Search results for: fuzzy object
1250 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic
Authors: N. Drir, L. Barazane, M. Loudini
Abstract:
It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.Keywords: maximum power point tracking, neural networks, photovoltaic, P&O
Procedia PDF Downloads 3401249 Metaphors of Love and Passion in Lithuanian Comics
Authors: Saulutė Juzelėnienė, Skirmantė Šarkauskienė
Abstract:
In this paper, it is aimed to analyse the multimodal representations of the concepts of LOVE and PASSION in Lithuanian graphic novel “Gertrūda”, by Gerda Jord. The research is based on the earlier findings by Forceville (2005), Eerden (2009) as well as insights made by Shihara and Matsunaka (2009) and Kövecses (2000). The domains of target and source of LOVE and PASSION metaphors in comics are expressed by verbal and non-verbal cues. The analysis of non-verbal cues adopts the concepts of rune and indexes. A pictorial rune is a graphic representation of an object that does not exist in reality in comics, such as lines, dashes, text "balloons", and pictorial index – a graphically represented object of reality, a real symptom expressing a certain emotion, such as a wide smile, furrowed eyebrows, etc. Indexes are often hyperbolized in comics. The research revealed that most frequent source domains are CLOSINESS/UNITY, NATURAL/ PHYSICAL FORCE, VALUABLE OBJECT, PRESSURE. The target is the emotion of LOVE/PASSION which belongs to a more abstract domain of psychological experience. In this kind of metaphor, the picture can be interpreted as representing the emotion of happiness. Data are taken from Lithuanian comic books and Internet sites, where comics have been presented. The data and the analysis we are providing in this article aims to reveal that there are pictorial metaphors that manifest conceptual metaphors that are also expressed verbally and that methodological framework constructed for the analysis in the papers by Forceville at all is applicable to other emotions and culture specific pictorial manifestations.Keywords: multimodal metaphor, conceptual metaphor, comics, graphic novel, concept of love/passion
Procedia PDF Downloads 681248 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population
Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya
Abstract:
Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa
Procedia PDF Downloads 1071247 Detection of Pharmaceutical Personal Protective Equipment in Video Stream
Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva
Abstract:
Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE
Procedia PDF Downloads 891246 Enhanced Acquisition Time of a Quantum Holography Scheme within a Nonlinear Interferometer
Authors: Sergio Tovar-Pérez, Sebastian Töpfer, Markus Gräfe
Abstract:
The work proposes a technique that decreases the detection acquisition time of quantum holography schemes down to one-third; this allows the possibility to image moving objects. Since its invention, quantum holography with undetected photon schemes has gained interest in the scientific community. This is mainly due to its ability to tailor the detected wavelengths according to the needs of the scheme implementation. Yet this wavelength flexibility grants the scheme a wide range of possible applications; an important matter was yet to be addressed. Since the scheme uses digital phase-shifting techniques to retrieve the information of the object out of the interference pattern, it is necessary to acquire a set of at least four images of the interference pattern along with well-defined phase steps to recover the full object information. Hence, the imaging method requires larger acquisition times to produce well-resolved images. As a consequence, the measurement of moving objects remains out of the reach of the imaging scheme. This work presents the use and implementation of a spatial light modulator along with a digital holographic technique called quasi-parallel phase-shifting. This technique uses the spatial light modulator to build a structured phase image consisting of a chessboard pattern containing the different phase steps for digitally calculating the object information. Depending on the reduction in the number of needed frames, the acquisition time reduces by a significant factor. This technique opens the door to the implementation of the scheme for moving objects. In particular, the application of this scheme in imaging alive specimens comes one step closer.Keywords: quasi-parallel phase shifting, quantum imaging, quantum holography, quantum metrology
Procedia PDF Downloads 1141245 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3711244 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction
Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani
Abstract:
Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse
Procedia PDF Downloads 901243 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot
Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan
Abstract:
Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.Keywords: ADAS, home zone parking pilot, object detection, visual SLAM
Procedia PDF Downloads 671242 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques
Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada
Abstract:
Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer
Procedia PDF Downloads 1501241 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 3631240 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 3331239 Design and Implementation of Neural Network Based Controller for Self-Driven Vehicle
Authors: Hassam Muazzam
Abstract:
This paper devises an autonomous self-driven vehicle that is capable of taking a disabled person to his/her desired location using three different power sources (gasoline, solar, electric) without any control from the user, avoiding the obstacles in the way. The GPS co-ordinates of the desired location are sent to the main processing board via a GSM module. After the GPS co-ordinates are sent, the path to be followed by the vehicle is devised by Pythagoras theorem. The distance and angle between the present location and the desired location is calculated and then the vehicle starts moving in the desired direction. Meanwhile real-time data from ultrasonic sensors is fed to the board for obstacle avoidance mechanism. Ultrasonic sensors are used to quantify the distance of the vehicle from the object. The distance and position of the object is then used to make decisions regarding the direction of vehicle in order to avoid the obstacles using artificial neural network which is implemented using ATmega1280. Also the vehicle provides the feedback location at remote location.Keywords: autonomous self-driven vehicle, obstacle avoidance, desired location, pythagoras theorem, neural network, remote location
Procedia PDF Downloads 4101238 A Look at the Quantum Theory of Atoms in Molecules from the Discrete Morse Theory
Authors: Dairo Jose Hernandez Paez
Abstract:
The quantum theory of atoms in molecules (QTAIM) allows us to obtain topological information on electronic density in quantum mechanical systems. The QTAIM starts by considering the electron density as a continuous mathematical object. On the other hand, the discretization of electron density is also a mathematical object, which, from discrete mathematics, would allow a new approach to its topological study. From this point of view, it is necessary to develop a series of steps that provide the theoretical support that guarantees its application. Some of the steps that we consider most important are mentioned below: (1) obtain good representations of the electron density through computational calculations, (2) design a methodology for the discretization of electron density, and construct the simplicial complex. (3) Make an analysis of the discrete vector field associating the simplicial complex. (4) Finally, in this research, we propose to use the discrete Morse theory as a mathematical tool to carry out studies of electron density topology.Keywords: discrete mathematics, Discrete Morse theory, electronic density, computational calculations
Procedia PDF Downloads 1041237 Psychoanalytic Understanding of the Autistic Self
Authors: Aastha Chaudhry
Abstract:
This continuous structuring of the ego through the developmental ages, starting with the body, has been understood through various perspectives from the object-relations world. Klein, Ogden, Winnicott to name a few, have been masters at helping mark a trajectory for the self to come to fruition. However, what constitutes those states, those relational structures, the dynamics of transference and the concept of inner objects has been more or less left unexplored in the psychoanalytic developmental theory. In this paper, through the help of a case study, Ogden’s ideas of an autistic contagious position and Kleinian theory of object relations is proposed to visualize a lens that helps to understand the relationship of the autistic self and body and allows us to take a look at object relations through countertransference. With the help of case vignettes, an understanding of experience is seen as dominated in the autistic contagious position with the help of defensive structuring that is not only self-fulfilling and sensorial oriented, but is also a pre symbolic mode of relating to the other. The aim of this clinical, experiential study is to better understand the self-body and the self-other relationships, or the absence thereof, in the autistic world and states. The goal of the study was to find such a relationship between play, body, structuring of experience and an autistic self in these individuals through that. Aim being that psychotherapy is brought to fore in the world of autism. The method was case study with one on one intervention, that was psychodynamically informed and play therapy based. Some of the findings after a year of work with these individuals were that: in the absence of a shared vocabulary, communication in two contrasting individuals happens primarily through the assistance of the body. Somatic countertransference, for instance, is how one can be with someone in a therapeutic relationship – and with autistic adolescents it is a further complicated relationship. With a mind somewhere in infanthood, and body experiencing adulthood, it becomes a challenge for the therapist to meet the client where they are. With pre-verbal states, play becomes such a potential space where two individuals could meet – a safe ground for forces to be contained. Play, then, becomes a mode of communication with such a population.Keywords: autism, psychoanalytic, play, self
Procedia PDF Downloads 1331236 Companies’ Internationalization: Multi-Criteria-Based Prioritization Using Fuzzy Logic
Authors: Jorge Anibal Restrepo Morales, Sonia Martín Gómez
