Search results for: tectonic structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4314

Search results for: tectonic structures

3654 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran

Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian

Abstract:

Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.

Keywords: NATM, surface displacement history, numerical back-analysis, geotechnical parameters

Procedia PDF Downloads 198
3653 Seismological Studies in Some Areas in Egypt

Authors: Gamal Seliem, Hassan Seliem

Abstract:

Aswan area is one of the important areas in Egypt and because it encompasses the vital engineering structure of the High dam, so it has been selected for the present study. The study of the crustal deformation and gravity associated with earthquake activity in the High Dam area of great importance for the safety of the High Dam and its economic resources. This paper deals with using micro-gravity, precise leveling and GPS data for geophysical and geodetically studies. For carrying out the detailed gravity survey in the area, were established for studying the subsurface structures. To study the recent vertical movements, a profile of 10 km length joins the High Dam and Aswan old dam were established along the road connecting the two dams. This profile consists of 35 GPS/leveling stations extending along the two sides of the road and on the High Dam body. Precise leveling was carried out with GPS and repeated micro-gravity survey in the same time. GPS network consisting of nine stations was established for studying the recent crustal movements. Many campaigns from December 2001 to December 2014 were performed for collecting the gravity, leveling and GPS data. The main aim of this work is to study the structural features and the behavior of the area, as depicted from repeated micro-gravity, precise leveling and GPS measurements. The present work focuses on the analysis of the gravity, leveling and GPS data. The gravity results of the present study investigate and analyze the subsurface geologic structures and reveal to there be minor structures; features and anomalies are taking W-E and N-S directions. The geodetic results indicated lower rates of the vertical and horizontal displacements and strain values. This may be related to the stability of the area.

Keywords: repeated micro-gravity changes, precise leveling, GPS data, Aswan High Dam

Procedia PDF Downloads 451
3652 External Strengthening of RC Continuous Beams Using FRP Plates: Finite Element Model

Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour

Abstract:

Fiber reinforced polymer (FRP) installation is a very effective way to repair and strengthen structures that have become structurally weak over their life span. This technique attracted the concerning of researchers during the last two decades. This paper presents a simple uniaxial nonlinear finite element model (UNFEM) able to accurately estimate the load-carrying capacity, different failure modes and the interfacial stresses of reinforced concrete (RC) continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. Results of the proposed finite element (FE) model are verified by comparing them with experimental measurements available in the literature. The agreement between numerical and experimental results is very good. Considering fracture energy of adhesive is necessary to get a realistic load carrying capacity of continuous RC beams strengthened with FRP. This simple UNFEM is able to help design engineers to model their strengthened structures and solve their problems.

Keywords: continuous beams, debonding, finite element, fibre reinforced polymer

Procedia PDF Downloads 484
3651 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 372
3650 Macroscopic Support Structure Design for the Tool-Free Support Removal of Laser Powder Bed Fusion-Manufactured Parts Made of AlSi10Mg

Authors: Tobias Schmithuesen, Johannes Henrich Schleifenbaum

Abstract:

The additive manufacturing process laser powder bed fusion offers many advantages over conventional manufacturing processes. For example, almost any complex part can be produced, such as topologically optimized lightweight parts, which would be inconceivable with conventional manufacturing processes. A major challenge posed by the LPBF process, however, is, in most cases, the need to use and remove support structures on critically inclined part surfaces (α < 45 ° regarding substrate plate). These are mainly used for dimensionally accurate mapping of part contours and to reduce distortion by absorbing process-related internal stresses. Furthermore, they serve to transfer the process heat to the substrate plate and are, therefore, indispensable for the LPBF process. A major challenge for the economical use of the LPBF process in industrial process chains is currently still the high manual effort involved in removing support structures. According to the state of the art (SoA), the parts are usually treated by simple hand tools (e.g., pliers, chisels) or by machining (e.g., milling, turning). New automatable approaches are the removal of support structures by means of wet chemical ablation and thermal deburring. According to the state of the art, the support structures are essentially adapted to the LPBF process and not to potential post-processing steps. The aim of this study is the determination of support structure designs that are adapted to the mentioned post-processing approaches. In the first step, the essential boundary conditions for complete removal by means of the respective approaches are identified. Afterward, a representative demonstrator part with various macroscopic support structure designs will be LPBF-manufactured and tested with regard to a complete powder and support removability. Finally, based on the results, potentially suitable support structure designs for the respective approaches will be derived. The investigations are carried out on the example of the aluminum alloy AlSi10Mg.

