Search results for: lithium metal
2011 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application
Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem
Abstract:
Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.Keywords: Biodegradable metal, Biomedical application, Mechanical properties, Powder Metallurgy, Zinc
Procedia PDF Downloads 1422010 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes
Authors: Chih-Jer Lin, Jian-Hong Hou
Abstract:
Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance
Procedia PDF Downloads 1462009 Microstructural Characterization of Creep Damage Evolution in Welded Inconel 600 Superalloy
Authors: Lourdes Yareth Herrera-Chavez, Alberto Ruiz, Victor H. Lopez
Abstract:
Superalloys are used in components that operate at high temperatures such as pressure vessels and heat exchanger tubing. Design standards for these components must consider creep resistance among other criteria. Fusion welding processes are commonly used in the industry to join such components. Fusion processes commonly generate three distinctive zones, i.e. heat affected zone (HAZ), namely weld metal (WM) and base metal (BM). In nickel-based superalloy, the microstructure developed during fusion welding dictates the mechanical response of the welded component and it is very important to establish these effects in the mechanical response of the component. In this work, two plates of Inconel 600 superalloy were Gas Metal Arc Welded (GMAW). Creep samples were cut and milled to specifications and creep tested at a temperature (650 °C) using stress level of 350, 300, 275, 250 and 200 MPa. Microstructural analysis results showed a progressive creep damage evolution that depends on the stress levels with a preferential accumulation of creep damage at the heat affected zone where the creep rupture preferentially occurs owing to an austenitic matrix with grain boundary precipitated of the type Cr23C6. The fractured surfaces showed dimple patterns of cavity and voids. Results indicated that the damage mechanism is due to cavity growth by the combined effect of the power law and diffusion creep.Keywords: austenitic microstructure, creep damage evolution, heat affected zone, vickers microhardness
Procedia PDF Downloads 2032008 A Comparative Approach for Modeling the Toxicity of Metal Mixtures in Two Ecologically Related Three-Spined (Gasterosteus aculeatus L.) And Nine-Spined (Pungitius pungitius L.) Sticklebacks
Authors: Tomas Makaras
Abstract:
Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and become well-established role as model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. Moreover, although many authors in their studies emphasised the similarity between three-spined and nine-spined stickleback in morphological, neuroanatomical and behavioural adaptations to environmental changes, several comparative studies have revealed considerable differences between these species in and their susceptibility and resistance to variousstressors in laboratory experiments. The hypothesis of this study was that three-spined and nine-spined stickleback species will demonstrate apparent differences in response patterns and sensitivity to metal-based chemicals stimuli. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteusaculeatus) and nine-spined sticklebacks (Pungitiuspungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). Based on acute toxicity results, G. aculeatus found to be slightly (1.4-fold) more tolerant of MIX impact than those of P. pungitius specimens. The performed behavioural analysis showed the main effect on the interaction between time, species and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species’ responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitiuscompared to G. aculeatus. While many studies highlight the usefulness and suitability of nine-spined sticklebacks for evolutionary and ecological research, attested by their increasing popularity in these fields, great caution must be exercised when using them as model species in ecotoxicological research to probe metal contamination. Meanwhile, G. aculeatus showed to be a promising bioindicator species in the environmental ecotoxicology field.Keywords: acute toxicity, comparative behaviour, metal mixture, swimming activity
Procedia PDF Downloads 1622007 Magnesium Nanoparticles for Photothermal Therapy
Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini
Abstract:
Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy
Procedia PDF Downloads 2702006 Modification of Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
Authors: Liu Li, Kim Seng Lee, Li Lu
Abstract:
The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. The relatively low rate capability is one of the major problems that limit their practical application. In this work, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by coprecipitation method is further modified by F doping or surface treatment to enhance its cycling stability as well as rate capability.Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capacility
Procedia PDF Downloads 3572005 Thiourea: Single Crystal with Non Linear Optical Characteristics