Abstract:
A model based on a logical framework was developed to quantify SMEs' internationalization capacity. To do so, linguistic variables, such as human talent, infrastructure, innovation strategies, FTAs, marketing strategies, finance, etc. were integrated. It is argued that a company’s management of international markets depends on internal factors, especially capabilities and resources available. This study considers internal factors as the biggest business challenge because they force companies to develop an adequate set of capabilities. At this stage, importance and strategic relevance have to be defined in order to build competitive advantages. A fuzzy inference system is proposed to model the resources, skills, and capabilities that determine the success of internationalization. Data: 157 linguistic variables were used. These variables were defined by international trade entrepreneurs, experts, consultants, and researchers. Using expert judgment, the variables were condensed into18 factors that explain SMEs’ export capacity. The proposed model is applied by means of a case study of the textile and clothing cluster in Medellin, Colombia. In the model implementation, a general index of 28.2 was obtained for internationalization capabilities. The result confirms that the sector’s current capabilities and resources are not sufficient for a successful integration into the international market. The model specifies the factors and variables, which need to be worked on in order to improve export capability. In the case of textile companies, the lack of a continuous recording of information stands out. Likewise, there are very few studies directed towards developing long-term plans, and., there is little consistency in exports criteria. This method emerges as an innovative management tool linked to internal organizational spheres and their different abilities.Keywords: business strategy, exports, internationalization, fuzzy set methods
Procedia PDF Downloads 2961235 Performance Evaluation of Microcontroller-Based Fuzzy Controller for Fruit Drying System
Authors: Salisu Umar
Abstract:
Fruits are a seasonal crop and get spoiled quickly. They are dried to be preserved for a long period. The natural drying process requires more time. The investment on space requirement and infrastructure is large, and cannot be afforded by a middle class farmer. Therefore there is a need for a comparatively small unit with reduced drying times, which can be afforded by a middle class farmer. A controlled environment suitable for fruit drying is developed within a closed chamber and is a three step process. Firstly, the infrared light is used internally to preheated the fruit to speedily remove the water content inside the fruit for fast drying. Secondly, hot air of a specified temperature is blown inside the chamber to maintain the humidity below a specified level and exhaust the humid air of the chamber. Thirdly the microcontroller idles disconnecting the power to the chamber after the weight of the fruits is reduced to a known value of its original weight. This activates a buzzer for duration of ten seconds to indicate the end of the drying process. The results obtained indicate that the system is significantly reducing the drying time without affecting the quality of the fruits compared with the existing dryers.Keywords: fruit, fuzzy controller, microcontroller, temperature, weight and humidity
Procedia PDF Downloads 4451234 Vibration Control of a Tracked Vehicle Driver Seat via Magnetorheological Damper
Authors: Wael Ata
Abstract:
Tracked vehicles are exposed to severe operating conditions during their battlefield. The suspension system of such vehicles plays a crucial role in the mitigation of vibration transmitted from unevenness to vehicle hull and consequently to the crew. When the vehicles are crossing the road with high speeds, the driver is subjected to a high magnitude of vibration dose. This is because of the passive suspension system of the tracked vehicle lack the effectiveness to withstand induced vibration from irregular terrains. This paper presents vibration control of a semi-active seat suspension incorporating Magnetorheological (MR) damper fitted to a driver seat of an amphibious tracked vehicle (BMP-1). A half vehicle model featuring the proposed semi-active seat suspension is developed and its governing equations are derived. Two controllers namely; skyhook and fuzzy logic skyhook based to suppress the vibration dose at driver’s seat are formulated. The results show that the controlled MR suspension seat along with the vehicle model has substantially suppressed vibration levels at the driver’s seat under bump and sinusoidal excitationsKeywords: Tracked Vehicles, MR dampers, Skyhook controller, fuzzy logic controller
Procedia PDF Downloads 1221233 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing
Authors: McClain Thiel
Abstract:
Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.Keywords: monocular distancing, computer vision, facial analysis, 3D localization
Procedia PDF Downloads 1421232 Modeling of Building a Conceptual Scheme for Multimodal Freight Transportation Information System
Authors: Gia Surguladze, Nino Topuria, Lily Petriashvili, Giorgi Surguladze
Abstract:
Modeling of building processes of a multimodal freight transportation support information system is discussed based on modern CASE technologies. Functional efficiencies of ports in the eastern part of the Black Sea are analyzed taking into account their ecological, seasonal, resource usage parameters. By resources, we mean capacities of berths, cranes, automotive transport, as well as work crews and neighbouring airports. For the purpose of designing database of computer support system for Managerial (Logistics) function, using Object-Role Modeling (ORM) tool (NORMA – Natural ORM Architecture) is proposed, after which Entity Relationship Model (ERM) is generated in automated process. The software is developed based on Process-Oriented and Service-Oriented architecture, in Visual Studio.NET environment.Keywords: seaport resources, business-processes, multimodal transportation, CASE technology, object-role model, entity relationship model, SOA
Procedia PDF Downloads 4311231 The Location of Park and Ride Facilities Using the Fuzzy Inference Model
Authors: Anna Lower, Michal Lower, Robert Masztalski, Agnieszka Szumilas
Abstract:
Contemporary cities are facing serious congestion and parking problems. In urban transport policy the introduction of the park and ride system (P&R) is an increasingly popular way of limiting vehicular traffic. The determining of P&R facilities location is a key aspect of the system. Criteria for assessing the quality of the selected location are formulated generally and descriptively. The research outsourced to specialists are expensive and time consuming. The most focus is on the examination of a few selected places. The practice has shown that the choice of the location of these sites in a intuitive way without a detailed analysis of all the circumstances, often gives negative results. Then the existing facilities are not used as expected. Methods of location as a research topic are also widely taken in the scientific literature. Built mathematical models often do not bring the problem comprehensively, e.g. assuming that the city is linear, developed along one important communications corridor. The paper presents a new method where the expert knowledge is applied to fuzzy inference model. With such a built system even a less experienced person could benefit from it, e.g. urban planners, officials. The analysis result is obtained in a very short time, so a large number of the proposed location can also be verified in a short time. The proposed method is intended for testing of car parks location in a city. The paper will show selected examples of locations of the P&R facilities in cities planning to introduce the P&R. The analysis of existing objects will also be shown in the paper and they will be confronted with the opinions of the system users, with particular emphasis on unpopular locations. The research are executed using the fuzzy inference model which was built and described in more detail in the earlier paper of the authors. The results of analyzes are compared to documents of P&R facilities location outsourced by the city and opinions of existing facilities users expressed on social networking sites. The research of existing facilities were conducted by means of the fuzzy model. The results are consistent with actual users feedback. The proposed method proves to be good, but does not require the involvement of a large experts team and large financial contributions for complicated research. The method also provides an opportunity to show the alternative location of P&R facilities. The performed studies show that the method has been confirmed. The method can be applied in urban planning of the P&R facilities location in relation to the accompanying functions. Although the results of the method are approximate, they are not worse than results of analysis of employed experts. The advantage of this method is ease of use, which simplifies the professional expert analysis. The ability of analyzing a large number of alternative locations gives a broader view on the problem. It is valuable that the arduous analysis of the team of people can be replaced by the model's calculation. According to the authors, the proposed method is also suitable for implementation on a GIS platform.Keywords: fuzzy logic inference, park and ride system, P&R facilities, P&R location
Procedia PDF Downloads 3251230 A Psychoanalytic Lens: Unmasked Layers of the Self among Post-Graduate Psychology Students in Surviving the COVID-19 Lockdown
Authors: Sharon Sibanda, Benny Motileng
Abstract:
The World Health Organisation (WHO) identified the Sars-Cov-2 (COVID-19) as a pandemic on the 12ᵗʰ of March 2020, with South Africa recording its first case on the 5ᵗʰ of March 2020. The rapidly spreading virus led the South African government to implement one of the strictest nationwide lockdowns globally, resulting in the closing down of all institutions of higher learning effective March 18ᵗʰ 2020. Thus, this qualitative study primarily aimed to explore whether post-graduate psychology students were in a state of a depleted or cohesive self, post the psychological isolation of COVID-19 risk-adjusted level 5 lockdown. Semi-structured interviews from a qualitative interpretive approach comprising N=6 psychology post-graduate students facilitated a rich understanding of their intra-psychic experiences of the self. Thematic analysis of data gathered from the interviews illuminated how students were forced into the self by the emotional isolation