Search results for: random fields
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4315

Search results for: random fields

3655 Influence of Magnetic Field on the Antibacterial Properties of Pine Oil

Authors: Dawid Sołoducha, Tomasz Borowski, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives.

Keywords: rotating magnetic field, pine oil, antimicrobial activity, Escherichia coli

Procedia PDF Downloads 220
3654 Self-Image of Police Officers

Authors: Leo Carlo B. Rondina

Abstract:

Self-image is an important factor to improve the self-esteem of the personnel. The purpose of the study is to determine the self-image of the police. The respondents were the 503 policemen assigned in different Police Station in Davao City, and they were chosen with the used of random sampling. With the used of Exploratory Factor Analysis (EFA), latent construct variables of police image were identified as follows; professionalism, obedience, morality and justice and fairness. Further, ordinal regression indicates statistical characteristics on ages 21-40 which means the age of the respondent statistically improves self-image.

Keywords: police image, exploratory factor analysis, ordinal regression, Galatea effect

Procedia PDF Downloads 289
3653 Implementation and Challenges of Assessment Methods in the Case of Physical Education Class in Some Selected Preparatory Schools of Kirkos Sub-City

Authors: Kibreab Alene Fenite

Abstract:

The purpose of this study is to investigate the implementation and challenges of different assessment methods for physical education class in some selected preparatory schools of kirkos sub city. The participants in this study are teachers, students, department heads and school principals from 4 selected schools. Of the total 8 schools offering in kirkos sub city 4 schools (Dandi Boru, Abiyot Kirse, Assay, and Adey Ababa) are selected by using simple random sampling techniques and from these schools all (100%) of teachers, 100% of department heads and school principals are taken as a sample as their number is manageable. From the total 2520 students, 252 (10%) of students are selected using simple random sampling. Accordingly, 13 teachers, 252 students, 4 department heads and 4 school principals are taken as a sample from the 4 selected schools purposefully. As a method of data gathering tools; questionnaire and interview are employed. To analyze the collected data, both quantitative and qualitative methods are used. The result of the study revealed that assessment in physical education does not implement properly: lack of sufficient materials, inadequate time allotment, large class size, and lack of collaboration and working together of teachers towards assessing the performance of students, absence of guidelines to assess the physical education subject, no different assessment method that is implementing on students with disabilities in line with their special need are found as major challenges in implementing the current assessment method of physical education. To overcome these problems the following recommendations have been forwarded. These are: the necessary facilities and equipment should be available; In order to make reliable, accurate, objective and relevant assessment, teachers of physical education should be familiarized with different assessment techniques; Physical education assessment guidelines should be prepared, and guidelines should include different types of assessment methods; qualified teachers should be employed, and different teaching room must be build.

Keywords: assessment, challenges, equipment, guidelines, implementation, performance

Procedia PDF Downloads 282
3652 Facial Recognition of University Entrance Exam Candidates using FaceMatch Software in Iran

Authors: Mahshid Arabi

Abstract:

In recent years, remarkable advancements in the fields of artificial intelligence and machine learning have led to the development of facial recognition technologies. These technologies are now employed in a wide range of applications, including security, surveillance, healthcare, and education. In the field of education, the identification of university entrance exam candidates has been one of the fundamental challenges. Traditional methods such as using ID cards and handwritten signatures are not only inefficient and prone to fraud but also susceptible to errors. In this context, utilizing advanced technologies like facial recognition can be an effective and efficient solution to increase the accuracy and reliability of identity verification in entrance exams. This article examines the use of FaceMatch software for recognizing the faces of university entrance exam candidates in Iran. The main objective of this research is to evaluate the efficiency and accuracy of FaceMatch software in identifying university entrance exam candidates to prevent fraud and ensure the authenticity of individuals' identities. Additionally, this research investigates the advantages and challenges of using this technology in Iran's educational systems. This research was conducted using an experimental method and random sampling. In this study, 1000 university entrance exam candidates in Iran were selected as samples. The facial images of these candidates were processed and analyzed using FaceMatch software. The software's accuracy and efficiency were evaluated using various metrics, including accuracy rate, error rate, and processing time. The research results indicated that FaceMatch software could accurately identify candidates with a precision of 98.5%. The software's error rate was less than 1.5%, demonstrating its high efficiency in facial recognition. Additionally, the average processing time for each candidate's image was less than 2 seconds, indicating the software's high efficiency. Statistical evaluation of the results using precise statistical tests, including analysis of variance (ANOVA) and t-test, showed that the observed differences were significant, and the software's accuracy in identity verification is high. The findings of this research suggest that FaceMatch software can be effectively used as a tool for identifying university entrance exam candidates in Iran. This technology not only enhances security and prevents fraud but also simplifies and streamlines the exam administration process. However, challenges such as preserving candidates' privacy and the costs of implementation must also be considered. The use of facial recognition technology with FaceMatch software in Iran's educational systems can be an effective solution for preventing fraud and ensuring the authenticity of university entrance exam candidates' identities. Given the promising results of this research, it is recommended that this technology be more widely implemented and utilized in the country's educational systems.

