Search results for: train accident
337 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies
Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading
Abstract:
In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors
Procedia PDF Downloads 222336 Internal Stresses and Structural Evolutions in Zr Alloys during Oxidation at High Temperature and Subsequent Cooling
Authors: Raphaelle Guillou, Matthieu Le Saux, Jean-Christophe Brachet, Thomas Guilbert, Elodie Rouesne, Denis Menut, Caroline Toffolon-Masclet, Dominique Thiaudiere
Abstract:
In some hypothetical accidental situations, such as during a Loss Of Coolant Accident (LOCA) in pressurized water reactors, fuel cladding tubes made of zirconium alloys can be exposed for a few minutes to steam at High Temperature (HT up to 1200°C) before being cooled and then quenched in water. Under LOCA-like conditions, the cladding undergoes a number of metallurgical changes (phase transformations, oxygen diffusion and growth of an oxide layer...) and is consequently submitted to internal stresses whose state evolves during the transient. These stresses can have an effect on the oxide structure and the oxidation kinetics of the material. They evolve during cooling, owing to differences between the thermal expansion coefficients of the various phases and phase transformations of the metal and the oxide. These stresses may result in the failure of the cladding during quenching, once the material is embrittled by oxidation. In order to progress in the evaluation of these internal stresses, X-ray diffraction experiments were performed in-situ under synchrotron radiation during HT oxidation and subsequent cooling on Zircaloy-4 sheet samples. First, structural evolutions, such as phase transformations, have been studied as a function of temperature for both the oxide layer and the metallic substrate. Then, internal stresses generated within the material oxidized at temperatures between 700 and 900°C have been evaluated thanks to the 2θ diffraction peak position shift measured during the in-situ experiments. Electron backscatter diffraction (EBSD) analysis was performed on the samples after cooling in order to characterize their crystallographic texture. Furthermore, macroscopic strains induced by oxidation in the conditions investigated during the in-situ X-ray diffraction experiments were measured in-situ in a dilatometer.Keywords: APRP, stains measurements, synchrotron diffraction, zirconium allows
Procedia PDF Downloads 309335 Self-Determination among Individuals with Intellectual Disability: An Experiment
Authors: Wasim Ahmad, Bir Singh Chavan, Nazli Ahmad
Abstract:
Objectives: The present investigation is an attempt to find out the efficacy of training the special educators on promoting self-determination among individuals with intellectual disability. Methods: The study equipped the special educators with necessary skills and knowledge to train individuals with the intellectual disability for practicing self-determination. Subjects: Special educators (N=25) were selected for training on self-determination among individuals with intellectual disability. After receiving the training, (N=50) individuals with an intellectual disability were selected and intervened by the trained special educators. Tool: Self-Determination Scale for Adults with Mild Mental Retardation (SDSAMR) developed by Keshwal and Thressiakutty (2010) has been used. It’s a reliable and valid tool used by many researchers. It has 36 items distributed in five domains namely: personal management, community participation, recreation and leisure time, choice making and problem solving. Analysis: The collected data was analyzed using the statistical techniques such as t-test, ANCOVA, and Posthoc Tuckey test. Results: The findings of the study reveal that there is a significant difference at 1% level in the pre and post tests mean scores (t-15.56) of self-determination concepts among the special educators. This indicates that the training enhanced the performance of special educators on the concept of self-determination among individuals with intellectual disability. The study also reveals that the training received on transition planning by the special educators found to be effective because they were able to practice the concept by imparting and training the individuals with intellectual disability to if determined. The results show that there was a significant difference at 1% level in the pre and post tests mean scores (t-16.61) of self-determination among individuals with intellectual disability. Conclusion: To conclude it can be said that the training has a remarkable impact on the performance of the individuals with intellectual disability on self-determination.Keywords: experiment, individuals with intellectual disability, self-determination, special educators
Procedia PDF Downloads 334334 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia PDF Downloads 155333 Classifier for Liver Ultrasound Images
Authors: Soumya Sajjan
Abstract:
Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix
Procedia PDF Downloads 411332 Climate Change Impact on Slope Stability: A Study of Slope Drainage Design and Operation
Authors: Elena Mugarza, Stephanie Glendinning, Ross Stirling, Colin Davies
Abstract:
