Search results for: high rise buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22510

Search results for: high rise buildings

21850 Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code's design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301).

Keywords: concrete jackets, steel jackets, RC buildings, pushover analysis, non-Linear analysis

Procedia PDF Downloads 365
21849 The Geometrical Cosmology: The Projective Cast of the Collective Subjectivity of the Chinese Traditional Architectural Drawings

Authors: Lina Sun

Abstract:

Chinese traditional drawings related to buildings and construction apply a unique geometry differentiating with western Euclidean geometry and embrace a collection of special terminologies, under the category of tu (the Chinese character for drawing). This paper will on one side etymologically analysis the terminologies of Chinese traditional architectural drawing, and on the other side geometrically deconstruct the composition of tu and locate the visual narrative language of tu in the pictorial tradition. The geometrical analysis will center on selected series of Yang-shi-lei tu of the construction of emperors’ mausoleums in Qing Dynasty (1636-1912), and will also draw out the earlier architectural drawings and the architectural paintings such as the jiehua, and paintings on religious frescoes and tomb frescoes as the comparison. By doing these, this research will reveal that both the terminologies corresponding to different geometrical forms respectively indicate associations between architectural drawing and the philosophy of Chinese cosmology, and the arrangement of the geometrical forms in the visual picture plane facilitates expressions of the concepts of space and position in the geometrical cosmology. These associations and expressions are the collective intentions of architectural drawing evolving in the thousands of years’ tradition without breakage and irrelevant to the individual authorship. Moreover, the architectural tu itself as an entity, not only functions as the representation of the buildings but also express intentions and strengthen them by using the Chinese unique geometrical language flexibly and intentionally. These collective cosmological spatial intentions and the corresponding geometrical words and languages reveal that the Chinese traditional architectural drawing functions as a unique architectural site with subjectivity which exists parallel with buildings and express intentions and meanings by itself. The methodology and the findings of this research will, therefore, challenge the previous researches which treat architectural drawings just as the representation of buildings and understand the drawings more than just using them as the evidence to reconstruct the information of buildings. Furthermore, this research will situate architectural drawing in between the researches of Chinese technological tu and artistic painting, bridging the two academic areas which usually treated the partial features of architectural drawing separately. Beyond this research, the collective subjectivity of the Chinese traditional drawings will facilitate the revealing of the transitional experience from traditions to drawing modernity, where the individual subjective identities and intentions of architects arise. This research will root for the understanding both the ambivalence and affinity of the drawing modernity encountering the traditions.

Keywords: Chinese traditional architectural drawing (tu), etymology of tu, collective subjectivity of tu, geometrical cosmology in tu, geometry and composition of tu, Yang-shi-lei tu

Procedia PDF Downloads 119
21848 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia

Abstract:

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Keywords: best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs

Procedia PDF Downloads 255
21847 Research on the Development of Ancient Cities in Wenzhou from the Historical Perspective

Authors: Ying Sun, Ji-wu Wang

Abstract:

The establishment of a city is the result of the accumulation of local historical and cultural heritage and the sublimation of settlements. Take history as a mirror, it’s known how the things rise and fall. Based on the perspective of history, the development of the ancient city of Wenzhou was combed, and the urban development history of Wenzhou in 2200 could be divided into seven stages. This paper mainly studies the four stages of germination, formation, initial development and tortuous development, explores the external and internal driving forces of urban development and the structural evolution of urban layout, and discusses how the ancient Wenzhou evolved from a remote town to an important coastal port city. This paper finds that the most important factors affecting the development of ancient cities in Wenzhou are war, policy and geographical environment, and then points out the importance of urban policies to the rise and fall of cities.

Keywords: ancient city development, history, Wenzhou city, city policy

Procedia PDF Downloads 135
21846 Variation of Compressive Strength of Hollow Sand Crate Block (6”) with Mix Ratio Using Locally Made Cement (Sokoto Cement)

Authors: Idris Adamu Idris

Abstract:

The Nigerian construction industry is faced with problems of failure of structures/buildings. These failures are attributed to the use of low quality construction materials of which sand crate bock is inclusive. The research was conducted to determine the compressive strength of hollow sand crate block (6”) using locally made cement (Sokoto cement). Samples were tested for 7, 14, 21 and 28 days for mix ratio of 1:3 to 1:12. From the laboratory results obtained, a mix ratio of 1:10 corresponding to a minimum compressive strength of 1.9N/mm2 at 7 days should be adopted. This satisfies the BS 2028, 1364 1986 which specified a minimum compressive strength of 1.8N/mm2 at 7 days. At 28 days of curing, the same mix ratio meets the minimum BS standard of 2.5N/mm2 .