of hard lockdown, with the emergence of core psychic conflict often defended against through external self-object experiences. The findings also suggest that lockdown stripped off this sample of psychology post-graduate students’ defensive escape from the inner self through external self-object distractions. The external self was stripped to the core of the internal self by the isolation of hard lockdown, thereby uncovering the psychic function of roles and defenses amalgamated throughout modern cultural consciousness that dictates self-functioning. The study suggests modelling reflexivity skills in the integration of internal and external self-experience dynamics as part of a training model for continued personal and professional development for psychology students.Keywords: COVID-19, fragmentation, self-object experience, true/false self
Procedia PDF Downloads 591229 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach
Authors: Niyongabo Elyse
Abstract:
Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling
Procedia PDF Downloads 511228 Improvement of Process Competitiveness Using Intelligent Reference Models
Authors: Julio Macedo
Abstract:
Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics
Procedia PDF Downloads 881227 Material Handling Equipment Selection Using Fuzzy AHP Approach
Authors: Priyanka Verma, Vijaya Dixit, Rishabh Bajpai
Abstract:
This research paper is aimed at selecting appropriate material handling equipment among the given choices so that the automation level in material handling can be enhanced. This work is a practical case scenario of material handling systems in consumer electronic appliances manufacturing organization. The choices of material handling equipment among which the decision has to be made are Automated Guided Vehicle’s (AGV), Autonomous Mobile Robots (AMR), Overhead Conveyer’s (OC) and Battery Operated Trucks/Vehicle’s (BOT). There is a need of attaining a certain level of automation in order to reduce human interventions in the organization. This requirement of achieving certain degree of automation can be attained by material handling equipment’s mentioned above. The main motive for selecting above equipment’s for study was solely based on corporate financial strategy of investment and return obtained through that investment made in stipulated time framework. Since the low cost automation with respect to material handling devices has to be achieved hence these equipment’s were selected. Investment to be done on each unit of this equipment is less than 20 lakh rupees (INR) and the recovery period is less than that of five years. Fuzzy analytic hierarchic process (FAHP) is applied here for selecting equipment where the four choices are evaluated on basis of four major criteria’s and 13 sub criteria’s, and are prioritized on the basis of weight obtained. The FAHP used here make use of triangular fuzzy numbers (TFN). The inability of the traditional AHP in order to deal with the subjectiveness and impreciseness in the pair-wise comparison process has been improved in the FAHP. The range of values for general rating purposes for all decision making parameters is kept between 0 and 1 on the basis of expert opinions captured on shop floor. These experts were familiar with operating environment and shop floor activity control. Instead of generating exact value the FAHP generates the ranges of values to accommodate the uncertainty in decision-making process. The four major criteria’s selected for the evaluation of choices of material handling equipment’s available are materials, technical capabilities, cost and other features. The thirteen sub criteria’s listed under these following four major criteria’s are weighing capacity, load per hour, material compatibility, capital cost, operating cost and maintenance cost, speed, distance moved, space required, frequency of trips, control required, safety and reliability issues. The key finding shows that among the four major criteria selected, cost is emerged as the most important criteria and is one of the key decision making aspect on the basis of which material equipment selection is based on. While further evaluating the choices of equipment available for each sub criteria it is found that AGV scores the highest weight in most of the sub-criteria’s. On carrying out complete analysis the research shows that AGV is the best material handling equipment suiting all decision criteria’s selected in FAHP and therefore it is beneficial for the organization to carry out automated material handling in the facility using AGV’s.Keywords: fuzzy analytic hierarchy process (FAHP), material handling equipment, subjectiveness, triangular fuzzy number (TFN)
Procedia PDF Downloads 4341226 Pre-Service Mathematics Teachers’ Mental Construction in Solving Equations and Inequalities Using ACE Teaching Cycle
Authors: Abera Kotu, Girma Tesema, Mitiku Tadesse
Abstract:
This study investigated ACE supported instruction and pre-service mathematics teachers’ mental construction in solving equations and inequalities. A mixed approach with concurrent parallel design was employed. It was conducted on two intact groups of regular first-year pre-service mathematics teachers at Fiche College of Teachers’ Education in which one group was assigned as an intervention group and the other group as a comparison group using the lottery method. There were 33 participants in the intervention and 32 participants in the comparison. Six pre-service mathematics teachers were selected for interview using purposive sampling based on pre-test results. An instruction supported with ACE cycle was given to the intervention group for two weeks duration of time. Written tasks, interviews, and observations were used to collect data. Data collected from written tasks were analyzed quantitatively using independent samples t-test and effect size. Data collected from interviews and observations were analyzed narratively. The findings of the study uncovered that ACE-supported instruction has a moderate effect on Pre-service Mathematics Teachers’ levels of conceptualizations of action, process, object, ad schema. Moreover, the ACE supported group out scored and performed better than the usual traditional method supported groups across the levels of conceptualization. The majority of pre-service mathematics teachers’ levels of conceptualizations were at action and process levels and their levels of conceptualization were linked with genetic decomposition more at action and object levels than object and schema. The use of ACE supported instruction is recommended to improve pre-service mathematics teachers’ mental construction.Keywords: ACE teaching cycle, APOS theory, mental construction, genetic composition
Procedia PDF Downloads 211225 An Investigation of Aluminum Foil-Epoxy Laminated Composites for Rapid Tooling Applications
Authors: Kevlin Govender, Anthony Walker, Glen Bright
Abstract:
Mass customization is an area of increased importance and the development of rapid tooling applications is pivotal to the success of mass customization. This paper presents a laminated object manufacturing (LOM) process for rapid tooling. The process is termed 3D metal laminate printing and utilizes domestic-grade aluminum foil and epoxy for layered manufacturing. A detailed explanation of the process is presented to produce complex metal laminated composite parts. Aluminum-epoxy composite specimens were manufactured from 0.016mm aluminum and subjected to tensile tests to determine the mechanical properties of the manufactured composite in relation to solid metal specimens. The fracture zone of the specimens was analyzed under scanning electron microscopy (SEM) in order to characterize the fracture mode and study the interfacial bonding of the manufactured laminate specimens.Keywords: 3D metal laminate printer, aluminum-epoxy composite, laminated object manufacturing, rapid tooling
Procedia PDF Downloads 2921224 Modified Fuzzy Delphi Method to Incorporate Healthcare Stakeholders’ Perspectives in Selecting Quality Improvement Projects’ Criteria
Authors: Alia Aldarmaki, Ahmad Elshennawy
Abstract:
There is a global shift in healthcare systems’ emphasizing engaging different stakeholders in selecting quality improvement initiatives and incorporating their preferences to improve the healthcare efficiency and outcomes. Although experts bring scientific knowledge based on the scientific model and their personal experience, other stakeholders can bring new insights and information into the decision-making process. This study attempts to explore the impact of incorporating different stakeholders’ preference in identifying the most significant criteria that should be considered in healthcare for electing the improvement projects. A Framework based on a modified Fuzzy Delphi Method (FDM) was built. In addition to, the subject matter experts, doctors/physicians, nurses, administrators, and managers groups contribute to the selection process. The research identifies potential criteria for evaluating projects in healthcare, then utilizes FDM to capture expertise knowledge. The first round in FDM is intended to validate the identified list of criteria from experts; which includes collecting additional criteria from experts that the literature might have overlooked. When an acceptable level of consensus has been reached, a second round is conducted to obtain experts’ and other related stakeholders’ opinions on the appropriate weight of each criterion’s importance using linguistic variables. FDM analyses eliminate or retain the criteria to produce a final list of the critical criteria to select improvement projects in healthcare. Finally, reliability and validity were investigated using Cronbach’s alpha and factor analysis, respectively. Two case studies were carried out in a public hospital in the United Arab Emirates to test the framework. Both cases demonstrate that even though there were common criteria between the experts and the stakeholders, still stakeholders’ perceptions bring additional critical criteria into the evaluation process, which can impact the outcomes. Experts selected criteria related to strategical and managerial aspects, while the other participants preferred criteria related to social aspects such as health and safety and patients’ satisfaction. The health and safety criterion had the highest important weight in both cases. The analysis showed that Cronbach’s alpha value is 0.977 and all criteria have factor loading greater than 0.3. In conclusion, the inclusion of stakeholders’ perspectives is intended to enhance stakeholders’ engagement, improve transparency throughout the decision process, and take robust decisions.Keywords: Fuzzy Delphi Method, fuzzy number, healthcare, stakeholders
