Search results for: flood forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 867

Search results for: flood forecast

207 A New Multi-Target, Multi-Agent Search and Rescue Path Planning Approach

Authors: Jean Berger, Nassirou Lo, Martin Noel

Abstract:

Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.

Keywords: search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization

Procedia PDF Downloads 347
206 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation

Procedia PDF Downloads 271
205 Simulating the Effect of Chlorine on Dynamic of Main Aquatic Species in Urban Lake with a Mini System Dynamic Model

Authors: Zhiqiang Yan, Chen Fan, Beicheng Xia

Abstract:

Urban lakes play an invaluable role in urban water systems such as flood control, landscape, entertainment, and energy utilization, and have suffered from severe eutrophication over the past few years. To investigate the ecological response of main aquatic species and system stability to chlorine interference in shallow urban lakes, a mini system dynamic model, based on the competition and predation of main aquatic species and TP circulation, was developed. The main species of submerged macrophyte, phytoplankton, zooplankton, benthos and TP in water and sediment were simulated as variables in the model with the interference of chlorine which effect function was attenuation equation. The model was validated by the data which was investigated in the Lotus Lake in Guangzhou from October 1, 2015 to January 31, 2016. Furthermore, the eco-exergy was used to analyze the change in complexity of the shallow urban lake. The results showed the correlation coefficient between observed and simulated values of all components presented significant. Chlorine showed a significant inhibitory effect on Microcystis aeruginosa,Rachionus plicatilis, Diaphanosoma brachyurum Liévin and Mesocyclops leuckarti (Claus).The outbreak of Spiroggra spp. inhibited the growth of Vallisneria natans (Lour.) Hara, caused a gradual decrease of eco-exergy, reflecting the breakdown of ecosystem internal equilibria. It was concluded that the study gives important insight into using chlorine to achieve eutrophication control and understand mechanism process.

Keywords: system dynamic model, urban lake, chlorine, eco-exergy

Procedia PDF Downloads 185
204 Vertical Distribution of the Monthly Average Values of the Air Temperature above the Territory of Kakheti in 2012-2017

Authors: Khatia Tavidashvili, Nino Jamrishvili, Valerian Omsarashvili

Abstract:

Studies of the vertical distribution of the air temperature in the atmosphere have great value for the solution of different problems of meteorology and climatology (meteorological forecast of showers, thunderstorms, and hail, weather modification, estimation of climate change, etc.). From the end of May 2015 in Kakheti after 25-year interruption, the work of anti-hail service was restored. Therefore, in connection with climate change, the need for the detailed study of the contemporary regime of the vertical distribution of the air temperature above this territory arose. In particular, the indicated information is necessary for the optimum selection of rocket means with the works on the weather modification (fight with the hail, the regulation of atmospheric precipitations, etc.). Construction of the detailed maps of the potential damage distribution of agricultural crops from the hail, etc. taking into account the dimensions of hailstones in the clouds according to the data of radar measurements and height of locality are the most important factors. For now, in Georgia, there is no aerological probing of atmosphere. To solve given problem we processed information about air temperature profiles above Telavi, at 27 km above earth's surface. Information was gathered during four observation time (4, 10, 16, 22 hours with local time. After research, we found vertical distribution of the average monthly values of the air temperature above Kakheti in ‎2012-2017 from January to December. Research was conducted from 0.543 to 27 km above sea level during four periods of research. In particular, it is obtained: -during January the monthly average air temperature linearly diminishes with 2.6 °C on the earth's surface to -57.1 °C at the height of 10 km, then little it changes up to the height of 26 km; the gradient of the air temperature in the layer of the atmosphere from 0.543 to 8 km - 6.3 °C/km; height of zero isotherm - is 1.33 km. -during July the air temperature linearly diminishes with 23.5 °C to -64.7 °C at the height of 17 km, then it grows to -47.5 °C at the height of 27 km; the gradient of the air temperature of - 6.1 °C/km; height of zero isotherm - is 4.39 km, which on 0.16 km is higher than in the sixties of past century.