Keywords: additive manufacturing, laser powder bed fusion, laser beam melting, selective laser melting, post processing, tool-free, wet chemical ablation, thermal deburring, aluminum alloy, AlSi10Mg

Procedia PDF Downloads 94
3649 Lattice Twinning and Detwinning Processes in Phase Transformation in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory effect is a peculiar property exhibited by certain alloy systems and based on martensitic transformation, and shape memory properties are closely related to the microstructures of the material. Shape memory effect is linked with martensitic transformation, which is a solid state phase transformation and occurs with the cooperative movement of atoms by means of lattice invariant shears on cooling from high-temperature parent phase. Lattice twinning and detwinning can be considered as elementary processes activated during the transformation. Thermally induced martensite occurs as martensite variants, in self-accommodating manner and consists of lattice twins. Also, this martensite is called the twinned martensite or multivariant martensite. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The martensite variants turn into the reoriented single variants with deformation, and the reorientation process has great importance for the shape memory behavior. Copper based alloys exhibit this property in metastable β- phase region, which has DO3 –type ordered lattice in ternary case at high temperature, and these structures martensiticaly turn into the layered complex structures with lattice twinning mechanism, on cooling from high temperature parent phase region. The twinning occurs as martensite variants with lattice invariant shears in two opposite directions, <110 > -type directions on the {110}- type plane of austenite matrix. Lattice invariant shear is not uniform in copper based ternary alloys and gives rise to the formation of unusual layered structures, like 3R, 9R, or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 atomic layers in case of 18R-structure. On the other hand, the deformed material recovers the original shape on heating above the austenite finish temperature. Meanwhile, the material returns to the twinned martensite structures (thermally induced martensite structure) in one way (irreversible) shape memory effect on cooling below the martensite finish temperature, whereas the material returns to the detwinned martensite structure (deformed martensite) in two-way (reversible) shape memory effect. Shortly one can say that the microstructural mechanisms, responsible for the shape memory effect are the twinning and detwinning processes as well as martensitic transformation. In the present contribution, x-ray diffraction, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies were carried out on two copper-based ternary alloys, CuZnAl, and CuAlMn.

Keywords: shape memory effect, martensitic transformation, twinning and detwinning, layered structures

Procedia PDF Downloads 430
3648 Wood Framing Roof Resistant Support for Hurricane

Authors: P. Hajyalikhani, E. Gilmore, C. Petty, J. Duron

Abstract:

Wood framed construction is the most popular method of construction for residential buildings. The typical roof framing for wood-framed buildings is sloped and consists of several structural members, such as rafters, hips, and valleys that link to the ridge and ceiling joists. The most common type of wood framing used is platform framing, also known as stick framing. Failures of the wood framing structures are among the most common types of wind damage in densely populated regions. Wood-framed buildings are under uplift during tornadoes and hurricanes which cause the failure in the roof. The bracing long structure members such as hip and valley have a large impact on the resilience of wood-framed buildings. As a result, the common failures in wood-framed buildings are reviewed, and the critical support locations for lengthy hips and valleys with various slopes are analyzed and recommended.