Keywords: facial recognition, FaceMatch software, Iran, university entrance exam

Procedia PDF Downloads 49
3651 A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior

Authors: Prami Sengupta, Randall A. Cantrell, Tracy Johns

Abstract:

A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners.

Keywords: conservation-attitude, conservation-intention, geospatial analysis, residential energy consumption, spatial autocorrelation

Procedia PDF Downloads 194
3650 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 55
3649 The Technology of Magnetic Subs for Downhole Inorganic Scale Mitigation

Authors: Plinio Martins Dias Da Silva, Bruno Barbosa Castro, Andre Leibsohn Martins, Rosane Alves Fontes, Joao Vicente Martins de Magalhaes, Fernando Salatiel de Oliveira, Helga Elisabeth Pinheiro Schluter, Alexandre Zacharias Ignacio Pereira

Abstract:

Inorganic scale is a relevant cause for production losses in offshore operations. In the development of pre-salt fields calcium carbonate crystallization, especially when the flow is submitted to abrupt depressurization, often cause problems in reservoir selectivity and production string obstruction. The conventional strategy for this kind of problem is to continuously inject chemicals to prevent precipitation. The low reliability of injection devices, which frequently fail, and the possibility of adopting downhole completion configurations which do not allow injection at the lower zones stimulated the industry to search for alternative mitigation strategies. The use of magnetic fields to help in minimizing the adhesion of calcium carbonate crystals to downhole surfaces. The proposed mechanisms include the effect of the magnetic field in generating fewer adhesive polymorphs (vaterite) in relation to the more stable ones (calcite). A discussion on this topic has been widely addressed in the literature. The goal of the present article is to describe the construction of real scale prototypes of a magnetic sub, a device to be attached to the production string to generate the necessary magnetic field to achieve the scale mitigation requirements. The strategy for magnetic and mechanical design is described. In addition, a protocol to establish the strategy for field installation in a field development project is detailed. The focus is to equip a given well with several subs and compare the production records with a correlation well with no subs installed. Finally, an update of the status of field installations is presented, with the proposed evaluation methodology customized for each field.

Keywords: magnetic subs, downhole, scale, inorganic, mitigation

Procedia PDF Downloads 11
3648 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties

Procedia PDF Downloads 251
3647 A Study on Eliteathletes and Coaches' Attitude towards Sport Psychologyi the Areas of Sports

Authors: Mahdi PourAsghar, Abbas Mas'udzadeh, Abdulhakim Tirgari, Saeed Dabiri Roushan, Hooman Rashidi, Fariba Salehi

Abstract:

Objective: One of the major objectives in sports areas is to achieve maximum athletic performance. Physical and psychological preparations are the basic factors for achieving maximum performance in athletes. Unfortunately, in the field of physical preparation, we can see maximum attention and planning of trainers and sports officials. But despite the importance of psychological preparation of athletes and its serious and profound effect on athletic performance, the results of sports competitions show that less attention is paid to this topic, and it is less under the control of counselors and psychologists in different areas of our sport. Therefore, this study aimed to evaluate the attitude of athletes and coaches to sport psychology. Materials and methods: A descriptive study with a sample size of 234 elite athletes and 216 skilled coaches was conducted in different areas of sports, in Sari, Mazandaran in 2015.The instrument was a questionnaire consisting of two parts of demographic data and Martin questionnaire, assessing the attitude to sport psychology. The data from this study were analyzed using Spss version 18, descriptive statistics tests, and Chi-square test. Results: In this study, positive attitudes of participants in need and confidence towards sport psychology consultation in athletes and coaches group were 55/1 and 56/5 percent, respectively. The positive attitude of female athletes in belief to psychology consultation was more than male athletes. Athletes with higher education had more positive attitude towards the presence of psychologists and psychiatrists in fields of sports. Conclusion: According to the findings based on the need to the psychology consultation in different areas of sports, it is recommended that through training of specialists in the field of sport psychology and review of sports programs in different fields of sports, the presence of these counselors to maintain the psychological preparation of athletes to achieve maximum athletic performance and reduce anxiety and stress be used.