The effects of climate change and increased rainfall events on UK-based infrastructure are observable, with an increasing number being reported on in the national press. The fatal derailment at Stonehaven in 2020 prompted a wider review of Network Rail-owned earthworks assets. The event was indicated by the Rail Accident Investigation Branch (RAIB) to be caused by mis-installed drainage on the adjacent cutting. The slope failure on Snake Pass (public highway A57) was reportedly caused by significant water ingress following numerous storm events and resulted in the road’s closure for several months. This problem is only projected to continue with greater intensity and more prolonged rainfall events forecasted in the future. Subsequently, this project is designed to evaluate effective drainage trench design within infrastructure embankments, considering the capillary barrier phenomenon that may govern their deterioration and resultant failure. Theoretically, the differential between grain sizes of the embankment clays and gravels, customarily used in drainage trenches, would have a limiting effect on infiltration. As such, it is anticipated that the inclusion of an additional material with an intermediate grain size should improve the hydraulic conductivity across the drainage boundary. Multiple drainage designs will be studied using instrumentation within the drain and surrounding clays. Data from the real-world installation at the BIONICS embankment will be collected and compared with laboratory and Finite Element (FE) simulations. This research aims to reduce the risk of infrastructure slope failures by improving the resilience of earthwork drainage and lessening the consequential impact on transportation networks.Keywords: earthworks, slope drainage, transportation slopes, deterioration, capillary barriers, field study
Procedia PDF Downloads 51331 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 124330 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation
Authors: Michael C. Barbecho, Romeo B. Morcilla
Abstract:
This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.Keywords: electric vehicle, solar vehicles, front drive, solar, solar power
Procedia PDF Downloads 571329 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case
Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang
Abstract:
In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination
Procedia PDF Downloads 87328 Salient Beliefs regarding Alcohol Reduction and Cessation among Thai Teenagers
Authors: Panrapee Suttiwan, Rewadee Watakakosol Arunya Tuicomepee, Sakkaphat T. Ngamake
Abstract:
Alcohol consumption ranks among the top six of health-risk behaviors that lead to disability and death among Thai teenagers. Underage drinkers have higher health risks than their non-drinking peers do. This study, therefore, aimed to explore salient beliefs of Thai teenagers with alcohol reduction and cessation based on the Theory of Planned Behaviour theoretical framework. Participants were 225 high-school and vocational school students, most of whom (60.9%) consumed alcohol almost daily (5-6 times / week), and one-third of whom (33.8%) reported habitual moderate drink. The average age was 16.5 (SD = 0.9), and the average age of the first use of alcohol was 13.7 (SD = 2.2). Instrument was an open-ended questionnaire that elicited beliefs about having alcohol reduction / cessation in the past 12 months. Findings revealed salient benefit beliefs of alcohol reduction / cessation among the teens such as improved physical and mental health, accident and violence avoidance, less sexual risks, money and time saving, better academic performance, and improved relationships. In contrast, the teens identified several disadvantage beliefs such as deteriorating health, social awkwardness, lack of little fun, excitement, and experience, physical uneasiness, stress, and lack of self-confidence. Salient normative groups for alcohol reduction / cessation included parents, elder relatives, siblings, close friends, teachers, boy / girlfriends, and seniors / juniors at school. Situations influencing alcohol reduction / cessation included quarrels with boy / girlfriends, family conflicts, peer pressure, partying and socializing, festive holidays and anniversary celebration, and visiting entertainment places, etc. This study provides empirical evidence that help to identify normative attitudes towards alcohol reduction / cessation and may thus be an important knowledge for public health campaigns seeking to reduce alcohol consumption in this population.Keywords: alcohol consumption reduction, cessation, salient belief, Thai teenagers
Procedia PDF Downloads 333327 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 93326 Under the 'Umbrella' Project: A Volunteer-Mentoring Approach for Socially Disadvantaged University Students
Authors: Evridiki Zachopoulou, Vasilis Grammatikopoulos, Michail Vitoulis, Athanasios Gregoriadis
Abstract:
In the last ten years, the recent economic crisis in Greece has decreased the financial ability and strength of several families when it comes to supporting their children’s studies. As a result, the number of students who are significantly delaying or even dropping out of their university studies is constantly increasing. The students who are at greater risk for academic failure are those who are facing various problems and social disadvantages, like health problems, special needs, family poverty or unemployment, single-parent students, immigrant students, etc. The ‘Umbrella’ project is a volunteer-based initiative to tackle this problem at International Hellenic University. The main purpose of the project is to provide support to disadvantaged students at a socio-emotional, academic, and practical level in order to help them complete their undergraduate studies. More specifically, the ‘Umbrella’ project has the following