Keywords: buildings, cement, construction, hollow sand crate block, Nigeria

Procedia PDF Downloads 404
21845 Coastal Vulnerability under Significant Sea Level Rise: Risk and Adaptation Measures for Mumbai

Authors: Malay Kumar Pramanik

Abstract:

Climate change induced sea level rise increases storm surge, erosion, and inundation, which are stirred by an intricate interplay of physical environmental components at the coastal region. The Mumbai coast is much vulnerable to accelerated regional sea level change due to its highly dense population, highly developed economy, and low topography. To determine the significant causes behind coastal vulnerability, this study analyzes four different iterations of CVI by incorporating the pixel-based differentially weighted rank values of the selected five geological (CVI5), three physical (CVI8 with including geological variables), and four socio-economic variables (CVI4). However, CVI5 and CVI8 results yielded broadly similar natures, but after including socio-economic variables (CVI4), the results CVI (CVI12) has been changed at Mumbai and Kurla coastal portion that indicates the study coastal areas are mostly sensible with socio-economic variables. Therefore, the results of CVI12 show that out of 274.1 km of coastline analyzed, 55.83 % of the coast is very low vulnerable, 60.91 % of the coast is moderately vulnerable while 50.75 % is very high vulnerable. Finding also admits that in the context of growing urban population and the increasing rate of economic activities, socio-economic variables are most important variable to use for validating and testing the CVI. Finally, some recommendations are presented for concerned decision makers and stakeholders to develop appropriate coastal management plans, nourishment projects and mitigation measures considering socio-economic variables.

Keywords: coastal vulnerability index, sea level change, Mumbai coast, geospatial approach, coastal management, climate change

Procedia PDF Downloads 132
21844 Energy Saving, Heritage Conserving Renovation Methods in Case of Historical Building Stock

Authors: Viktória Sugár, Zoltán Laczó, András Horkai, Gyula Kiss, Attila Talamon

Abstract:

The majority of the building stock of Budapest inner districts was built around the turn of the 19th and 20th century. Although the structural stability of the buildings is not questioned, as the load bearing structures are in sufficient state, the secondary structures are aged, resulting unsatisfactory energetic state. The renovation of these historical buildings requires special methodology and technology: their ornamented facades and custom-made fenestration cannot be insulated or exchanged with conventional solutions without damaging the heritage values. The present paper aims to introduce and systematize the possible technological solutions for heritage respecting energy retrofit in case of a historical residential building stock. Through case study, the possible energy saving potential is also calculated using multiple renovation scenarios.

Keywords: energy efficiency, heritage, historical building, renovation

Procedia PDF Downloads 294
21843 Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield

Authors: Wen Ma, Yong Peng, Zhixiang Li

Abstract:

Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application.

Keywords: constitutive model, impact response, mechanism properties, PVB film, tempered glass

Procedia PDF Downloads 146
21842 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings

Authors: A. W. J. Wong, I. H. Ibrahim

Abstract:

Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.

Keywords: buildings, CFD Simulations, natural ventilation, urban airflow

Procedia PDF Downloads 219
21841 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings

Procedia PDF Downloads 477
21840 Seismic Vulnerability Assessment of High-Rise Structures in Addis Ababa, Ethiopia: Implications for Urban Resilience Along the East African Rift Margin

Authors: Birhanu Abera Kibret

Abstract:

The abstract highlights findings from a seismicity study conducted in the Ethiopian Rift Valley and adjacent cities, including Semera, Adama, and Hawasa, located in Afar and the Main Ethiopian Rift system. The region experiences high seismicity, characterized by small to moderate earthquakes situated in the mid-to-upper crust. Additionally, the capital city of Ethiopia, Addis Ababa, situated in the rift margin, experiences seismic activity, with small to relatively moderate earthquakes observed to the east and southeast of the city, alongside the rift valley. These findings underscore the seismic vulnerability of the region, emphasizing the need for comprehensive seismic risk assessment and mitigation strategies to enhance resilience and preparedness.

Keywords: seismic hazard, seismicity, crustal structure, magmatic intrusion, partial meltung

Procedia PDF Downloads 66
21839 Performance Investigation of Silica Gel Fluidized Bed

Authors: Sih-Li Chen, Chih-Hao Chen, Chi-Tong Chan

Abstract:

Poor ventilation and high carbon dioxide (CO2) concentrations lead to the formation of sick buildings. This problem cannot simply be resolved by introducing fresh air from outdoor environments because this creates extra loads on indoor air-conditioning systems. Desiccants are widely used in air conditioning systems in tropical and subtropical regions with high humidity to reduce the latent heat load from fresh air. Desiccants are usually used as a packed-bed type, which is low cost, to combine with air-conditioning systems. Nevertheless, the pressure drop of a packed bed is too high, and the heat of adsorption caused by the adsorption process lets the temperature of the outlet air increase, bringing about an extra heat load, so the high pressure drop and the increased temperature of the outlet air are energy consumption sources needing to be resolved. For this reason, the gas-solid fluidised beds that have high heat and mass transfer rates, uniform properties and low pressure drops are very suitable for use in air-conditioning systems.This study experimentally investigates the performance of silica gel fluidized bed device which applying to an air conditioning system. In the experiments, commercial silica gel particles were filled in the two beds and to form a fixed packed bed and a fluidized bed. The results indicated that compared to the fixed packed bed device, the total adsorption and desorption by amounts of fluidized bed for 40 minutes increased 20.6% and 19.9% respectively when the bed height was 10 cm and superficial velocity was set to 2 m/s. In addition, under this condition, the pressure drop and outlet air temperature raise were reduced by 36.0% and 30.0%. Given the above results, application of the silica gel fluidized bed to air conditioning systems has great energy-saving potential.

Keywords: fluidized bed, packed bed, silica gel, adsorption, desorption, pressure drop

Procedia PDF Downloads 535
21838 To Remit or not to Remit: It is a Question of Interpersonal Trust

Authors: Kasmaoui Kamal, Makhlouf farid

Abstract:

This article seeks to assess the role of the level of interpersonal trust in a country in the remittance landscape. Using historical data from the 2010-2014 wave of the World Value Survey (WVS) for interpersonal trust, our findings underline the substitution role played by the interpersonal trust with remittances. More accurately, remittances tend to drop when the rate of interpersonal trust in the country of origin is high. Overall, a rise in trust is likely to underpin social cohesion, limiting, therefore, the need for remittances. These results are still fairly solid and unambiguous after controlling for confounding factors and possible reverse causality.

Keywords: interpersonal trust, remittances, social capital, social cohesion

Procedia PDF Downloads 100
21837 Sea-Level Rise and Shoreline Retreat in Tainan Coast

Authors: Wen-Juinn Chen, Yi-Phei Chou, Jou-Han Wang

Abstract:

Tainan coast is suffering from beach erosion, wave overtopping, and lowland flooding; though most of the shoreline has been protected by seawalls, they still threatened by sea level rise. For coastal resources developing, coastal land utilization, and to draft an appropriate mitigate strategy. Firstly; we must assess the impact of beach erosion under a different scenario of climate change. Here, we have used the meteorological data since 1898 to 2012 to prove that the Tainan area did suffer the impact of climate change. The result shows the temperature has been raised to about 1.7 degrees since 1989. Also, we analyzed the tidal data near the Tainan coast (Anpin site and Junjunn site), it shows sea level rising with a rate about 4.1~4.8 mm/year, this phenomenon will have serious impacts on Tainan coastal area, especially it will worsen coastal erosion. So we have used Bruun rule to calculate the shoreline retreated rate at every two decade period since 2012. Wave data and bottom sand diameter D50 were used to calculate the closure depth that will be used in Bruun formula and the active length of the profile is computed by the beach slope and Dean's equilibrium concept. After analysis, we found that in 2020, the shoreline will be retreated about 3.0 to 12 meters. The maximum retreat is happening at Chigu coast. In 2060, average shoreline retreated distance is 22m, but at Chigu and Tsenwen, shoreline may be backward retreat about 70m and will be reached about 130m at 2100, this will cause a lot of coastal land loss to the sea, protect and mitigate project must be quickly performed.

Keywords: sea level rise, shoreline, coastal erosion, climate change

Procedia PDF Downloads 407
21836 Climate Change Effects on Western Coastal Groundwater in Yemen (1981-2020)

Authors: Afrah S. M. Al-Mahfadi

Abstract:

Climate change is a global issue that has significant impacts on water resources, resulting in environmental, economic, and political consequences. Groundwater reserves, particularly in coastal areas, are facing depletion, leading to serious problems in regions such as Yemen. This study focuses on the western coastal region of Yemen, which already faces risks such as water crises, food insecurity, and widespread poverty. Climate change exacerbates these risks by causing high temperatures, sea level rise, inadequate sea level rise, and inadequate environmental policies. Research Aim: The aim of this research is to provide a comprehensive overview of the impact of climate change on the western coastal region of Yemen. Specifically, the study aims to analyze the relationship between climate change and the loss of fresh groundwater resources in this area. Methodology: The research utilizes a combination of a literature review and three case studies conducted through site visits. Arch-GIS mapping is employed to analyze and visualize the relationship between climate change and the depletion of fresh groundwater resources. Additionally, data on precipitation from 1981 to 2020 and scenarios of projected sea level rise (SLR) are considered. Findings: The study reveals several future issues resulting from climate change. It is projected that the annual temperature will increase while the rainfall rate will decrease. Furthermore, the sea level is expected to rise by approximately 0.30 to 0.72 meters by 2100. These factors contribute to the loss of wetlands, the retreat of shorelines and estuaries, and the intrusion of seawater into the coastal aquifer, rendering drinking water from wells increasingly saline. Data Collection and Analysis Procedures: Data for this research are collected through a literature review, including studies on climate change impacts in coastal areas and the hydrogeology of the study region. Furthermore, three case studies are conducted through site visits. Arch-GIS mapping techniques are utilized to analyze the relationship between climate change and the loss of fresh groundwater resources. Historical precipitation data from 1981 to 2020 and scenarios of projected sea level rise are also analyzed. Questions Addressed: (1) What is the impact of climate change on the western coastal region of Yemen? (2) How does climate change affect the availability of fresh groundwater resources in this area? Conclusion: The study concludes that the western coastal region of Yemen is facing significant challenges due to climate change. The projected increase in temperature, decrease in rainfall, and rise in sea levels have severe implications, such as the loss of wetlands, shorelines, and estuaries. Additionally, the intrusion of seawater into the coastal aquifer further exacerbates the issue of saline drinking water. Urgent measures are needed to address climate change, including improving water management, implementing integrated coastal zone planning, raising awareness among stakeholders, and implementing emergency projects to mitigate the impacts. Recommendations: To mitigate the adverse effects of climate change, several recommendations are provided. These include improving water management practices, developing integrated coastal zone planning strategies, raising awareness among all stakeholders, improving health and education, and implementing emergency projects to combat climate change. These measures aim to enhance adaptive capacity and resilience in the face of future climate change impacts.

Keywords: climate change, groundwater, coastal wetlands, Yemen

Procedia PDF Downloads 63
21835 A Study on the Wind Energy Produced in the Building Skin Using Piezoelectricity

Authors: Sara Mota Carmo

Abstract:

Nowadays, there is an increasing demand for buildings to be energetically autonomous through energy generation systems from renewable sources, according to the concept of a net zero energy building (NZEB). In this sense, the present study aims to study the integration of wind energy through piezoelectricity applied to the building skin. As a methodology, a reduced-scale prototype of a building was developed and tested in a wind tunnel, with the four façades monitored by recording the energy produced by each. The applied wind intensities varied between 2m/s and 8m/s and the four façades were compared with each other regarding the energy produced according to the intensity of wind and position in the wind. The results obtained concluded that it was not a sufficient system to generate sources to cover family residential buildings' energy needs. However, piezoelectricity is expanding and can be a promising path for a wind energy system in architecture as a complement to other renewable energy sources.

Keywords: adaptative building skin, kinetic façade, wind energy in architecture, NZEB

Procedia PDF Downloads 75
21834 Modulation of Alternative Respiration Pathyway under Salt Stress in Exogenous Estrogen-Treated Maize Seedlings

Authors: Farideh K. Khosroushahi, Serkan Erdal, Mucip Geni̇şel

Abstract:

Soil salinity is one of the major abiotic stress factors that restricts arable land and reduces crop productivity worldwide. High salt concentration adversely affects plant growth and development inducing water deficit, ionic toxicity, nutrient imbalance, and lead to oxidative stress. Although the stimulating role of mammalian sex hormones on various biological and biochemical processes under normal and stress condition have been proven, there is no study regarding with these hormone's effect on modulation of the alternative respiration pathway and AOX gene expression. In this study, changes in alternative respiration pathway in leaves of maize seedlings under salinity and the possible modulating effect of estrogen on these changes were investigated. Maize seedlings were grown in a hydroponic media for 11 days and then were exposed to salt stress for 3 days after being sprayed estrogen. The data obtained from oxygen consumption revealed that salt stress elevated cellular respiration value in the leaves. In addition, a marked increase was observed at alternative respiration level in salt-stressed seedlings. Compared to salt application alone, supplementation with estrogen resulted in a significant rise in alternative oxidase (AOX) activities. Similarly, while salt stress caused to rise in expressions of AOX gene compared to control seedlings, estrogen application resulted in further activation of these genes’ expression compared to stressed-seedlings alone. These data revealed that mitigating role of estrogen against the detrimental effects of salt stress is linked to modulation of alternative respiration pathway.

Keywords: alternative oxidase, estrogen, Ssalt stress, AOX, maize

Procedia PDF Downloads 214
21833 Hydrodynamic and Morphological Simulation of Karnafuli River Using CCHE2D Model

Authors: Shah Md. Imran Kabir, Md. Mostafa Ali

Abstract:

Karnafuli is one of the most important rivers of Bangladesh which is playing a vital role in our national economy. The major sea port of Bangladesh is the Chittagong port located on the right bank of Karnafuli River Bangladesh. Karnafuli river port is considered as the lifeline of the economic activities of the country. Therefore, it is always necessary to keep the river active and live in terms of its navigability. Due to man-made intervention, the river flow becomes interrupted and thereby may cause the change in the river morphology. The specific objective of this study is the application of 2D model to assess different hydrodynamic and morphological characteristics of the river due to normal flow condition and sea level rise condition. The model has been set with the recent bathymetry data collected from CPA hydrography division. For model setup, the river reach is selected between Kalurghat and Khal no-18. Time series discharge and water level data are used as boundary condition at upstream and downstream. Calibration and validation have been carried out with the recent water level data at Khal no-10 and Sadarghat. The total reach length of the river has been divided into four parts to determine different hydrodynamic and morphological assessments like variation of velocity, sediment erosion and deposition and bed level changes also have been studied. This model has been used for the assessment of river response due sediment transport and sea level rise. Model result shows slight increase in velocity. It also changes the rate of erosion and deposition at some location of the selected reach. It is hoped that the result of the model simulation will be helpful to suggest the effect of possible future development work to be implemented on this river.

Keywords: CCHE 2D, hydrodynamic, morphology, sea level rise

Procedia PDF Downloads 377
21832 Photovoltaic Solar Energy in Public Buildings: A Showcase for Society

Authors: Eliane Ferreira da Silva

Abstract:

This paper aims to mobilize and sensitize public administration leaders to good practices and encourage investment in the PV system in Brazil. It presents a case study methodology for dimensioning the PV system in the roofs of the public buildings of the Esplanade of the Ministries, Brasilia, capital of the country, with predefined resources, starting with the Sustainable Esplanade Project (SEP), of the exponential growth of photovoltaic solar energy in the world and making a comparison with the solar power plant of the Ministry of Mines and Energy (MME), active since: 6/10/2016. In order to do so, it was necessary to evaluate the energy efficiency of the buildings in the period from January 2016 to April 2017, (16 months) identifying the opportunities to reduce electric energy expenses, through the adjustment of contracted demand, the tariff framework and correction of existing active energy. The instrument used to collect data on electric bills was the e-SIC citizen information system. The study considered in addition to the technical and operational aspects, the historical, cultural, architectural and climatic aspects, involved by several actors. Identifying the reductions of expenses, the study directed to the following aspects: Case 1) economic feasibility for exchanges of common lamps, for LED lamps, and, Case 2) economic feasibility for the implementation of photovoltaic solar system connected to the grid. For the case 2, PV*SOL Premium Software was used to simulate several possibilities of photovoltaic panels, analyzing the best performance, according to local characteristics, such as solar orientation, latitude, annual average solar radiation. A simulation of an ideal photovoltaic solar system was made, with due calculations of its yield, to provide a compensation of the energy expenditure of the building - or part of it - through the use of the alternative source in question. The study develops a methodology for public administration, as a major consumer of electricity, to act in a responsible, fiscalizing and incentive way in reducing energy waste, and consequently reducing greenhouse gases.

Keywords: energy efficiency, esplanade of ministries, photovoltaic solar energy, public buildings, sustainable building

Procedia PDF Downloads 131
21831 Assessment of Airtightness Through a Standardized Procedure in a Nearly-Zero Energy Demand House

Authors: Mar Cañada Soriano, Rafael Royo-Pastor, Carolina Aparicio-Fernández, Jose-Luis Vivancos

Abstract:

The lack of insulation, along with the existence of air leakages, constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, pressurization and depressurization tests can be performed. Among them, the Blower Door test is a standardized procedure to determine the airtightness of a space which characterizes the rate of air leakages through the envelope surface, calculating to this purpose an air flow rate indicator. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place. Among them, the infrared thermography entails a valuable technique to this purpose since it enables their detection. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house located in the Valencian orchad (Spain) restored under the Passive House standard using to this purpose the blower-door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to determine its energy performance, and the infiltrations’ identification was carried out by means of infrared thermography. The low levels of infiltrations obtained suggest that this house may comply with the Passive House standard.

Keywords: airtightness, blower door, trnflow, infrared thermography

Procedia PDF Downloads 122
21830 Regenerating Habitats. A Housing Based on Modular Wooden Systems

Authors: Rui Pedro de Sousa Guimarães Ferreira, Carlos Alberto Maia Domínguez

Abstract:

Despite the ambitions to achieve climate neutrality by 2050, to fulfill the Paris Agreement's goals, the building and construction sector remains one of the most resource-intensive and greenhouse gas-emitting industries in the world, accounting for 40% of worldwide CO ₂ emissions. Over the past few decades, globalization and population growth have led to an exponential rise in demand in the housing market and, by extension, in the building industry. Considering this housing crisis, it is obvious that we will not stop building in the near future. However, the transition, which has already started, is challenging and complex because it calls for the worldwide participation of numerous organizations in altering how building systems, which have been a part of our everyday existence for over a century, are used. Wood is one of the alternatives that is most frequently used nowadays (under responsible forestry conditions) because of its physical qualities and, most importantly, because it produces fewer carbon emissions during manufacturing than steel or concrete. Furthermore, as wood retains its capacity to store CO ₂ after application and throughout the life of the building, working as a natural carbon filter, it helps to reduce greenhouse gas emissions. After a century-long focus on other materials, in the last few decades, technological advancements have made it possible to innovate systems centered around the use of wood. However, there are still some questions that require further exploration. It is necessary to standardize production and manufacturing processes based on prefabrication and modularization principles to achieve greater precision and optimization of the solutions, decreasing building time, prices, and waste from raw materials. In addition, this approach will make it possible to develop new architectural solutions to solve the rigidity and irreversibility of buildings, two of the most important issues facing housing today. Most current models are still created as inflexible, fixed, monofunctional structures that discourage any kind of regeneration, based on matrices that sustain the conventional family's traditional model and are founded on rigid, impenetrable compartmentalization. Adaptability and flexibility in housing are, and always have been, necessities and key components of architecture. People today need to constantly adapt to their surroundings and themselves because of the fast-paced, disposable, and quickly obsolescent nature of modern items. Migrations on a global scale, different kinds of co-housing, or even personal changes are some of the new questions that buildings have to answer. Designing with the reversibility of construction systems and materials in mind not only allows for the concept of "looping" in construction, with environmental advantages that enable the development of a circular economy in the sector but also unleashes multiple social benefits. In this sense, it is imperative to develop prefabricated and modular construction systems able to address the formalization of a reversible proposition that adjusts to the scale of time and its multiple reformulations, many of which are unpredictable. We must allow buildings to change, grow, or shrink over their lifetime, respecting their nature and, finally, the nature of the people living in them. It´s the ability to anticipate the unexpected, adapt to social factors, and take account of demographic shifts in society to stabilize communities, the foundation of real innovative sustainability.

Keywords: modular, timber, flexibility, housing

Procedia PDF Downloads 76
21829 Investigation on The Feasibility of a Solar Desiccant Cooling System in Libya

Authors: A. S. Zgalei, B. T. Al-Mabrouk

Abstract:

With a particularly significant growth rate observed in the Libyan commercial and residential buildings coupled with a growth in energy demand, solar desiccant evaporative cooling offers energy savings and promises a good sharing for sustainable buildings where the availability of solar radiation matches with the cooling load demand. The paper presents a short introduction for the desiccant systems. A mathematical model of a selected system has been developed and a simulation has been performed in order to investigate the system performance at different working conditions and an optimum design of the system structure is established. The results showed a technical feasibility of the system working under the Libyan climatic conditions with a reasonable COP at temperatures that can be obtained through the solar reactivation system. Discussion of the results and the recommendations for future work are proposed.

Keywords: computer program, solar desiccant wheel cooling, system modelling, simulation, technical feasibility

Procedia PDF Downloads 538
21828 Permeodynamic Particulate Matter Filtration for Improved Air Quality

Authors: Hamad M. Alnagran, Mohammed S. Imbabi

Abstract:

Particulate matter (PM) in the air we breathe is detrimental to health. Overcoming this problem has attracted interest and prompted research on the use of PM filtration in commercial buildings and homes to be carried out. The consensus is that tangible health benefits can result from the use of PM filters in most urban environments, to clean up the building’s fresh air supply and thereby reduce exposure of residents to airborne PM. The authors have investigated and are developing a new large-scale Permeodynamic Filtration Technology (PFT) capable of permanently filtering and removing airborne PMs from outdoor spaces, thus also benefiting internal spaces such as the interiors of buildings. Theoretical models were developed, and laboratory trials carried out to determine, and validate through measurement permeodynamic filtration efficiency and pressure drop as functions of PM particle size distributions. The conclusion is that PFT offers a potentially viable, cost effective end of pipe solution to the problem of airborne PM.

Keywords: air filtration, particulate matter, particle size distribution, permeodynamic

Procedia PDF Downloads 202
21827 Flammability and Smoke Toxicity of Rainscreen Façades