Keywords: Keywords: Athletes, Eliteathletes, Coaches, Attitude, Sport psychology.

Procedia PDF Downloads 347
3646 Harvesting Energy from Lightning Strikes

Authors: Vaishakh Medikeri

Abstract:

Lightning, the marvelous, spectacular and the awesome truth of nature is one of the greatest energy sources left unharnessed since ages. A single lightning bolt of lightning contains energy of about 15 billion joules. This huge amount of energy cannot be harnessed completely but partially. This paper proposes to harness the energy from lightning strikes. Throughout the globe the frequency of lightning is 40-50 flashes per second, totally 1.4 billion flashes per year; all of these flashes carrying an average energy of about 15 billion joules each. When a lightning bolt strikes the ground, tremendous amounts of energy is transferred to earth which propagates in the form of concentric circular energy waves. These waves have a frequency of about 7.83Hz. Harvesting the lightning bolt directly seems impossible, but harvesting the energy waves produced by the lightning is pretty easier. This can be done using a tricoil energy harnesser which is a new device which I have invented. We know that lightning bolt seeks the path which has minimum resistance down to the earth. For this we can make a lightning rod about 100 meters high. Now the lightning rod is attached to the tricoil energy harnesser. The tricoil energy harnesser contains three coils whose centers are collinear and all the coils are parallel to the ground. The first coil has one of its ends connected to the lightning rod and the other end grounded. There is a secondary coil wound on the first coil with one of its end grounded and the other end pointing to the ground and left unconnected and placed a little bit above the ground so that this end of the coil produces more intense currents, hence producing intense energy waves. The first coil produces very high magnetic fields and induces them in the second and third coils. Along with the magnetic fields induced by the first coil, the energy waves which are currents also flow through the second and the third coils. The second and the third coils are connected to a generator which in turn is connected to a capacitor which stores the electrical energy. The first coil is placed in the middle of the second and the third coil. The stored energy can be used for transmission of electricity. This new technique of harnessing the lightning strikes would be most efficient in places with more probability of the lightning strikes. Since we are using a lightning rod sufficiently long, the probability of cloud to ground strikes is increased. If the proposed apparatus is implemented, it would be a great source of pure and clean energy.

Keywords: generator, lightning rod, tricoil energy harnesser, harvesting energy

Procedia PDF Downloads 383
3645 Processing Big Data: An Approach Using Feature Selection

Authors: Nikat Parveen, M. Ananthi

Abstract:

Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.

Keywords: big data, key value, feature selection, retrieval, performance

Procedia PDF Downloads 342
3644 The Role of Innovative Marketing on Achieving Quality in Petroleum Company

Authors: Malki Fatima Zahra Nadia, Kellal Chaimaa, Brahimi Houria

Abstract:

The following research aims to measure the impact of innovative marketing in achieving product quality in the Algerian Petroleum Company. In order to achieve the aim of the study, a random sample of 60 individuals was selected and the answers were analyzed using structural equation modeling to test the study hypotheses. The research concluded that there is a strong relationship between innovative marketing and the quality of petroleum products.

Keywords: marketing, innovation, quality, petroleum products

Procedia PDF Downloads 87
3643 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles

Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan

Abstract:

In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.

Keywords: automobile suspension, MATLAB, control system, PID, PSO

Procedia PDF Downloads 295
3642 Analysis of the Impact of Suez Canal on the Robustness of Global Shipping Networks

Authors: Zimu Li, Zheng Wan

Abstract:

The Suez Canal plays an important role in global shipping networks and is one of the most frequently used waterways in the world. The 2021 canal obstruction by ship Ever Given in March 2021, however, completed blocked the Suez Canal for a week and caused significant disruption to world trade. Therefore, it is very important to quantitatively analyze the impact of the accident on the robustness of the global shipping network. However, the current research on maritime transportation networks is usually limited to local or small-scale networks in a certain region. Based on the complex network theory, this study establishes a global shipping complex network covering 2713 nodes and 137830 edges by using the real trajectory data of the global marine transport ship automatic identification system in 2018. At the same time, two attack modes, deliberate (Suez Canal Blocking) and random, are defined to calculate the changes in network node degree, eccentricity, clustering coefficient, network density, network isolated nodes, betweenness centrality, and closeness centrality under the two attack modes, and quantitatively analyze the actual impact of Suez Canal Blocking on the robustness of global shipping network. The results of the network robustness analysis show that Suez Canal blocking was more destructive to the shipping network than random attacks of the same scale. The network connectivity and accessibility decreased significantly, and the decline decreased with the distance between the port and the canal, showing the phenomenon of distance attenuation. This study further analyzes the impact of the blocking of the Suez Canal on Chinese ports and finds that the blocking of the Suez Canal significantly interferes withChina's shipping network and seriously affects China's normal trade activities. Finally, the impact of the global supply chain is analyzed, and it is found that blocking the canal will seriously damage the normal operation of the global supply chain.

Keywords: global shipping networks, ship AIS trajectory data, main channel, complex network, eigenvalue change

Procedia PDF Downloads 184
3641 ‘Social Health’, ‘Physical Health’ and Wellbeing: Analyzing the Interplay between the Practices of Heavy Drinking and Exercise among Young People with Bourdieusian Concepts

Authors: Jukka Törrönen

Abstract:

In the article, we examine the interplay between the practices of heavy drinking and exercise among young people as patterned around the ‘social’ and ‘physical health’ approaches. The comparison helps us to clarify why young people are currently drinking less than earlier and how the neoliberal healthism discourse, as well as the feminine tradition of taking care of one’s body, are modifying young people’s heavy drinking practices. The data is based on interviews (n = 56) in Sweden among 15-16-year-olds and 18˗19-year-olds. By drawing on Pierre Bourdieu’s concepts of habitus, field, and capital, we examine what kinds of resources of wellbeing young people accumulate in the fields of heavy drinking and exercise, how these resources carry symbolic value for distinction, and what kind of health-related habitus they imply. The analysis suggests that as heavy drinking is no longer able to stand as a practice through which one may acquire capital that is more valuable than the capital acquired in other fields, this lessens peer pressure to drink among young people. Our analysis further shows that the healthism discourse modifies young people’s heavy drinking practices both from inside and from outside. The interviewees translate the symbolic value of healthism discourse to social vulnerability and deploy it for the purposes of increasing one’s social status among peers. Moreover, our analysis demonstrates that the social spaces and positions in intoxication and exercise are shaped by gendered dualisms of masculine dominance. However, while the interviewees naturalize the gender binaries in intoxication as based on biological drives, they understand gender binaries in exercise as normative social constructions of neoliberal society. As these binaries emphasize the struggle for recognition of the symbolic value of bodily look, they may shift young men’s attention from risk-taking to issues that traditionally have been female concerns.

Keywords: young people, decline in drinking , health, intoxication, exercise, Bourdieu

Procedia PDF Downloads 118
3640 Tobacco Taxation and the Heterogeneity of Smokers' Responses to Price Increases

Authors: Simone Tedeschi, Francesco Crespi, Paolo Liberati, Massimo Paradiso, Antonio Sciala

Abstract:

This paper aims at contributing to the understanding of smokers’ responses to cigarette prices increases with a focus on heterogeneity, both across individuals and price levels. To do this, a stated preference quasi-experimental design grounded in a random utility framework is proposed to evaluate the effect on smokers’ utility of the price level and variation, along with social conditioning and health impact perception. The analysis is based on individual-level data drawn from a unique survey gathering very detailed information on Italian smokers’ habits. In particular, qualitative information on the individual reactions triggered by changes in prices of different magnitude and composition are exploited. The main findings stemming from the analysis are the following; the average price elasticity of cigarette consumption is comparable with previous estimates for advanced economies (-.32). However, the decomposition of this result across five latent-classes of smokers, reveals extreme heterogeneity in terms of price responsiveness, implying a potential price elasticity that ranges between 0.05 to almost 1. Such heterogeneity is in part explained by observable characteristics such as age, income, gender, education as well as (current and lagged) smoking intensity. Moreover, price responsiveness is far from being independent from the size of the prospected price increase. Finally, by comparing even and uneven price variations, it is shown that uniform across-brand price increases are able to limit the scope of product substitutions and downgrade. Estimated price-response heterogeneity has significant implications for tax policy. Among them, first, it provides evidence and a rationale for why the aggregate price elasticity is likely to follow a strictly increasing pattern as a function of the experienced price variation. This information is crucial for forecasting the effect of a given tax-driven price change on tax revenue. Second, it provides some guidance on how to design excise tax reforms to balance public health and revenue goals.