goals: (a) to develop a consulting-supporting network based on volunteering senior students, called ‘i-mentors’. (b) to train the volunteering i-mentors and create a systematic and consistent support procedure for students at-risk, (c), to develop a service that, parallel to the i-mentor network will be ensuring opportunities for at-risk students to find a job, (d) to support students who are coping with accessibility difficulties, (e) to secure the sustainability of the ‘Umbrella’ project after the completion of the funding of the project. The innovation of the Umbrella project is in its holistic-person-centered approach that will be providing individualized support -via the i-mentors network- to any disadvantaged student that will come ‘under the Umbrella.’Keywords: peer mentoring, student support, socially disadvantaged students, volunteerism in higher education
Procedia PDF Downloads 234325 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations
Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam
Abstract:
Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD
Procedia PDF Downloads 418324 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 67323 Assessing Knowledge and Compliance of Motor Riders on Road Safety Regulations in Hohoe Municipality of Ghana: A Cross-Sectional Quantitative Study
Authors: Matthew Venunye Fianu, Jerry Fiave, Ebenezer Kye-Mensah, Dacosta Aboagye, Felix Osei-Sarpong
Abstract:
Introduction: Road traffic accidents involving motorbikes are a priority public health concern in Ghana. While there are local initiatives to address this public health challenge, little is known about motor riders’ knowledge and compliance with road safety regulations (RSR) and their association with RTAs. The aim of this study was, therefore, to assess motorbike riders’ knowledge and compliance with RSRs. Methodology: Motorbike riders in Hohoe Municipality were randomly sampled in a cross-sectional study in June 2022. Data were collected from 237 riders using a questionnaire designed in Kobocollect and administered by ten research assistants. A score of 70% or less is considered low for knowledge and compliance. The data were exported into Excel and imported into STATA 17 for analysis. A chi-square test was performed to generate descriptive and inferential statistics to establish the association between independent and dependent variables. Results: All 237 respondents were male, and each of them completed the questionnaire representing a 100% response rate. Participants who had knowledge about speed limit at different segments of the road were 59(24.9%), the use of helmet were 124 (52.3%), and alcohol use were 152 (64.1%). Participants who complied with regulations on speed limits, helmet use, and alcohol use were 108 (45.6%), 179(75.5%), and 168(70.8%), respectively. Riders who had at least junior high school education were 2.43 times more likely to adhere to RSR [cOR =2.43(95%CI= 1.15-6.33) p= 0.023] than those who had less education. Similarly, riders who had high knowledge about RSR were 2.07 times more likely to comply with RSR than those who had less knowledge [AOR= -2.07 (95% CI= 0.34-0.97), p=0.038]. Conclusion: Motor riders in the Hohoe Municipality had low knowledge as well as low compliance with road safety regulations. This could be a contributor to road traffic accidents. It is therefore recommended that road safety regulatory authorities and relevant stakeholders enhance the enforcement of RSR. There should also be country-specific efforts to increase awareness among all motor riders, especially those with less than junior high school education.Keywords: compliance, motor riders, road safety regulations, road traffic accident
Procedia PDF Downloads 89322 Reallocation of Bed Capacity in a Hospital Combining Discrete Event Simulation and Integer Linear Programming
Authors: Muhammed Ordu, Eren Demir, Chris Tofallis
Abstract:
The number of inpatient admissions in the UK has been significantly increasing over the past decade. These increases cause bed occupancy rates to exceed the target level (85%) set by the Department of Health in England. Therefore, hospital service managers are struggling to better manage key resource such as beds. On the other hand, this severe demand pressure might lead to confusion in wards. For example, patients can be admitted to the ward of another inpatient specialty due to lack of resources (i.e., bed). This study aims to develop a simulation-optimization model to reallocate the available number of beds in a mid-sized hospital in the UK. A hospital simulation model was developed to capture the stochastic behaviours of the hospital by taking into account the accident and emergency department, all outpatient and inpatient services, and the interactions between each other. A couple of outputs of the simulation model (e.g., average length of stay and revenue) were generated as inputs to be used in the optimization model. An integer linear programming was developed under a number of constraints (financial, demand, target level of bed occupancy rate and staffing level) with the aims of maximizing number of admitted patients. In addition, a sensitivity analysis was carried out by taking into account unexpected increases on inpatient demand over the next 12 months. As a result, the major findings of the approach proposed in this study optimally reallocate the available number of beds for each inpatient speciality and reveal that 74 beds are idle. In addition, the findings of the study indicate that the hospital wards will be able to cope with 14% demand increase at most in the projected year. In conclusion, this paper sheds a new light on how best to reallocate beds in order to cope with current and future demand for healthcare services.Keywords: bed occupancy rate, bed reallocation, discrete event simulation, inpatient admissions, integer linear programming, projected usage