Keywords: rafters, hips, valleys, hip, ceiling joist, roof failures, residential and commercial structures, hurricane, tornadoes, building codes

Procedia PDF Downloads 73
3647 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol

Procedia PDF Downloads 223
3646 Development of a Risk Governance Index and Examination of Its Determinants: An Empirical Study in Indian Context

Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav

Abstract:

Risk management has been gaining extensive focus from international organizations like Committee of Sponsoring Organizations and Financial Stability Board, and, the foundation of such an effective and efficient risk management system lies in a strong risk governance structure. In view of this, an attempt (perhaps a first of its kind) has been made to develop a risk governance index, which could be used as proxy for quality of risk governance structures. The index (normative framework) is based on eleven variables, namely, size of board, board diversity in terms of gender, proportion of executive directors, executive/non-executive status of chairperson, proportion of independent directors, CEO duality, chief risk officer (CRO), risk management committee, mandatory committees, voluntary committees and existence/non-existence of whistle blower policy. These variables are scored on a scale of 1 to 5 with the exception of the variables, namely, status of chairperson and CEO duality (which have been scored on a dichotomous scale with the score of 3 or 5). In case there is a legal/statutory requirement in respect of above-mentioned variables and there is a non-compliance with such requirement a score of one has been envisaged. Though there is no legal requirement, for the larger part of study, in context of CRO, risk management committee and whistle blower policy, still a score of 1 has been assigned in the event of their non-existence. Recognizing the importance of these variables in context of risk governance structure and the fact that the study basically focuses on risk governance, the absence of these variables has been equated to non-compliance with a legal/statutory requirement. Therefore, based on this the minimum score is 15 and the maximum possible is 55. In addition, an attempt has been made to explore the determinants of this index. For this purpose, the sample consists of non-financial companies (429) that constitute S&P CNX500 index. The study covers a 10 years period from April 1, 2005 to March 31, 2015. Given the panel nature of data, Hausman test was applied, and it suggested that fixed effects regression would be appropriate. The results indicate that age and size of firms have significant positive impact on its risk governance structures. Further, post-recession period (2009-2015) has witnessed significant improvement in quality of governance structures. In contrast, profitability (positive relationship), leverage (negative relationship) and growth (negative relationship) do not have significant impact on quality of risk governance structures. The value of rho indicates that about 77.74% variation in risk governance structures is due to firm specific factors. Given the fact that each firm is unique in terms of its risk exposure, risk culture, risk appetite, and risk tolerance levels, it appears reasonable to assume that the specific conditions and circumstances that a company is beset with, could be the biggest determinants of its risk governance structures. Given the recommendations put forth in the paper (particularly for regulators and companies), the study is expected to be of immense utility in an important yet neglected aspect of risk management.

Keywords: corporate governance, ERM, risk governance, risk management

Procedia PDF Downloads 256
3645 Diagnostics of Existing Steel Structures of Winter Sport Halls

Authors: Marcela Karmazínová, Jindrich Melcher, Lubomír Vítek, Petr Cikrle

Abstract:

The paper deals with the diagnostics of steel roof structure of the winter sports stadiums built in 1970 year. The necessity of the diagnostics has been given by the requirement to the evaluation design of this structure, which has been caused by the new situation in the field of the loadings given by the validity of the European Standards in the Czech Republic from 2010 year. Due to these changes in the normative rules, in practice, existing structures are gradually subjected to the evaluation design and depending on its results to the strengthening or reconstruction, respectively. The steel roof is composed of plane truss main girders, purlins and bracings and the roof structure is supported by two arch main girders with the span of L=84 m. The in situ diagnostics of the roof structure was oriented to the following parts: (i) determination and evaluation of the actual material properties of used steel and (ii) verification of the actual dimensions of the structural members. For the solution, the non-destructive methods have been used for in situ measurement. For the indicative determination of steel strengths the modified method based on the determination of Rockwell’s hardness has been used. For the verification of the member’s dimensions (thickness of hollow sections) the ultrasound method has been used. This paper presents the results obtained using these testing methods and their evaluation, from the viewpoint of the usage for the subsequent static assessment and design evaluation of the existing structure. For the comparison, the examples of the similar evaluations realized for steel structures of the stadiums in Olomouc and Jihlava cities are briefly illustrated, too.