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Four façade systems were tested using a reduced height BS 8414-2 (5 m) test rig. An L-shaped masonry test wall was clad with three types of insulation and an aluminum composite panel with a non-combustible filling (meeting Euroclass A2). A large (3 MW) wooden crib was ignited in a recess at the base of the L, and the fire was allowed to burn for 30 minutes. Air velocity measurements and gas samples were taken from the main ventilation duct and also a small additional ventilation duct, like those in an apartment bathroom or kitchen. This provided a direct route of travel for smoke from the building façade to a theoretical room using a similar design to many high-rise buildings where the vent is connected to (approximately) 30 m³ rooms. The times to incapacitation and lethality of the effluent were calculated for both the main exhaust vent and for a vent connected to a theoretical 30 m³ room. The rainscreen façade systems tested were the common combinations seen in many tower blocks across the UK. Three tests using ACM A2 with Stonewool, Phenolic foam, and Polyisocyanurate (PIR) foam. A fourth test was conducted with PIR and ACM-PE (polyethylene core). Measurements in the main exhaust duct were representative of the effluent from the burning wood crib. FEDs showed incapacitation could occur up to 30 times quicker with combustible insulation than non-combustible insulation, with lethal gas concentrations accumulating up to 2.7 times faster than other combinations. The PE-cored ACM/PIR combination produced a ferocious fire, resulting in the termination of the test after 13.5 minutes for safety reasons. Occupants of the theoretical room in the PIR/ACM A2 test reached a FED of 1 after 22 minutes; for PF/ACM A2, this took 25 minutes, and for stone wool, a lethal dose measurement of 0.6 was reached at the end of the 30-minute test. In conclusion, when measuring smoke toxicity in the exhaust duct, there is little difference between smoke toxicity measurements between façade systems. Toxicity measured in the main exhaust is largely a result of the wood crib used to ignite the façade system. The addition of a vent allowed smoke toxicity to be quantified in the cavity of the façade, providing a realistic way of measuring the toxicity of smoke that could enter an apartment from a façade fire.

Keywords: smoke toxicity, large-scale testing, BS8414, FED

Procedia PDF Downloads 59
21826 A Geospatial Analysis of Diminishing Himalayan Ice Under Influence of Anthropomorphism: A Case Study of Himalayan Ice From 1990 to 2020 in Pakistan

Authors: Ali Akber Khan

Abstract:

In the 21st century, freshwater resources, especially ice cover, would have grave significance as ice carries most of the total freshwater resources in the world. The Himalayas in Pakistan is one of the biggest sources of fresh water for Pakistan. These regions of the Himalayas and neighboring mountains include Swat, Chitral, Upper Dir, Lower Dir, Mardan, Swabi, Haripur, Abbottabad, Muzaffarabad, Neelum, and Mansehra in Pakistan. The study examines ice resources in the years 1990 to 2020 and shows a decrease in snow-shrouded regions, reducing from 72,187.54 sq. km in 1990 to 66,061.17 sq. km in 2020. This indicates a total ice cover loss of 6,126.37 sq. km area in 40 years due to environmental variabilities and climatic changes. From 2010 to 2020 loss of ice-covered area was 3479.24 sq. km. The mean maximum temperature from 2000 to 2010 in December, January and February is 7.4 °C, 4.2 °Cand 7.8 °C respectively, while from 2011 to 2022 mean maximum temperature registered in December, January and February is 6.9°C, 4.1°C and 6.6 °C respectively. Investigation of anthropogenic elements in the region shows population rise. From investigation, 22 cities and towns of the Himalayas region and neighboring mountains showed the highest rise in population, 329.46%, and a minimum rise of 14.39%, while 12 towns have risen in population by more than 100% from 1990 to 2023. This examination adds to a point-by-point comprehension of the connections among normal variables, population dynamics, snow cover variation, evidence strategies, and multipurpose measures for maintained and strong improvement in the districts.

Keywords: snow, ice, Himalayas, Pakistan, climate change, population

Procedia PDF Downloads 46
21825 Forecasting Impacts on Vulnerable Shorelines: Vulnerability Assessment Along the Coastal Zone of Messologi Area - Western Greece

Authors: Evangelos Tsakalos, Maria Kazantzaki, Eleni Filippaki, Yannis Bassiakos

Abstract:

The coastal areas of the Mediterranean have been extensively affected by the transgressive event that followed the Last Glacial Maximum, with many studies conducted regarding the stratigraphic configuration of coastal sediments around the Mediterranean. The coastal zone of the Messologi area, western Greece, consists of low relief beaches containing low cliffs and eroded dunes, a fact which, in combination with the rising sea level and tectonic subsidence of the area, has led to substantial coastal. Coastal vulnerability assessment is a useful means of identifying areas of coastline that are vulnerable to impacts of climate change and coastal processes, highlighting potential problem areas. Commonly, coastal vulnerability assessment takes the form of an ‘index’ that quantifies the relative vulnerability along a coastline. Here we make use of the coastal vulnerability index (CVI) methodology by Thieler and Hammar-Klose, by considering geological features, coastal slope, relative sea-level change, shoreline erosion/accretion rates, and mean significant wave height as well as mean tide range to assess the present-day vulnerability of the coastal zone of Messologi area. In light of this, an impact assessment is performed under three different sea level rise scenarios, and adaptation measures to control climate change events are proposed. This study contributes toward coastal zone management practices in low-lying areas that have little data information, assisting decision-makers in adopting best adaptations options to overcome sea level rise impact on vulnerable areas similar to the coastal zone of Messologi.