Keywords: smoking behaviour, preference heterogeneity, price responsiveness, cigarette taxation, random utility models

Procedia PDF Downloads 164
3639 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 322
3638 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 79
3637 The Effect of Electromagnetic Stirring during Solidification of Nickel Based Alloys

Authors: Ricardo Paiva, Rui Soares, Felix Harnau, Bruno Fragoso

Abstract:

Nickel-based alloys are materials well suited for service in extreme environments subjected to pressure and heat. Some industrial applications for Nickel-based alloys are aerospace and jet engines, oil and gas extraction, pollution control and waste processing, automotive and marine industry. It is generally recognized that grain refinement is an effective methodology to improve the quality of casted parts. Conventional grain refinement techniques involve the addition of inoculation substances, the control of solidification conditions, or thermomechanical treatment with recrystallization. However, such methods often lead to non-uniform grain size distribution and the formation of hard phases, which are detrimental to both wear performance and biocompatibility. Stirring of the melt by electromagnetic fields has been widely used in continuous castings with success for grain refinement, solute redistribution, and surface quality improvement. Despite the advantages, much attention has not been paid yet to the use of this approach on functional castings such as investment casting. Furthermore, the effect of electromagnetic stirring (EMS) fields on Nickel-based alloys is not known. In line with the gaps/needs of the state-of-art, the present research work targets to promote new advances in controlling grain size and morphology of investment cast Nickel based alloys. For such a purpose, a set of experimental tests was conducted. A high-frequency induction furnace with vacuum and controlled atmosphere was used to cast the Inconel 718 alloy in ceramic shells. A coil surrounded the casting chamber in order to induce electromagnetic stirring during solidification. Aiming to assess the effect of the electromagnetic stirring on Ni alloys, the samples were subjected to microstructural analysis and mechanical tests. The results show that electromagnetic stirring can be an effective methodology to modify the grain size and mechanical properties of investment-cast parts.

Keywords: investment casting, grain refinement, electromagnetic stirring, nickel alloys

Procedia PDF Downloads 133
3636 Intrusion Detection Techniques in NaaS in the Cloud: A Review

Authors: Rashid Mahmood

Abstract:

The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields.

Keywords: IDS, cloud, naas, detection

Procedia PDF Downloads 323
3635 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator

Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain

Abstract:

Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.

Keywords: percent depth dose, flatness, symmetry, golden beam data

Procedia PDF Downloads 490
3634 Creative Skills Supported by Multidisciplinary Learning: Case Innovation Course at the Seinäjoki University of Applied Sciences

Authors: Satu Lautamäki

Abstract:

This paper presents findings from a multidisciplinary course (bachelor level) implemented at Seinäjoki University of Applied Sciences, Finland. The course aims to develop innovative thinking of students, by having projects given by companies, using design thinking methods as a tool for creativity and by integrating students into multidisciplinary teams working on the given projects. The course is obligatory for all first year bachelor students across four faculties (business and culture, food and agriculture, health care and social work, and technology). The course involves around 800 students and 30 pedagogical coaches, and it is implemented as an intensive one-week course each year. The paper discusses the pedagogy, structure and coordination of the course. Also, reflections on methods for the development of creative skills are given. Experts in contemporary, global context often work in teams, which consist of people who have different areas of expertise and represent various professional backgrounds. That is why there is a strong need for new training methods where multidisciplinary approach is at the heart of learning. Creative learning takes place when different parties bring information to the discussion and learn from each other. When students in different fields are looking for professional growth for themselves and take responsibility for the professional growth of other learners, they form a mutual learning relationship with each other. Multidisciplinary team members make decisions both individually and collectively, which helps them to understand and appreciate other disciplines. Our results show that creative and multidisciplinary project learning can develop diversity of knowledge and competences, for instance, students’ cultural knowledge, teamwork and innovation competences, time management and presentation skills as well as support a student’s personal development as an expert. It is highly recommended that higher education curricula should include various studies for students from different study fields to work in multidisciplinary teams.