Keywords: actual dimensions, destructive methods, diagnostics, existing steel structure, indirect non-destructive methods, Rockwel’s hardness, sport hall, steel strength, ultrasound method.

Procedia PDF Downloads 345
3644 Experimental Study of Unconfined and Confined Isothermal Swirling Jets

Authors: Rohit Sharma, Fabio Cozzi

Abstract:

A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, Sg = 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed.

Keywords: acoustic probes, 3C-2D particle image velocimetry (PIV), precessing vortex core (PVC), recirculation zone (RZ)

Procedia PDF Downloads 234
3643 A Review on the Necessities of Green Building in Bangladesh and Its Construction Process

Authors: Syeda Afsana Azad

Abstract:

Climate change, due to the release of greenhouse gases into the atmosphere has been recognized as one of the biggest threats to the present world. The condition of the earth is getting worse day by day due to climate change. Bangladesh is considered to be one of the most vulnerable countries to climate change due to large population, sharp urbanization, etc. Construction of green building is a very good solution to reduce the greenhouse effect. Green building technology refers to that kind of structures which are environmentally friendly and resource-efficient throughout a building’s service life. This technology can provide at least 50% energy saving opportunity to the nation. The necessity of the construction of structures in an environment-friendly way is increasing now. This study shows the scenario of rapid population growth, urbanization, necessity of green building in Bangladesh and also discusses the construction process of green building. As the present climate condition of Bangladesh is not friendly, construction of green building is very much needed. To battle climate change, it is mandatory to construct green building.

Keywords: Bangladesh, climate change, green building, green house effect

Procedia PDF Downloads 383
3642 Ground Motion Modelling in Bangladesh Using Stochastic Method

Authors: Mizan Ahmed, Srikanth Venkatesan

Abstract:

Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.

Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard

Procedia PDF Downloads 252
3641 Sustainable Rehabilation of Ancient Structure

Authors: Ram Narayan Khare, Aradhna Shrivastava, Adhyatma Khare

Abstract:

This paper focuses on the damage that has been occurred in the Ancient structures due to various factors such as rainfall, climate, insects, lifespan and also most important lack of technologies in the era of its construction. The structure is of lime surkhi masonry and is made a century ago. It has crossed its durability but is of historical importance for the area, that is the reason why it needs utmost importance for its Rehabilitation. The paper deals with the damage that has been occurred in the structure and how to repair and renovate the same keeping in mind that the material deviation could not take place because it shows how in ancient era structures are made of. The building has used lime surkhi mortar along with wood apple as fibrous material for providing adhesiveness in masonry binding. The paper helps in sustainable retrofitting of the structure without changing the integrity of the structure. This helps in maintaining the originality of structure in present era and also help in providing information to the upcoming generation how ancient civil construction has been carried out that withstand even more than a century.

Keywords: Lime Surkhi masonry, rehabilitation, sustainable development, historical building

Procedia PDF Downloads 43
3640 ECOSURF EH3 - A Taq DNA Polymerase Enhancer

Authors: Kimberley Phoena Fan, Yu Zhang

Abstract:

ECOSURF™ EH-3 Surfactant (EH3) is a nonionic surfactant and has superior wetting and excellent oil removal properties. It is biodegradable with low toxicity and meets or exceeds US EPA Design for the Environment Criteria, and is widely used as a home cleaner, commercial and industrial degreaser. We have recently found that EH3 also possesses a special function which is characterized as an enhancer to Taq DNA polymerase and ameliorator to reduce the effects of PCR inhibitors, i.e., blood, urea, Guanidinium thiocyanate, Humic acids, polyphenol, and Polysaccharides. This is a new kind of PCR enhancer that does not work on relieving secondary structures of GC-rich templates. We have compared EH3’s effects on Taq DNA Polymerase along with other well-known enhancers, such as DMSO, betaine, and BSA, using GC rich or deficient template and found that, unlike DMSO and Betaine, the EH3 boosting effect on PCR reaction is not through reducing Tm. The results show the same increase of PCR products regardless of the GC contents or secondary structures. The mechanism of EH3 enhancing PCR is through its direct interaction with or stimulation of the DNA polymerase and making the enzymes more resistant to inhibitors in the presence of EH3. This phenomenon has first been observed for EH3, a new type of PCR enzyme enhancer. Subsequent research also shows that a series of similar surfactants boost Taq DNA polymerase as well.