Procedia PDF Downloads 144321 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor
Authors: Yash Jain
Abstract:
The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier
Procedia PDF Downloads 161320 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV
Authors: Maria Pavlova
Abstract:
In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.Keywords: camera, object recognition, OpenCV, Raspberry
Procedia PDF Downloads 218319 Fire Smoke Removal over Cu-Mn-Ce Oxide Catalyst with CO₂ Sorbent Addition: Co Oxidation and in-situ CO₂ Sorption
Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew
Abstract:
In a fire accident, fire smoke often poses a serious threat to human safety especially in the enclosed space such as submarine and space-crafts environment. Efficient removal of the hazardous gas products particularly a large amount of CO and CO₂ gases from these confined space is critical for the security of the staff and necessary for the post-fire environment recovery. In this work, Cu-Mn-Ce composite oxide catalysts coupled with CO₂ sorbents were prepared using wet impregnation method, solid-state impregnation method and wet/solid-state impregnation method. The as-prepared samples were tested dynamically and isothermally for CO oxidation and CO₂ sorption and further characterized by the X-ray diffraction (XRD), nitrogen adsorption and desorption, and field emission scanning electron microscopy (FE-SEM). The results showed that all the samples were able to catalyze CO into CO₂ and capture CO₂ in situ by chemisorption. Among all the samples, the sample synthesized by the wet/solid-state impregnation method showed the highest catalytic activity toward CO oxidation and the fine ability of CO₂ sorption. The sample prepared by the solid-state impregnation method showed the second CO oxidation performance, while the coupled sample using the wet impregnation method exhibited much poor CO oxidation activity. The various CO oxidation and CO₂ sorption properties of the samples might arise from the different dispersed states of the CO₂ sorbent in the CO catalyst, owing to the different preparation methods. XRD results confirmed the high-dispersed sorbent phase in the samples prepared by the wet and solid impregnation method, while that of the sample prepared by wet/solid-state impregnation method showed the larger bulk phase as indicated by the high-intensity diffraction peaks. Nitrogen adsorption and desorption results further revealed that the latter sample had a higher surface area and pore volume, which were beneficial for the CO oxidation over the catalyst. Hence, the Cu-Mn-Ce oxide catalyst coupled with CO₂ sorbent using wet/solid-state impregnation method could be a good choice for fire smoke removal in the enclosed space.Keywords: CO oxidation, CO₂ sorption, preparation methods, smoke removal
Procedia PDF Downloads 139318 Constructions of Teaching English as a Second Language Teacher Trainees’ Professional Identities
Authors: K. S. Kan
Abstract:
The main purpose of this paper is to deepen the current understanding of how a Teaching English as a Second Language (TESL) teacher trainee self is constructed. The present aim of Malaysian TESL teacher education is to train teacher trainees with established English Language Teaching methodologies of the four main language skills (listening, reading, writing and speaking) apart from building them up holistically. Therefore, it is crucial to learn more of the ways on how these teacher trainees construct their professional selves during their undergraduate years. The participants come from a class of 17 Semester 6 TESL students who had undergone a 3-month’s practicum practice during their fifth semester and going for their final 3 month’s practicum period from July 2018 onwards. Findings from a survey, interviews with the participants and lecturers, documentations such as the participants’ practicum record-books would be consolidated with the supervisory notes and comments. The findings suggest that these teacher trainees negotiate their identities and emotions that react with the socio-cultural factors. Periodical reflections on the teacher trainees’ practicum practices influence transformation.The findings will be further aligned to the courses that these teacher trainees have to take in order to equip them as future second language practitioners. It is hoped that the findings will be able to fill the gap from the teacher trainees’ perspectives on identity construction dealing. This study is much more significant now, in view of the new English Language Curriculum for Primary School (widely known as KSSR, its Malay acronym) which had been introduced and implemented in Malaysian primary schools recently. This research will benefit second language practitioners who is in the language education field, as well as, TESL undergraduates, on the knowledge of how teacher trainees respond to and negotiate their professional teaching identities as future second language educators.Keywords: construction of selves, professional identities, second language, TEST teacher trainees
Procedia PDF Downloads 228317 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects
Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh
Abstract:
The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.Keywords: deep learning, opinion mining, natural language processing, sentiment analysis
Procedia PDF Downloads 171316 Radiation Safety Factor of Education and Research Institution in Republic of Korea
Authors: Yeo Ryeong Jeon, Pyong Kon Cho, Eun Ok Han, Hyon Chul Jang, Yong Min Kim
Abstract:
This study surveyed on recognition related to radiation safety for radiation safety managers and workers those who have been worked in Republic of Korea education and research institution. At present, South Korea has no guideline and manual of radiation safety for education and research institution. Therefore, we tried to find an educational basis for development of radiation safety guideline and manual. To check the level of knowledge, attitude, and behavior about radiation safety, we used the questionnaire that consisted of 29 questions against knowledge, attitude and behavior, 4 questions against self-efficacy and expectation based on four factors (radiation source, human, organizational and physical environment) of the Haddon's matrix. Responses were collected between May 4 and June 30, 2015. We analyzed questionnaire by means of IBM SPSS/WIN 15 which well known as statistical package for social science. The data were compared with mean, standard deviation, Pearson's correlation, ANOVA (analysis of variance) and regression analysis. 180 copies of the questionnaire were returned from 60 workplaces. The overall mean results for behavior level was relatively lower than knowledge and attitude level. In particular, organizational environment factor on the radiation safety management indicated the lowest behavior level. Most of the factors were correlated in Pearson’s correlation analysis, especially between knowledge of human factors and behavior of human factors (Pearson’s correlation coefficient 0.809, P<.01). When analysis performed in line with the main radiation source type, institutions where have been used only opened RI (radioisotope) behavior level was the lowest among all subjects. Finally, knowledge of radiation source factor (β=0.556, P<.001) and human factor(β=0.376, P<.001) had the greatest impact in terms of behavior practice. Radiation safety managers and workers think positively about radiation safety management, but are poorly informed organizational environment of their institution. Thus, each institution need to efforts to settlement of radiation safety culture. Also, pedagogical interventions for improving knowledge on radiation safety needs in terms of safety accident prevention.Keywords: radiation safety management, factor analysis, SPSS, republic of Korea
Procedia PDF Downloads 364315 The Tramway in French Cities: Complication of Public Spaces and Complexity of the Design Process
Authors: Elisa Maître
Abstract:
The redeployment of tram networks in French cities has considerably modified public spaces and the way citizens use them. Above and beyond the image that trams have of contributing to the sustainable urban development, the question of safety for users in these spaces has not been studied much. This study is based on an analysis of use of public spaces laid out for trams, from the standpoint of legibility and safety concerns. The study also examines to what extent the complexity of the design process, with many interactions between numerous and varied players in this process has a role in the genesis of these problems. This work is mainly based on the analysis of links between the uses of these re-designed public spaces (through observations, interviews of users and accident studies) and the analysis of the design conditions and processes of the projects studied (mainly based on interviews with the actors of these projects). Practical analyses were based three points of view: that of the planner, that of the user (based on observations and interviews) and that of the road safety expert. The cities of Montpellier, Marseille and Nice are the three fields of study on which the demonstration of this thesis is based. On part, the results of this study allow showing that the insertion of tram poses some problems complication of public areas of French cities. These complications related to the restructuring of public spaces for the tram, create difficulties of use and safety concerns. On the other hand, interviews depth analyses, fully transcribed, have led us to develop particular dysfunction scenarios in the design process. These elements lead to question the way the legibility and safety of these new forms of public spaces are taken into account. Then, an in-depth analysis of the design processes of public spaces with trams systems would also be a way of better understanding the choices made, the compromises accepted, and the conflicts and constraints at work, weighing on the layout of these spaces. The results presented concerning the impact that spaces laid out for trams have on the difficulty of use, suggest different possibilities for improving the way in which safety for all users is taken into account in designing public spaces.Keywords: public spaces, road layout, users, design process of urban projects
Procedia PDF Downloads 229314 Effectiveness of a Communication Training on Workplace Bullying Using Mobile Phone Application for Nurses
Authors: Jiyeon Kang, Yeon Jin Jeong, Hoon Heo
Abstract:
Purpose: Bullying in nursing workplace has been a serious problem that increases the turnover of nurses. Few studies have examined the effects of communication training on workplace bullying for nurses, and all used a single-group design and a small sample size. Thus, more rigorous research has been needed to evaluate the effects properly. This research was aimed to identify the effects of the mobile type communication training of responses on bullying behaviors among nurses. Methods: A randomized controlled trial was performed. Subjects were 62 critical care nurses working in university hospitals in Busan, South Korea. We developed a mobile phone application to train nurses to deal with bullying situation. This application includes 6 common bullying situations and appropriate empathetic communication (non-violent communication) samples in the form of webtoons. The experimental group used this application for 4 weeks, and we measured interpersonal relationship, workplace bullying, symptom experience, and intention to leave before, post, and 8 weeks after the intervention from both experimental and control groups. The effect of the intervention was analyzed using repeated measures ANOVA. Results: The mobile type communication training developed in this study was effective for decreasing nurses’ intention to leave workplace (F = 5.11, p = .027). However, it had no effect on interpersonal relationship (F = 2.54, p = .116), workplace bullying (F = 2.99, p = .089) or symptom experience (F = 2.81, p = .099). The beneficial effects on intention to leave lasted at least up to 4 weeks after the training. Conclusion: The mobile type communication training can be utilized as an effective personal coping strategy for workplace bullying among nurses. Further studies on the long-term effects of the communication training are necessary.Keywords: bullying, communication, mobile applications, nurses, training, workplace
Procedia PDF Downloads 330313 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7
Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit
Abstract:
In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety
Procedia PDF Downloads 68312 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach
Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das
Abstract:
Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.Keywords: air conditioned coaches, fire propagation, flame contour, soot flow, train fire
Procedia PDF Downloads 284311 Contactless Electromagnetic Detection of Stress Fluctuations in Steel Elements
Authors: M. A. García, J. Vinolas, A. Hernando
Abstract:
Steel is nowadays one of the most important structural materials because of its outstanding mechanical properties. Therefore, in order to look for a sustainable economic model and to optimize the use of extensive resources, new methods to monitor and prevent failure of steel-based facilities are required. The classical mechanical tests, as for instance building tasting, are invasive and destructive. Moreover, for facilities where the steel element is embedded, (as reinforced concrete) these techniques are directly non applicable. Hence, non-invasive monitoring techniques to prevent failure, without altering the structural properties of the elements are required. Among them, electromagnetic methods are particularly suitable for non-invasive inspection of the mechanical state of steel-based elements. The magnetoelastic coupling effects induce a modification of the electromagnetic properties of an element upon applied stress. Since most steels are ferromagnetic because of their large Fe content, it is possible to inspect their structure and state in a non-invasive way. We present here a distinct electromagnetic method for contactless evaluation of internal stress in steel-based elements. In particular, this method relies on measuring the magnetic induction between two coils with the steel specimen in between them. We found that the alteration of electromagnetic properties of the steel specimen induced by applied stress-induced changes in the induction allowed us to detect stress well below half of the elastic limit of the material. Hence, it represents an outstanding non-invasive method to prevent failure in steel-based facilities. We here describe the theoretical model, present experimental results to validate it and finally we show a practical application for detection of stress and inhomogeneities in train railways.Keywords: magnetoelastic, magnetic induction, mechanical stress, steel
Procedia PDF Downloads 50310 Study of Mini Steel Re-Rolling and Pickling Mills for the Reduction of Accidents and Health Hazards
Authors: S. P. Rana
Abstract:
Objectives: For the manufacture of a very thin strip or a strip with a high-quality finish, the stainless steel sheet that is called billet is re-rolled in re-rolling mill to make stainless steel sheet of 18 gauges. The rolls of re-rolling mill exert tremendous pressure over the sheet and there is likely chance of breaking of stainless steel strip from the sheet. The objective of the study was to minimise the number of accidents in steel re-rolling mills due to ejection of stainless steel strip and to minimize the pollution caused by the pickling process used in these units. Methods: Looking into the high rate of frequency and severity of accidents as well as pollution hazard in re-rolling and pickling mills, it becomes essential to make necessary arrangements for prevention of accidents in such type of industry. The author carried out survey/inspections of a large number of re-rolling and pickling mills and allied units. During the course of inspection, the working of these steel re-rolling and pickling mills was closely studied and monitored. A number of accidents involving re-rolling mills were investigated and subsequently remedial measures