Authors: Kishor C. Poria, Deepak Adroja, Arvind Bajaj
Abstract:
During the last few decades, the growth of single crystals has attained enormous importance for both academic research and technology. Single crystals are pillars of modern technology. In recent emerging trends of photonics and optoelectronics technology, there has been increased need for organic and semi organic materials for Non-Linear Optical (NLO) applications. The paper dealt with the initiation of good single crystals of thiourea and metal doped thiourea. The authors have successfully grown thiourea (pure) and metal doped thiourea crystals using relatively simple and inexpensive slow evaporation of aqueous solution technique. Pure thiourea crystals were grown with different light intensities and frequencies as there growth conditions. Metals (Cu, Co, Ni, Fe) doped crystals were grown using a simple evaporation technique. The paper explains growth methods and associated grown parameters in detail. The average size of the crystal is varied in size from 40 mm x 1mm to 1.5 mm x 1.5 mm to 0.5 mm. Crystals obtained are hexagonal, tetragonal, and rectangular in shape with different optical qualities. All grown crystals are characterized using X-Ray Diffraction Analysis (XRD), Ultra Violet Visible analysis, and Fourier Transform Infrared Spectrometry. Their non-linear optical characteristics were determined by Second Harmonic Generation (SHG) and their Laser Dispersive analysis. The grown crystals are characterized using Nd:YAG laser and the highest conversion efficiency of the signal pass light are calculated. It shows 58 % of standard values for KDP crystals. All results are summarized in this work.Keywords: crystal, metal-doped thiourea, non-linear optical, NLO, thiourea
Procedia PDF Downloads 1422004 Potential of Safflower (Carthamus tinctorius L.) for Phytoremediation of Soils Contaminated with Heavy Metals
Authors: Violina R. Angelova, Vanja I. Akova, Stefan V. Krustev, Krasimir I. Ivanov
Abstract:
A field study was conducted to evaluate the efficacy of safflower plant for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The concentrations of Pb, Zn and Cd in safflower (roots, stems, leaves and seeds), safflower oil and meal were determined. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn and Cd by the safflower seeds. Safflower is a plant which is tolerant to heavy metals and can be grown on contaminated soils, and which can be referred to the hyperaccumulators of cadmium and the accumulators of lead and zinc, and can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of seeds to oil and using the obtained oil for nutritional purposes will greatly reduce the cost of phytoremediation. The possibility of further industrial processing will make safflower economically interesting crops for farmers of phytoremediation technology.Keywords: heavy metals, phytoremediation, polluted soils, safflower
Procedia PDF Downloads 3172003 Industrial Waste Multi-Metal Ion Exchange
Authors: Thomas S. Abia II
Abstract:
Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints.Keywords: copper, industrial wastewater treatment, multi-metal ion exchange, manganese
Procedia PDF Downloads 1432002 Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation
Authors: Pavlo Selyshchev, Tetiana Didenko
Abstract:
Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones.Keywords: climb and glide of dislocations, fractures of transient plasticity, irradiation, non-linear feed-back, point defects
Procedia PDF Downloads 2022001 Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon
Authors: Serife Parlayici, Erol Pehlivan
Abstract:
In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively.Keywords: plum-stone, activated carbon, copper and lead, isotherms
Procedia PDF Downloads 3672000 Usage of Cyanobacteria in Battery: Saving Money, Enhancing the Storage Capacity, Making Portable, and Supporting the Ecology
Authors: Saddam Husain Dhobi, Bikrant Karki
Abstract:
The main objective of this paper is save money, balance ecosystem of the terrestrial organism, control global warming, and enhancing the storage capacity of the battery with requiring weight and thinness by using Cyanobacteria in the battery. To fulfill this purpose of paper we can use different methods: Analysis, Biological, Chemistry, theoretical and Physics with some engineering design. Using this different method, we can produce the special type of battery that has the long life, high storage capacity, and clean environment, save money so on and by using the byproduct of Cyanobacteria i.e. glucose. Cyanobacteria are a special type of bacteria that produces different types of extracellular glucoses and oxygen with the help of little sunlight, water, and carbon dioxide and can survive in freshwater, marine and in the land as well. In this process, O₂ is more in the comparison to plant due to rapid growth rate of Cyanobacteria. The required materials are easily available in this process to produce glucose with the help of Cyanobacteria. Since CO₂, is greenhouse gas that causes the global warming? We can utilize this gas and save our ecological balance and the byproduct (glucose) C₆H₁₂O₆ can be utilized for raw material for the battery where as O₂ escape is utilized by living organism. The glucose produce by Cyanobateria goes on Krebs's Cycle or Citric Acid Cycle, in which glucose is complete, oxidizes and all the available energy from glucose molecule has been release in the form of electron and proton as energy. If we use a suitable anodes and cathodes, we can capture these electrons and protons to produce require electricity current with the help of byproduct of Cyanobacteria. According to "Virginia Tech Bio-battery" and "Sony" 13 enzymes and the air is used to produce nearly 24 electrons from a single glucose unit. In this output power of 0.8 mW/cm, current density of 6 mA/cm, and energy storage density of 596 Ah/kg. This last figure is impressive, at roughly 10 times the energy density of the lithium-ion batteries in your mobile devices. When we use Cyanobacteria in battery, we are able to reduce Carbon dioxide, Stop global warming, and enhancing the storage capacity of battery more than 10 times that of lithium battery, saving money, balancing ecology. In this way, we can produce energy from the Cyanobacteria and use it in battery for different benefits. In addition, due to the mass, size and easy cultivation, they are better to maintain the size of battery. Hence, we can use Cyanobacteria for the battery having suitable size, enhancing the storing capacity of battery, helping the environment, portability and so on.Keywords: anode, byproduct, cathode, cyanobacteri, glucose, storage capacity
Procedia PDF Downloads 3481999 Metal Contents in Bird Feathers (Columba livia) from Mt Etna Volcano: Volcanic Plume Contribution and Biological Fractionation
Authors: Edda E. Falcone, Cinzia Federico, Sergio Bellomo, Lorenzo Brusca, Manfredi Longo, Walter D’Alessandro
Abstract:
Although trace metals are an essential element for living beings, they can become toxic at high concentrations. Their potential toxicity is related not only to the total content in the environment but mostly upon their bioavailability. Volcanoes are important natural metal emitters and they can deeply affect the quality of air, water and soils, as well as the human health. Trace metals tend to accumulate in the tissues of living organisms, depending on the metal contents in food, air and water and on the exposure time. Birds are considered as bioindicators of interest, because their feathers directly reflects the metals uptake from the blood. Birds are exposed to the atmospheric pollution through the contact with rainfall, dust, and aerosol, and they accumulate metals over the whole life cycle. We report on the first data combining the rainfall metal content in three different areas of Mt Etna, variably fumigated by the volcanic plume, and the metal contents in the feathers of pigeons, collected in the same areas. Rainfall samples were collected from three rain gauges placed at different elevation on the Eastern flank of the volcano, the most exposed to airborne plume, filtered, treated with HNO₃ Suprapur-grade and analyzed for Fe, Cr, Co, Ni, Se, Zn, Cu, Sr, Ba, Cd and As by ICP-MS technique, and major ions by ion chromatography. Feathers were collected from single individuals, in the same areas where the rain gauges were installed. Additionally, some samples were collected in an urban area, poorly interested by the volcanic plume. The samples were rinsed in MilliQ water and acetone, dried at 50°C until constant weight and digested in a mixture of 2:1 HNO₃ (65%) - H₂O₂ (30%) Suprapur-grade for 25-50 mg of sample, in a bath at near-to-boiling temperature. The solutions were diluted up to 20 ml prior to be analyzed by ICP-MS. The rainfall samples most contaminated by the plume were collected at close distance from the summit craters (less than 6 km), and show lower pH values and higher concentrations for all analyzed metals relative to those from the sites at lower elevation. Analyzed samples are enriched in both metals directly emitted by the volcanic plume and transported by acidic gases (SO₂, HCl, HF), and metals leached from the airborne volcanic ash. Feathers show different patterns in the different sites related to the exposure to natural or anthropogenic pollutants. They show abundance ratios similar to rainfall for lithophile elements (Ba, Sr), whereas are enriched in Zn and Se, known for their antioxidant properties, probably as adaptive response to oxidative stress induced by toxic metal exposure. The pigeons revealed a clear heterogeneity of metal uptake in the different parts of the volcano, as an effect of volcanic plume impact. Additionally, some physiological processes can modify the fate of some metals after uptake and this offer some insights for translational studies.Keywords: bioindicators, environmental pollution, feathers, trace metals, volcanic plume
Procedia PDF Downloads 1431998 Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity
Authors: Mala Nath, Nagamani Kompelli, Partha Roy, Snehasish Das
Abstract:
Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern-Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1. Their interaction with DNA of cancer cells may account for potency.Keywords: anticancer agents, DNA binding studies, NMR spectroscopy, organotin