Keywords: EH3, DNA, polymerase, enhancer, raw biological samples

Procedia PDF Downloads 145
3639 Investigation of Free Vibrations of Opened Shells from Alloy D19: Assistance of the Associated Mass System

Authors: Oleg Ye Sysoyev, Artem Yu Dobryshkin, Nyein Sitt Naing

Abstract:

Cylindrical shells are widely used in the construction of buildings and structures, as well as in the air structure. Thin-walled casings made of aluminum alloys are an effective substitute for reinforced concrete and steel structures in construction. The correspondence of theoretical calculations and the actual behavior of aluminum alloy structures is to ensure their trouble-free operation. In the laboratory of our university, "Building Constructions" conducted an experimental study to determine the effect of the system of attached masses on the natural oscillations of shallow cylindrical shells of aluminum alloys, the results of which were compared with theoretical calculations. The purpose of the experiment is to measure the free oscillations of an open, sloping cylindrical shell for various variations of the attached masses. Oscillations of an open, slender, thin-walled cylindrical shell, rectangular in plan, were measured using induction accelerometers. The theoretical calculation of the shell was carried out on the basis of the equations of motion of the theory of shallow shells, using the Bubnov-Galerkin method. A significant splitting of the flexural frequency spectrum is found, influenced not only by the systems of attached маsses but also by the values of the wave formation parameters, which depend on the relative geometric dimensions of the shell. The correspondence of analytical and experimental data is found, using the example of an open shell of alloy D19, which allows us to speak about the high quality of the study. A qualitative new analytical solution of the problem of determining the value of the oscillation frequency of the shell, carrying a system of attached masses is shown.

Keywords: open hollow shell, nonlinear oscillations, associated mass, frequency

Procedia PDF Downloads 298
3638 Deposit Characteristics of Jakarta, Indonesia: A Stratigraphy Study of Jakarta Subsurface

Authors: Girlly Marchlina Listyono, Abdurrokhim Abdurrokhim, Emi Sukiyah, Pulung Arya Pranantya

Abstract:

Jakarta Area is composed by deposit which has various lithology characteristics. Based on its lithology types, colors, textures, mineral dan organic content from 22 wells scattered on Jakarta, lithofacies analysis and intra-wells data correlation can be done. From the analysis, it can be interpretated that Jakarta deposit deposited in marine, transition and terrestrial depositional environments. Terrestrial deposit characterized by domination of relatively coarse clastics and content of remaining roots, woods, plants, high content of quartz, lithic fragment, calcareous and oxidated appearace. The thickness of terrestrial deposit is thickening to south. Transitional deposit characterized by fine to medium clastics with dark color, high content of organic matter, various thickness in any ways. Marine deposit characterized by finer clastics, contain remain of shells, fosil, coral, limestone fragments, glauconites, calcareous. Marine deposit relatively thickening to north. Those lateral variety caused by tectonic, subsidence and stratigraphic condition. Deposition of Jakarta deposit from the data research was started on marine depositional environment which surrounded by the event of cycle of regression and transgression then ended with regression which ongoing until form shore line in north Jakarta nowadays.

