouh
Abstract:
Cancer is one of the most devastating diseases, and has over than 10 million new cases annually worldwide. Despite the effectiveness of chemotherapeutic agents, their systemic toxicity and non-selective anticancer actions represent the main obstacles facing cancer curability. Due to the effective enhanced permeability and retention (EPR) effect of nanomaterials, nanoparticles (NPs) have been used as drug nanocarriers providing targeted cancer drug delivery systems. In addition, several inorganic nanoparticles such as silver (AgNPs) nanoparticles demonstrated a potent anticancer activity against different cancers. The present study aimed at formulating core-shell inorganic NPs-based combinatorial therapy based on combining the anticancer activity of AgNPs along with doxorubicin (DOX) and evaluating their cytotoxicity on MCF-7 breast cancer cells. These inorganic NPs-based combinatorial therapies were designed to (i) Target and kill cancer cells with high selectivity, (ii) Have an improved efficacy/toxicity balance, and (iii) Have an enhanced therapeutic index when compared to the original non-modified DOX with much lower dosage The in-vitro cytotoxicity studies demonstrated that the NPs-based combinatorial therapy achieved the same efficacy of non-modified DOX on breast cancer cell line, but with 96% reduced dose. Such reduction in DOX dose revealed that the combination between DOX and NPs possess a synergic anticancer activity against breast cancer. We believe that this is the first report on a synergic anticancer effect at very low dose of DOX against MCF-7 cells. Future studies on NPs-based combinatorial therapy may aid in formulating novel and significantly more effective cancer therapeutics.Keywords: nanoparticles-based combinatorial therapy, silver nanoparticles, doxorubicin, breast cancer
Procedia PDF Downloads 4432523 Simulation, Optimization, and Analysis Approach of Microgrid Systems
Authors: Saqib Ali
Abstract:
Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management
Procedia PDF Downloads 1012522 The Right of Pregnant Girls to Remain in School: Conflicting Human Rights
Authors: Ronelle Prinsloo
Abstract:
Teenage pregnancy in South African schools is a growing concern. In South Africa, many young female learners end their schooling permanently, not because they have completed their studies, but due to pregnancy. The admission policy of public schools is determined by the governing body of such a school, and this policy can determine that a pregnant leaner may not attend school during pregnancy and for a certain period after the birth of the child. This can be seen as an infringement of the rights of the teenage mother to be allowed to attend school. It can also be argued that this conflicts with the best interest of the child as well as the rights of the governing body to determine policy in accordance with the mandate as given to them by the parents and community served by the school. A pregnant learner can argue that the admission policy of a school is discriminatory if it does not allow the pregnant learner to continue her schooling. She may also argue that she is being unfairly discriminated against based on gender because in many instances, the baby’s father is still allowed to go to school. The Constitution (Constitution of the Republic of South Africa, Act 108 of 1996), provides in section 9, that everyone is equal before the law; it goes on to provide that equality includes the full and equal enjoyment of all rights and freedoms and provides those grounds on which one may not be discriminated against including, gender, sex, and pregnancy. Schools should be encouraged to re-enroll students if they have a support system available to assist with the necessary childcare when they attend school. To dramatically increase the number of young people enrolled in alternative pathways such as Further Education and Training or Adult Basic Education and Training must be provided. In addition, alternative systems must offer viable exit opportunities for participants by cohering with further education and economic opportunities.Keywords: admission policy, Constitution of South Africa, human rights, teenage pregnancy
Procedia PDF Downloads 762521 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials
Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic
Abstract:
In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method
Procedia PDF Downloads 832520 Array Type Miniaturized Ultrasonic Sensors for Detecting Sinkhole in the City
Authors: Won Young Choi, Kwan Kyu Park
Abstract:
Recently, the road depression happening in the urban area is different from the cause of the sink hole and the generation mechanism occurring in the limestone area. The main cause of sinkholes occurring in the city center is the loss of soil due to the damage of old underground buried materials and groundwater discharge due to large underground excavation works. The method of detecting the sinkhole in the urban area is mostly using the Ground Penetration Radar (GPR). However, it is challenging to implement compact system and detecting watery state since it is based on electromagnetic waves. Although many ultrasonic underground detection studies have been conducted, near-ground detection (several tens of cm to several meters) has been developed for bulk systems using geophones as a receiver. The goal of this work is to fabricate a miniaturized sinkhole detecting system based on low-cost ultrasonic transducers of 40 kHz resonant frequency with high transmission pressure and receiving sensitivity. Motived by biomedical ultrasonic imaging methods, we detect air layers below the ground such as asphalt through the pulse-echo method. To improve image quality using multi-channel, linear array system is implemented, and image is acquired by classical synthetic aperture imaging method. We present the successful feasibility test of multi-channel sinkhole detector based on ultrasonic transducer. In this work, we presented and analyzed image results which are imaged by single channel pulse-echo imaging, synthetic aperture imaging.Keywords: road depression, sinkhole, synthetic aperture imaging, ultrasonic transducer
Procedia PDF Downloads 1492519 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi
Abstract:
Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.Keywords: RFID, asset tracking system, MongoDB, NoSQL
Procedia PDF Downloads 308