Keywords: coastal vulnerability index, coastal erosion, sea level rise, GIS

Procedia PDF Downloads 174
21824 The Rise of Populist Right-Wing Parties in Western Europe: A Case Study of the Front National in France

Authors: Jessica Da Silva

Abstract:

This paper examines France as a microcosm of the rise of right-wing populism in the broader European context. The attack on the Charlie Hebdo newspaper is arguably, a reaction to the aggressive European secularism spreading throughout Europe that sees its true enemy in the growth of extremist and violent interpretations of Islam. With each terrorist attack, the popularity of anti-immigrant policies and ideologies increases. What ultimately drives movements like the French National Front are the concepts of monoculture and ethnic identity. This paper analyses the character of right-wing populist parties using the National Front as a case study. Such parties generate anxiety and resentment by fomenting an irrational fear of the ‘other’. In this way, populists promote their identity on the basis of xenophobia, Islamophobia, and practices of social exclusion against targeted out-groups. They position immigrants and foreigners as ‘others’, claiming they are a threat to native cultures and a source of social and economic strife. Ultimately, right-wing populism exerts a negative influence over the democratic framework in Europe and opposes the European Union’s integration project. Right-wing populism attacks this supranational model because of its alleged inefficiency and departure from what it considers to be 'authentic' European traditions and citizenship. In this context, understanding the rise of radical right-wing populist parties is extremely important for the future of Europe, democracy and multiculturalism.

Keywords: cultural identity, Europeanization, front national, immigration, integration, Islamophobia, multiculturalism, nationalism, right-wing populist parties, xenophobia

Procedia PDF Downloads 353
21823 Low NOx Combustion of Pulverized Petroleum Cokes

Authors: Sewon Kim, Minjun Kwon, Changyeop Lee

Abstract:

This study is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air are optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87.

Keywords: petroleum cokes, low NOx, combustion, equivalence ratio

Procedia PDF Downloads 622
21822 Design with Nature: Vernacular Buildings Adaptation to Sand Landforms in Sahara Desert

Authors: Mohammed Sherzad

Abstract:

The Sahara desert covers third of the total surface of Africa with a quarter of this area within the national boundaries of Algeria. Sand drift and deposition is considered one of the major factors of the desertification process in the area. It is estimated that a third of the world's hot arid lands are covered by aeolian sand deposits, forming extensive sand bedforms. The Gourrara region in the Grand Erg Occidental (west of Algerian Sahara) and the region of Souf in the Grand Erg Oriental (east of Algerian Sahara) have been chosen as case studies. These were significant cultural and trading centers for many centuries despite their remote location and their harsh desert environment particularly solar radiation and sand drift and deposition. The architecture of the sustained vernacular settlements in each of the two regions has unique design features for this environment. So do the irrigation systems used - palm groves and the foggara system for capturing and distributing groundwater. However, the ecological balance which enabled the Saharans to live with the desert has been upset. New buildings often use technology based on models imported or imposed from areas that climatically have little in common. These make the inhabitants live ‘in the desert’ rather than ‘with the desert’. This paper will describe the qualities of the vernacular architecture and demonstrate its effectiveness and adaptability to the region’s harsh desert environment in comparison with contemporary buildings. Developing design guides and approaches based on lessons from the traditional architecture is important to ensure sustained livelihoods of the inhabitants in these areas.

Keywords: vernacular architecture, desert architecture, hot climate, aeolian sand deposition

Procedia PDF Downloads 464
21821 An Assessment of Thermal Comfort and Air Quality in Educational Space: A Case Study of Design Studios in the Arab Academy for Science, Technology and Maritime Transport, Alexandria

Authors: Bakr Gomaa, Hana Awad

Abstract:

A stuffy room is one of the indicators of poor indoor air quality. Through working in an educational building in Alexandria, it is noticed that one of the rooms is smelly. A field study is conducted in a private university building in Alexandria to achieve indoor sustainable educational environment. Additionally, the indoor air quality is empirically assessed, and thermal comfort is identified in educational buildings, in studio halls specifically during lecture hours. The current research uses qualitative and quantitative methods in the form of literature review, investigation and test measurements. At a similar time that the teachers and students fill in a questionnaire regarding the concept of indoor climate, thermal comfort variables are determined. The indoor thermal conditions of the studio are assessed through three variables including Fanger’s comfort indicators (calculated using PMV, predicted mean vote and PPD, predicted percentage of dissatisfied people), the actual people clothing and metabolic rate. Actual measurements of air quality are obtained in a case study in an architectural building. Results have proved that indoor climatic conditions as air flow and temperature are inconvenient to inhabitants. Regarding questionnaire results, occupants appear to be uncomfortable in both seasons, with result percentages out of the acceptable range. Finally, further researches will center on how to preserve thermal comfort in school buildings since it has a vital influence on the student’s knowledge.

Keywords: educational buildings, Indoor air quality, productivity, thermal comfort

Procedia PDF Downloads 194