Keywords: deposit, Indonesia, Jakarta, sediment, stratigraphy

Procedia PDF Downloads 258
3637 On the Monitoring of Structures and Soils by Tromograph

Authors: Magarò Floriana, Zinno Raffaele

Abstract:

Since 2009, with the coming into force of the January 14, 2008 Ministerial Decree "New technical standards for construction", and the explanatory ministerial circular N°.617 of February 2, 2009, the question of seismic hazard and the design of seismic-resistant structures in Italy has acquired increasing importance. One of the most discussed aspects in recent Italian and international scientific literature concerns the dynamic interaction between land and structure, and the effects which dynamic coupling may have on individual buildings. In effect, from systems dynamics, it is well known that resonance can have catastrophic effects on a stimulated system, leading to a response that is not compatible with the previsions in the design phase. The method used in this study to estimate the frequency of oscillation of the structure is as follows: the analysis of HVSR (Horizontal to Vertical Spectral Ratio) relations. This allows for evaluation of very simple oscillation frequencies for land and structures. The tool used for data acquisition is an experimental digital tromograph. This is an engineered development of the experimental Languamply RE 4500 tromograph, equipped with an engineered amplification circuit and improved electronically using extremely small electronic components (size of each individual amplifier 16 x 26 mm). This tromograph is a modular system, completely "free" and "open", designed to interface Windows, Linux, OSX and Android with the outside world. It an amplifier designed to carry out microtremor measurements, yet which will also be useful for seismological and seismic measurements in general. The development of single amplifiers of small dimension allows for a very clean signal since being able to position it a few centimetres from the geophone eliminates cable “antenna” phenomena, which is a necessary characteristic in seeking to have signals which are clean at the very low voltages to be measured.

Keywords: microtremor, HVSR, tromograph, structural engineering

Procedia PDF Downloads 411
3636 Investigation of Self-Assembling of Maghemite Nanoparticles into Chain–Like Structures Using Birefringence Measurements

Authors: C. R. Stein; K. Skeff Neto, K. L. C. Miranda, P. P. C. Sartoratto, M. E. Xavier, Z. G. M. Lacava, S. M. De Freita, P. C. Morais

Abstract:

In this study, static magnetic birefringence (SMB) and transmission electron microscopy (TEM) were used to investigate the self-assembling of maghemite nanoparticles suspended as biocompatible magnetic fluid (BMF) while incubated or not with the Black Eyed–Pea Trypsin Chymotripsin Inhibitor–BTCI protein. The stock samples herein studied are dextran coated maghemite nanoparticles (average core diameter of 7.1 nm, diameter dispersion of 0.26, and containing 4.6×1016 particle/mL) and the dextran coated maghemite nanoparticles associated with the BTCI protein. Several samples were prepared by diluting the stock samples with deionized water while following their colloidal stability. The diluted samples were investigated using SMB measurements to assess the average sizes of the self-assembled and suspended mesoscopic structures whereas the TEM micrographs provide the morphology of the as-suspended units. The SMB data were analyzed using a model that includes the particle-particle interaction within the mean field model picture.

Keywords: biocompatible magnetic fluid, maghemite nanoparticles, self-assembling

Procedia PDF Downloads 484
3635 Introducing Quantum-Weijsberg Algebras by Redefining Quantum-MV Algebras: Characterization, Properties, and Other Important Results

Authors: Lavinia Ciungu

Abstract:

In the last decades, developing algebras related to the logical foundations of quantum mechanics became a central topic of research. Generally known as quantum structures, these algebras serve as models for the formalism of quantum mechanics. In this work, we introduce the notion of quantum-Wajsberg algebras by redefining the quantum-MV algebras starting from involutive BE algebras. We give a characterization of quantum-Wajsberg algebras, investigate their properties, and show that, in general, quantum-Wajsberg algebras are not (commutative) quantum-B algebras. We also define the ∨-commutative quantum-Wajsberg algebras and study their properties. Furthermore, we prove that any Wajsberg algebra (bounded ∨-commutative BCK algebra) is a quantum-Wajsberg algebra, and we give a condition for a quantum-Wajsberg algebra to be a Wajsberg algebra. We prove that Wajsberg algebras are both quantum-Wajsberg algebras and commutative quantum-B algebras. We establish the connection between quantum-Wajsberg algebras and quantum-MV algebras, proving that the quantum-Wajsberg algebras are term equivalent to quantum-MV algebras. We show that, in general, the quantum-Wajsberg algebras are not commutative quantum-B algebras and if a quantum-Wajsberg algebra is self-distributive, then the corresponding quantum-MV algebra is an MV algebra. Our study could be a starting point for the development of other implicative counterparts of certain existing algebraic quantum structures.