Keywords: multidisciplinary learning, creative skills, innovative thinking, project-based learning

Procedia PDF Downloads 108
3633 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength

Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma

Abstract:

The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.

Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.

Procedia PDF Downloads 57
3632 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 130
3631 Imported Oil Logistics to Central and Southern Europe Refineries

Authors: Vladimir Klepikov

Abstract:

Countries of Central and Southern Europe have a typical feature: oil consumption in the region exceeds own commodity production capacity by far. So crude oil import prevails in the region’s crude oil consumption structure. Transportation using marine and pipeline transport is a common method of the imported oil delivery in the region. For certain refineries, in addition to possible transportation by oil pipelines from seaports, oil is delivered from Russian oil fields. With the view to these specific features and geographic location of the region’s refineries, three ways of imported oil delivery can be singled out: oil delivery by tankers to the port and subsequent transportation by pipeline transport of the port and the refinery; oil delivery by tanker fleet to the port and subsequent transportation by oil trunk pipeline transport; oil delivery from the fields by oil trunk pipelines to refineries. Oil is also delivered by road, internal water, and rail transport. However, the volumes transported this way are negligible in comparison to the three above transportation means. Multimodal oil transportation to refineries using the pipeline and marine transport is one of the biggest cargo flows worldwide. However, in scientific publications this problem is considered mainly for certain modes of transport. Therefore, this study is topical. To elaborate an efficient transportation policy of crude oil supply to Central and Southern Europe, in this paper the geographic concentration of oil refineries was determined and the capacities of the region’s refineries were assessed. The quantitative analysis method is used as a tool. The port infrastructure and the oil trunk pipeline system capacity were assessed in terms of delivery of raw materials to the refineries. The main groups of oil consuming countries were determined. The trends of crude oil production in the region were reviewed. The changes in production capacities and volumes at refineries in the last decade were shown. Based on the revealed refining trends, the scope of possible crude oil supplies to the refineries of the region under review was forecast. The existing transport infrastructure is able to handle the increased oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, refinery capacity, tanker draft

Procedia PDF Downloads 157
3630 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer

Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu

Abstract:

Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Flexible coils have been studied for such applications. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power FETs was small. The power efficiencies were 0.44 – 0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.

Keywords: e-textile, flexible coils and antennas, Litz wire, wireless power transfer

Procedia PDF Downloads 136
3629 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 147
3628 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 19
3627 Non-Governmental Organisations and Human Development in Bauchi State, Nigeria

Authors: Sadeeq Launi

Abstract:

NGOs, the world over, have been recognized as part of the institutions that complement government activities in providing services to the people, particularly in respect of human development. This study examined the role played by the NGOs in human development in Bauchi State, Nigeria, between 2004 and 2013. The emphasis was on reproductive health and access to education role of the selected NGOs. All the research questions, objectives and hypotheses were stated in line with these variables. The theoretical framework that guided the study was the participatory development approach. Being a survey research, data were generated from both primary and secondary sources with questionnaires and interviews as the instruments for generating the primary data. The population of the study was made up of the staff of the selected NGOs, beneficiaries, health staff and school teachers in Bauchi State. The sample drawn from these categories were 90, 107 and 148 units respectively. Stratified random and simple random sampling techniques were adopted for NGOs staff, and Health staff and school teachers data were analyzed quantitatively and qualitatively and hypotheses were tested using Pearson Chi-square test through SPSS computer statistical package. The study revealed that despite the challenges facing NGOs operations in the study area, NGOs rendered services in the areas of health and education This research recommends among others that, both government and people should be more cooperative to NGOs to enable them provide more efficient and effective services. Governments at all levels should be more dedicated to increasing accessibility and affordability of basic education and reproductive health care facilities and services in Bauchi state through committing more resources to the Health and Education sectors, this would support and facilitate the complementary role of NGOs in providing teaching facilities, drugs, and other reproductive health services in the States. More enlightenment campaigns should be carried out by governments to sensitize the public, particularly women on the need to embrace immunization programmes for their children and antenatal care services being provided by both the government and NGOs.

Keywords: access to education, human development, NGOs, reproductive health

Procedia PDF Downloads 178
3626 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint

Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar

Abstract:

Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.

Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine

Procedia PDF Downloads 84