Procedia PDF Downloads 2571997 Nickel Removal from Industrial Wastewater by Eucalyptus Leaves and Poplar Ashes
Authors: Negin Bayat, Nahid HasanZadeh
Abstract:
Effluents of different industries such as metalworking, battery industry, mining, including heavy metal are considered problematic issues for both humans and the environment. These heavy metals include cadmium, copper, zinc, nickel, chromium, cyanide, lead, etc. Different physicochemical and biological methods are used to remove heavy metals, such as sedimentation, coagulation, flotation, chemical precipitation, filtration, membrane processes (reverse osmosis and nanofiltration), ion exchange, biological methods, adsorption with activated carbon, etc. These methods are generally either expensive or ineffective. In recent years, considerable attention has been given to the removal of heavy metal ions from solution by absorption using discarded and low-cost materials. In this study, nickel removal using an adsorption process by eucalyptus powdered leaves and poplar ash was investigated. This is an applied study. The effect of various parameters on metal removal, such as pH, amount of adsorbent, contact time, and stirring speed, was studied using a discontinuous method. This research was conducted in aqueous solutions on the laboratory scale. Then, optimum absorption conditions were obtained. Then, the study was conducted on real wastewater samples. In addition, the nickel concentration in the wastewater before and after the absorption process was measured. In all experiments, the remaining nickel was measured using an atomic absorption spectrometry device at 382 nm wavelength after an appropriate time and filtration. The results showed that increasing both adsorbent and pH parameters increase the metal removal rate. Nickel removal increased at the first 60 minutes. Then, the absorption rate remained constant and reached equilibrium. A desired removal rate with 40 mg in 100 ml adsorbent solution at pH = 9.5 was observed. According to the obtained results, the best absorption rate was observed at 40 mg dose using a combination of eucalyptus leaves and poplar ash in this study, which was equal to 99.76%. Thus, this combined method can be used as an inexpensive and effective absorbent for the removal of nickel from aqueous solutions.Keywords: absorption, wastewater, nickel, poplar ash, eucalyptus leaf, treatment
Procedia PDF Downloads 191996 Study of Li-Rich Layered Cathode Materials for High-Energy Li-ion Batteries
Authors: Liu Li, Kim Seng Lee, Li Lu
Abstract:
The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. They have attracted a lot of attentions due mainly to their high reversible capacity of more than 250 mAh•g-1 at low charge-discharge current. However several drawbacks still hinder their applications, such as voltage decay caused by an undesired phase transformation during cycling and poor rate capability. To conquer these issues, the authors applied F modification methods on the pristine Li1.2Mn0.54Ni0.13Co0.13O2 to enhance its electrochemical performance.Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capability
Procedia PDF Downloads 3281995 Assessment of the Effect of Cu and Zn on the Growth of Two Chlorophytic Microalgae
Authors: Medina O. Kadiri, John E. Gabriel
Abstract:
Heavy metals are metallic elements with a relatively high density, at least five times greater compared to water. The sources of heavy metal pollution in the environment include industrial, medical, agricultural, pharmaceutical, domestic effluents, and atmospheric sources, mining, foundries, smelting, and any heavy metal-based operation. Although some heavy metals in trace quantities are required for biological metabolism, their higher concentrations elicit toxicities. Others are distinctly toxic and are of no biological functions. Microalgae are the primary producers of aquatic ecosystems and, therefore, the foundation of the aquatic food chain. A study investigating the effects of copper and zinc on the two chlorophytes-Chlorella vulgaris and Dictyosphaerium pulchellum was done in the laboratory, under different concentrations of 0mg/l, 2mg/l, 4mg/l, 6mg/l, 8mg/l, 10mg/l, and 20mg/l. The growth of the test microalgae was determined every two days for 14 days. The results showed that the effects of the test heavy metals were concentration-dependent. From the two microalgae species tested, Chlorella vulgaris showed appreciable growth up to 8mg/l concentration of zinc. Dictyoshphaerium pulchellum had only minimal growth at different copper concentrations except for 2mg/l, which seemed to have relatively higher growth. The growth of the control was remarkably higher than in other concentrations. Generally, the growth of both test algae was consistently inhibited by heavy metals. Comparatively, copper generally inhibited the growth of both algae than zinc. Chlorella vulgaris can be used for bioremediation of high concentrations of zinc. The potential of many microalgae in heavy metal bioremediation can be explored.Keywords: heavy metals, green algae, microalgae, pollution