Keywords: quantum-Wajsberg algebra, quantum-MV algebra, MV algebra, Wajsberg algebra, BE algebra, quantum-B algebra

Procedia PDF Downloads 23
3634 Assessing Effectiveness of Outrigger and Belt Truss System for Tall Buildings under Wind Loadings

Authors: Nirand Anunthanakul

Abstract:

This paper is to investigate a 54-story reinforced concrete residential tall building structures—238.8 meters high. Shear walls, core walls, and columns are the primary vertical components. Other special lateral components—core-outrigger and belt trusses—are studied and combined with the structural system in order to increase the structural stability during severe lateral load events, particularly, wind loads. The wind tunnel tests are conducted using the force balance technique. The overall wind loads and dynamics response of the building are also measured for 360 degrees of azimuth—basis for 10-degree intervals. The results from numerical analysis indicate that an outrigger and belt truss system clearly engages perimeter columns to efficiently reduce acceleration index and lateral deformations at the top level so that the building structures achieve lateral stability, and meet standard provision values.

Keywords: outrigger, belt truss, tall buildings, wind loadings

Procedia PDF Downloads 573
3633 Design and Parametric Analysis of Pentaband Meander Line Antenna for Mobile Handset Applications

Authors: Shrinivas P. Mahajan, Aarti C. Kshirsagar

Abstract:

Wireless communication technology is rapidly changing with recent developments in portable devices and communication protocols. This has generated demand for more advanced and compact antenna structures and therefore, proposed work focuses on Meander Line Antenna (MLA) design. Here, Pentaband MLA is designed on a FR4 substrate (85 mm x 40 mm) with dielectric constant (ϵr) 4.4, loss tangent (tan ) 0.018 and height 1.6 mm with coplanar feed and open stub structure. It can be operated in LTE (0.670 GHz-0.696 GHz) GPS (1.564 GHz-1.579 GHz), WCDMA (1.920 GHz-2.135 GHz), LTE UL frequency band 23 (2-2.020 GHz) and 5G (3.10 GHz-3.550 GHz) application bands. Also, it gives good performance in terms of Return Loss (RL) which is < -10 dB, impedance bandwidth with maximum Bandwidth (BW) up to 0.21 GHz and realized gains with maximum gain up to 3.28 dBi. Antenna is simulated with open stub and without open stub structures to see the effect on impedance BW coverage. In addition to this, it is checked with human hand and head phantoms to assure that it falls within specified Specific Absorption Rate (SAR) limits.

Keywords: coplanar feed, L shaped ground, Meander Line Antenna, MLA, Phantom, Specific Absorption Rate, SAR

Procedia PDF Downloads 136
3632 Real-Time Compressive Strength Monitoring for NPP Concrete Construction Using an Embedded Piezoelectric Self-Sensing Technique

Authors: Junkyeong Kim, Seunghee Park, Ju-Won Kim, Myung-Sug Cho

Abstract:

Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical. In this study, a novel method to estimate the strength development of HSC based on electromechanical impedance (EMI) measurements using an embedded piezoelectric sensor is proposed. The EMI of NPP concrete specimen was tracked to monitor the strength development. In addition, cross-correlation coefficient was applied in sequence to examine the trend of the impedance variations more quantitatively. The results confirmed that the proposed technique can be applied successfully monitoring of the strength development during the curing process of HSC structures.