to prevent the occurrence of such accidents were suggested. Assessment of occupational safety and health system of these units was carried out and compliance level of the statutory requirements was checked. The workers were medically examined and monitored to ascertain their health conditions. Results: Proper use of safety gadgets by workers, machine guarding and regular training brought down the risk to an acceptable level and discharged effluent pollution was brought down to permissible limits. The fatal accidents have been reduced by 83%. Conclusions: Effective enforcement and implementation of the directions/suggestions given to the managements of such units brought down the no. of accidents to a rational level. The number of fatal accidents has reduced by 83% during the study period. The effective implementation of pollution control device curtailed the pollution level to an acceptable level.Keywords: re-rolling mill, hazard, accident, health hazards
Procedia PDF Downloads 442309 Analysis of the Role of Population Ageing on Crosstown Roads' Traffic Accidents Using Latent Class Clustering
Authors: N. Casado-Sanz, B. Guirao
Abstract:
The population aged 65 and over is projected to double in the coming decades. Due to this increase, driver population is expected to grow and in the near future, all countries will be faced with population aging of varying intensity and in unique time frames. This is the greatest challenge facing industrialized nations and due to this fact, the study of the relationships of dependency between population aging and road safety is becoming increasingly relevant. Although the deterioration of driving skills in the elderly has been analyzed in depth, to our knowledge few research studies have focused on the road infrastructure and the mobility of this particular group of users. In Spain, crosstown roads have one of the highest fatality rates. These rural routes have a higher percentage of elderly people who are more dependent on driving due to the absence or limitations of urban public transportation. Analysing road safety in these routes is very complex because of the variety of the features, the dispersion of the data and the complete lack of related literature. The objective of this paper is to identify key factors that cause traffic accidents. The individuals under study were the accidents with killed or seriously injured in Spanish crosstown roads during the period 2006-2015. Latent cluster analysis was applied as a preliminary tool for segmentation of accidents, considering population aging as the main input among other socioeconomic indicators. Subsequently, a linear regression analysis was carried out to estimate the degree of dependence between the accident rate and the variables that define each group. The results show that segmenting the data is very interesting and provides further information. Additionally, the results revealed the clear influence of the aging variable in the clusters obtained. Other variables related to infrastructure and mobility levels, such as the crosstown roads layout and the traffic intensity aimed to be one of the key factors in the causality of road accidents.Keywords: cluster analysis, population ageing, rural roads, road safety
Procedia PDF Downloads 110308 'I Broke the Line Back to the Ancient Ones': Rethinking Intersectional Theory through Wounded Histories in Once Were Warriors (1994) and Whale Rider (2002).
Authors: Kerry Mackereth
Abstract:
Kimberle Crenshaw’s theory of intersectionality has become immensely influential in the fields of women’s and gender studies. However, intersectionality’s widespread use among feminist scholars and activists has been accompanied by critiques of its reliance upon subject categorization. These critiques are of particular import when connected to Wendy Brown’s characterization of identity politics as static 'wounded attachments'. Together, these critiques show how the gridlock model proposed by intersectionality’s primary metaphor, the traffic accident at the intersection, is useful for identifying discrimination but not for remembering historical injustices or imagining feminist and anti-racist resistance. Through the lens of New Zealand Maori film, focusing upon Once Were Warriors (1994) and Whale Rider (2002), this article examines how wounded histories need not be passively reproduced by contemporaneously oppressed groups. Instead, the metaphor of the traffic intersection should be complemented by the metaphor of the wound. Against Brown’s characterization of wounded attachments as negative, static identities, Gloria Anzaldua’s account of the borderland between the United States and Mexico as “una herida abierta”, an open wound, offers an alternative reading of the wound. Through Anzaldua’s and Hortense Spillers’ political thought, the wound is reconceptualized as not only a site of suffering but also as a regenerative space. The coexistence of deterioration and regeneration at the site of the wound underpins the narrative arc of both Once Were Warriors and Whale Rider. In both films, the respective child protagonists attempt to reconcile the pain of wounded histories with the imagination of cultural regeneration. The metaphor of the wound thus serves as an alternative theoretical resource for mapping experiences of oppression, one that enriches feminist theory by balancing the remembrance of historical grievance with the forging of hopeful political projects.Keywords: gender theory, historical grievance, intersectionality, New Zealand film, postcolonialism
Procedia PDF Downloads 251