Procedia PDF Downloads 1951994 Vermicomposting Amended With Microorganisms and Biochar: Phytopathogen Resistant Seedbeds for Vegetables and Heavy Metal Polluted Waste Treatment
Authors: Fuad Ameen, Ali A. Al-Homaidan
Abstract:
Biochar can be used in numerous biotechnological applications due to its properties to adsorb beneficial nutrients and harmful pollutants. Objectives: We aimed to treat heavy metal polluted organic wastes using vermicomposting process and produce a fertilizer that can be used in agriculture. We improved the process by adding biochar as well as microbial inoculum and biomass into household waste or sewage sludge before vermicomposting. The earthworm Eisenia fetida used in vermicomposting was included to accumulate heavy metals, biochar to adsorb heavy metals, and the microalga Navicula sp. or the mangrove fungus Acrophialophora sp. to promote plant growth in the final product used as a seedbed for Solanaceae vegetables. We carried out vermicomposting treatments to see the effect of different amendments. Final compost quality was analyzed for maturity. The earthworms were studied for their vitality, heavy metal accumulation, and metallothionein protein content to verify their role in the process. The compost was used as a seedbed for vegetables that were inoculated with a phytopathogen Pythium sp. known to cause root rot and destroy seeds. Compost as seedbed promoted plant growth and reduced disease symptoms in leaves. In the treatment where E. fetida, 6% biochar, and Navicula sp. had been added, 90% of the seeds germinated, while less than 20% germinated in the control treatment. The experimental plants had acquired resistance against Pythium sp. The metagenomic profile of microbial communities will be reported.Keywords: organic wastes, vermicomposting process, biochar, mangrove fungus
Procedia PDF Downloads 881993 Immobilization of Lead in Contaminated Soil Using Enzyme Induced Calcite Precipitation (EİCP) Along with Coconut Fiber Biochar (CFB)
Authors: Kaniz Roksana, Aluthgun Hewage Shaini, Cheng Zhu
Abstract:
Lead is environmentally hazardous because it may persist for a long time in soil, water, and air, and it can travel large distances when carried by wind or water. Lead is toxic to many different species of organisms and has the potential to disrupt ecosystem stability. Moreover, lead can contaminate crops and livestock, which can then have an adverse effect on human health. This study was conducted to use the enzyme-induced calcium carbonate precipitation (EICP) technique from soybean crude extract urease along coconut fiber derived biochar’s (CFB) to bioremediate lead. To study the desorption rates of heavy metals from the soil, lead (Pb) was added to the soil at load ratios of 50 and 100 mg/kg. There were five separate treatment soil columns created: control sample, only CFB, only EICP, EICP with 2% (w/w) CFB, and EICP with 4% (w/w) CFB. Laboratory scale experiment demonstrates significant lead removal from soil. The amount of CaCO₃ precipitated in the soil was measured using a gravimetric acid digestion test, which related heavy metal desorption to the amount of precipitated calcium carbonate. These findings were validated using a scanning electron microscope (SEM), which revealed calcium carbonate and lead coprecipitation. As a result, the study reveals that the EICP technique, in conjunction with coconut fiber biochar, could be an efficient alternative in the remediation of heavy metal ion-contaminated soils.Keywords: enzyme induced calcium carbonate precipitation (EICP), coconut fiber derived biochar’s (CFB), bioremediation, heavy metal
Procedia PDF Downloads 761992 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel
Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin
Abstract:
Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel
Procedia PDF Downloads 5471991 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock
Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,
Abstract:
Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure
Procedia PDF Downloads 4101990 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 2111989 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel
Authors: Arvind Mittal, Rajesh Gupta
Abstract:
Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel
Procedia PDF Downloads 2791988 Effect of Mineral Ion Addition on Yeast Performance during Very High Gravity Wort Fermentation
Authors: H. O. Udeh, T. E. Kgatla, A. I. O. Jideani
Abstract:
The effect of Zn2+, Mg2+, and Ba2+ on Saccharomyces pastorianus during very high gravity fermentation was evaluated in this study at independent and three variable combinations. Wort gravity of 21oP was prepared from barley malt, hops and water, to which the metal ions were supplemented in their combinations and subsequently pitched. After 96 h of fermentation, high wort fermentability (%F)= 29.53 was obtained in wort medium containing 900:4 ppm Mg2+ + Ba2+. Increased ethanol titre 7.3491 %(v/v) and 7.1313 %(v/v) were obtained in media containing 900:4 ppm Mg2+ + Ba2+ and 12:900 ppm Zn2+ + Mg2+. Decrease %F= 22.54 and ethanol titre 6.1757% (v/v) was recorded in wort medium containing 12:4 ppm Zn2+ + Ba2+. In media containing the individual metal ions, increased %F= 27.94 and %F= 26.03 were obtained in media containing 700 ppm Mg2+ and 2 ppm Ba2+, with increased ethanol yield of 7.8844% (v/v) and 7.6245% (v/v) respectively. Least %F of 11.75 and 10.80, and ethanol titre of 4.99 (%v/v) and 4.80 (%v/v) were obtained for 10 ppm Zn2+ and 4 ppm Ba2+ respectively.Keywords: ethanol yield, fermentability, mineral ions, yeast stress, very high gravity fermentation