Keywords: concrete curing, embedded piezoelectric sensor, high strength concrete, nuclear power plant, self-sensing impedance

Procedia PDF Downloads 520
3631 Two Quasiparticle Rotor Model for Deformed Nuclei

Authors: Alpana Goel, Kawalpreet Kalra

Abstract:

The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.

Keywords: deformed nuclei, signature effects, signature inversion, signature reversal

Procedia PDF Downloads 160
3630 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity

Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink

Abstract:

The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.

Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction

Procedia PDF Downloads 316
3629 Structural Anatomy and Deformation Pattern of the Palghat-Cauvery Shear Zone in the Central Sector, Tamil Nadu, Southern India

Authors: Mrinal Mukherjee, Gargi Seal, Bitopan Mazumdar, Prakhar Agarwal

Abstract:

The central sector of Palghat-Cauvery Shear zone Tamil Nadu, India, had been studied with reference to development, mode of occurrence, interrelationship and variation of structural elements. The litho assemblages of the study area include gneisses migmatites granites and bear signature of multistage deformation patterns. The early deformation D1 is characterized in migmatites and gneisses by the development of tight to isoclinal, recumbent to reclined folds within the compositional bands that are refolded subsequently to produce D2 deformation structures ranging from type-II to type-III superposed geometry. The granite, in general, is undeformed, save a few places where strong mylonitic foliation developed with stretching lineation on it. The D1-D2 structures of gneisses and migmatites were affected by a D3 stage- E-W trending shear zone (Palghat-Cauvery Shear zone) that dips steeply towards north. The shear zone is characterized by the development of mylonite zone with stretching lineation on foliation, shear band structures, modification of geometry and orientation of earlier folds and foliations within the shear zone and development of shear induced folds and foliations. Several anastomosing lenses of shear zones define the larger Palghat-Cauvery Shear zone. The orientation of the shear induced folds and foliations and deflections of earlier foliation and folds within the Palghat-Cauvery shear zone indicate an oblique-slip thrust-shear with north-towards-east sense of displacement. The E-W trending shear zone is further openly folded along N-S in the D4 stage of deformation.

Keywords: deformation, migmatites, mylonites, shear zones

Procedia PDF Downloads 195
3628 Geomorphological Features and their Significance Along Dhauli Ganga River Valley in North-Eastern Kumaun Himalaya in Pithauragah District, Uttarakhand, India

Authors: Puran Chandra Joshi

Abstract:

The Himalaya is the newest mountain system on this earth. This highest as well as fragile mountain system is still rising up. The tectonic activities have been experienced by this entire area, so the geomorphology of the region is affected by it. As we know, geomorphology is the study of landforms and their processes on the earth surface. These landforms are very important for human beings and other creatures on this planet. Present paper traces out the geomorphological features and their significance along Dhauli Ganga river valley in the Himalaya. Study area falls in higher Himalaya, which has experienced glacial and fluvial processes. Dhauli Ganga river is a considerable tributary of river kali, which is the part of huge Gangetic system. Dhauli originates in the form of two tributaries from valley glaciers of the southern slopes of Kumaun-Tibbet water divide. The upper catchment of this river has been carved by the glacial activity. The area of investigation is a remote regionin, Kumaun Himalaya. The native people do seasonal migration due to harsh winters. In summers, they return back with their cattle. In this season, they also grow potatoes and pulses, especiallybeanson river terraces. This study is important for making policies in the entire area. Area has witnessed big landslide in the recent past. So, the present study becomes more important.

Keywords: himalaya, geomorphology, glacial, tectonics

Procedia PDF Downloads 130
3627 Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures

Authors: A. C. Sarmah

Abstract:

The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses.

Keywords: debye length, depletion width, flat band capacitance, impurity concentration

Procedia PDF Downloads 454
3626 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 26
3625 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases

Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo

Abstract:

The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.

Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis

Procedia PDF Downloads 227