Procedia PDF Downloads 1291223 The Use of Geographic Information System for Selecting Landfill Sites in Osogbo
Authors: Nureni Amoo, Sunday Aroge, Oluranti Akintola, Hakeem Olujide, Ibrahim Alabi
Abstract:
This study investigated the optimum landfill site in Osogbo so as to identify suitable solid waste dumpsite for proper waste management in the capital city. Despite an increase in alternative techniques for disposing of waste, landfilling remains the primary means of waste disposal. These changes in attitudes in many parts of the world have been supported by changes in laws and policies regarding the environment and waste disposal. Selecting the most suitable site for landfill can avoid any ecological and socio-economic effects. The increase in industrial and economic development, along with the increase of population growth in Osogbo town, generates a tremendous amount of solid waste within the region. Factors such as the scarcity of land, the lifespan of the landfill, and environmental considerations warrant that the scientific and fundamental studies are carried out in determining the suitability of a landfill site. The analysis of spatial data and consideration of regulations and accepted criteria are part of the important elements in the site selection. This paper presents a multi-criteria decision-making method using geographic information system (GIS) with the integration of the fuzzy logic multi-criteria decision making (FMCDM) technique for landfill suitability site evaluation. By using the fuzzy logic method (classification of suitable areas in the range of 0 to 1 scale), the superposing of the information layers related to drainage, soil, land use/land cover, slope, land use, and geology maps were performed in the study. Based on the result obtained in this study, five (5) potential sites are suitable for the construction of a landfill are proposed, two of which belong to the most suitable zone, and the existing waste disposal site belonged to the unsuitable zone.Keywords: fuzzy logic multi-criteria decision making, geographic information system, landfill, suitable site, waste disposal
Procedia PDF Downloads 1441222 Comparative Analysis of Automation Testing Tools
Authors: Amit Bhanushali
Abstract:
In the ever-changing landscape of software development, automated software testing has emerged as a critical component of the Software Development Life Cycle (SDLC). This research undertakes a comparative study of three major automated testing tools -UFT, Selenium, and RPA- evaluating them on usability, maintenance, and effectiveness. Leveraging existing JAVA-based applications as test cases, the study aims to guide testers in selecting the optimal tool for specific applications. By exploring key features such as source and licensing, testing expenses, object repositories, usability, and language support, the research provides practical insights into UFT, Selenium, and RPA. Acknowledging the pivotal role of these tools in streamlining testing processes amid time constraints and resource limitations, the study assists professionals in making informed choices aligned with their organizational needs.Keywords: software testing tools, software development lifecycle (SDLC), test automation frameworks, automated software, JAVA-based, UFT, selenium and RPA (robotic process automation), source and licensing, object repository
Procedia PDF Downloads 1001221 Cross-Cultural Study of Stroop Interference among Juvenile Delinquents
Authors: Tanusree Moitra, Garga Chatterjee, Diganta Mukherjee, Anjali Ghosh
Abstract:
Stroop task is considered to be an important measure of selective attention. However, the color – word Stroop task cannot be administered to the illiterate population. Some of the participants in the present study are illiterate, therefore, object – color Stroop task was used among male juvenile delinquents of India and Bangladesh citizenship (IC & BC), housed in delinquent home in India. The purpose of the study is to test the hypothesis that over - selective attention is present among juvenile delinquents across both the countries. Eighty juvenile delinquents and matched control of 12 – 18 years (50 IC juvenile delinquents, 30 BC juvenile delinquents and 50 Indian control) were shown 24 familiar objects in both typical (e.g. a red apple) and atypical (e.g. a blue apple) color. Repeated – measure factorial ANOVA was used and it was found that all the three groups have taken longer response time in the atypical condition compared to the typical condition. However, contrary to the over - selective attention hypothesis, both groups of juvenile delinquents displayed higher Stroop interference in comparison to the matched control group. The findings of the study can be explained on the basis of anxiety score. IC and BC juvenile delinquents have high anxiety score compared to the control group which indicates that increased anxiety is correlated with the interference produced by the atypical color object stimuli when compared with the typical object stimuli. Funding acknowledgement: Authors acknowledge Department of Science and Technology, Government of India for financial support to the first author of the paper vide Reference no. SR/CSRI/PDF -01/2013 under Cognitive Science Research Initiative (CSRI) to carry out this work.Keywords: Bangladesh, India, male juvenile delinquent, objects - color Stroop task
Procedia PDF Downloads 344