Procedia PDF Downloads 3721987 Studies on Optimization of Batch Biosorption of Cr (VI) and Cu (II) from Wastewater Using Bacillus subtilis
Authors: Narasimhulu Korrapati
Abstract:
The objective of this present study is to optimize the process parameters for batch biosorption of Cr(VI) and Cu(II) ions by Bacillus subtilis using Response Surface Methodology (RSM). Batch biosorption studies were conducted under optimum pH, temperature, biomass concentration and contact time for the removal of Cr(VI) and Cu(II) ions using Bacillus subtilis. From the studies it is noticed that the maximum biosorption of Cr(VI) and Cu(II) was by Bacillus subtilis at optimum conditions of contact time of 30 minutes, pH of 4.0, biomass concentration of 2.0 mg/mL, the temperature of 32°C in batch biosorption studies. Predicted percent biosorption of the selected heavy metal ions by the design expert software is in agreement with experimental results of percent biosorption. The percent biosorption of Cr(VI) and Cu(II) in batch studies is 80% and 78.4%, respectively.Keywords: heavy metal ions, response surface methodology, biosorption, wastewater
Procedia PDF Downloads 2741986 The Cadmium Adsorption Study by Using Seyitomer Fly Ash, Diatomite and Molasses in Wastewater
Authors: N. Tugrul, E. Moroydor Derun, E. Cinar, A. S. Kipcak, N. Baran Acarali, S. Piskin
Abstract:
Fly ash is an important waste, produced in thermal power plants which causes very important environmental pollutions. For this reason the usage and evaluation the fly ash in various areas are very important. Nearly, 15 million tons/year of fly ash is produced in Turkey. In this study, usage of fly ash with diatomite and molasses for heavy metal (Cd) adsorption from wastewater is investigated. The samples of Seyitomer region fly ash were analyzed by X-ray fluorescence (XRF) and Scanning Electron Microscope (SEM) then diatomite (0 and 1% in terms of fly ash, w/w) and molasses (0-0.75 mL) were pelletized under 30 MPa of pressure for the usage of cadmium (Cd) adsorption in wastewater. After the adsorption process, samples of Seyitomer were analyzed using Optical Emission Spectroscopy (ICP-OES). As a result, it is seen that the usage of Seyitomer fly ash is proper for cadmium (Cd) adsorption and an optimum adsorption yield with 52% is found at a compound with Seyitomer fly ash (10 g), diatomite (0.5 g) and molasses (0.75 mL) at 2.5 h of reaction time, pH:4, 20ºC of reaction temperature and 300 rpm of stirring rate.Keywords: heavy metal, fly ash, molasses, diatomite, adsorption, wastewater
Procedia PDF Downloads 3051985 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum
Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar
Abstract:
The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.Keywords: biosorption, brown marine macroalgae, copper, ion-exchange
Procedia PDF Downloads 3261984 Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria
Authors: Adebisi M. Tiamiyu, Adewale F. Adeyemi, Olu-Ayobamikale V. Irewunmi
Abstract:
Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss.Keywords: heavy metal, atomic absorption spectrophotometer, fish, agencies
Procedia PDF Downloads 691983 Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand
Authors: Paiboon Jeamponk, Tasanee Ponglaa, Patchapon Srisanguan
Abstract:
The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco-tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behaviour of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.Keywords: sources of water supply, water quality, water supply, Thailand
Procedia PDF Downloads 2951982 Effect of Friction Parameters on the Residual Bagging Behaviors of Denim Fabrics
Authors: M. Gazzah, B. Jaouachi, F. Sakli
Abstract:
This research focuses on the yarn-to-yarn and metal-to-fabric friction effects on the residual bagging behavior expressed by residual bagging height, volume and recovery of some denim fabrics. The results show, that both residual bagging height and residual bagging volume, which is determined using image analysis method, are significantly affected due to the most influential fabric parameter variations, the weft yarns density and the mean frictional coefficients. After the applied number of fatigue cycles, the findings revealed that the weft yarn rigidity contributes on fabric bagging behavior accurately. Among the tested samples, our results show that the elastic fabrics present a high recovery ability to give low bagging height and volume values.Keywords: bagging recovery, denim fabric, metal-to-fabric friction, residual bagging height, yarn-to-yarn friction
Procedia PDF Downloads 577