Keywords: hail, Kakheti, meteorology, vertical distribution of the air temperature

Procedia PDF Downloads 149
203 Impact of Drought in Farm Level Income in the United States

Authors: Anil Giri, Kyle Lovercamp, Sankalp Sharma

Abstract:

Farm level incomes fluctuate significantly due to extreme weather events such as drought. In the light of recent extreme weather events it is important to understand the implications of extreme weather events, flood and drought, on farm level incomes. This study examines the variation in farm level incomes for the United States in drought and no- drought years. Factoring heterogeneity in different enterprises (crop, livestock) and geography this paper analyzes the impact of drought in farm level incomes at state and national level. Livestock industry seems to be affected more by the lag in production of input feed for production, crops, as preliminary results show. Furthermore, preliminary results also show that while crop producers are not affected much due to drought, as price and quantity effect worked on opposite direction with same magnitude, that was not the case for livestock and horticulture enterprises. Results also showed that even when price effect was not as high the crop insurance component helped absorb much of shock for crop producers. Finally, the effect was heterogeneous for different states more on the coastal states compared Midwest region. This study should generate a lot of interest from policy makers across the world as some countries are actively seeking to increase subsidies in their agriculture sector. This study shows how subsidies absorb the shocks for one enterprise more than others. Finally, this paper should also be able to give an insight to economists to design/recommend policies such that it is optimal given the production level of different enterprises in different countries.

Keywords: farm level income, United States, crop, livestock

Procedia PDF Downloads 255
202 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation

Authors: Sikander Nawaz Khan

Abstract:

Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.

Keywords: disaster mitigation, GIS, GPS, remote sensing

Procedia PDF Downloads 441
201 The Impact of Dispatching with Rolling Horizon Control in Sizing Thermal Storage for Solar Tower Plant Participating in Wholesale Spot Electricity Market

Authors: Navid Mohammadzadeh, Huy Truong-Ba, Michael Cholette

Abstract:

The solar tower (ST) plant is a promising technology to exploit large-scale solar irradiation. With thermal energy storage, ST plant has the potential to shift generation to high electricity price periods. However, the size of storage limits the dispatchability of the plant, particularly when it should compete with uncertainty in forecasts of solar irradiation and electricity prices. The purpose of this study is to explore the size of storage when Rolling Horizon Control (RHC) is employed for dispatch scheduling. To this end, RHC is benchmarked against perfect knowledge (PK) forecast and two day-ahead dispatching policies. With optimisation of dispatch planning using PK policy, the optimal achievable profit for a specific size of the storage is determined. A sensitivity analysis using Monte-Carlo simulation is conducted, and the size of storage for RHC and day-ahead policies is determined with the objective of reaching the profit obtained from the PK policy. A case study is conducted for a hypothetical ST plant with thermal storage located in South Australia and intends to dispatch under two market scenarios: 1) fixed price and 2) wholesale spot price. The impact of each individual source of uncertainty on storage size is examined for January and August. The exploration of results shows that dispatching with RH controller reaches optimal achievable profit with ~15% smaller storage compared to that in day-ahead policies. The results of this study may be applied to the CSP plant design procedure.

Keywords: solar tower plant, spot market, thermal storage system, optimized dispatch planning, sensitivity analysis, Monte Carlo simulation

Procedia PDF Downloads 101
200 Role of Kerala’s Diaspora Philanthropy Engagement During Economic Crises

Authors: Shibinu S, Mohamed Haseeb N

Abstract:

In times of crisis, the diaspora's role and the help it offers are seen to be vital in determining how many countries, particularly low- and middle-income nations that significantly rely on remittances, recover. Twenty-one lakh twenty thousand Keralites have emigrated abroad, with 81.2 percent of these outflows occurring in the Gulf Cooperative Council (GCC). Most of them are semi-skilled or low-skilled laborers employed in GCC nations. Additionally, a sizeable portion of migrants are employed in industrialized nations like the UK and the US. These nations have seen the development of a highly robust Indian Diaspora. India's development is largely dependent on the generosity of its diaspora, and the nation has benefited greatly from the substantial contributions made by several emigrant generations. Its strength was noticeable during the COVID-19 and Kerala floods. Millions of people were displaced, millions of properties were damaged, and many people died as a result of the 2018 Kerala floods. The Malayalee diaspora played a crucial role in the reconstruction of Kerala by providing support for the rescue efforts underway on the ground through their extensive worldwide network. During COVID-19, an analogous outreach was also noted, in which the diaspora assisted stranded migrants across the globe. Together with the work the diaspora has done for the state's development and recovery, there has also been a recent outpouring of assistance during the COVID-19 pandemic. The study focuses on the subtleties of diaspora philanthropic scholarship and how Kerala was able to recover from the COVID-19 pandemic and floods thanks to it. Semi-structured in-depth interviews with migrants, migrant organizations, and beneficiaries from the diaspora through snowball sampling to better understand the role that diaspora philanthropy plays in times of crisis.

Keywords: crises, diaspora, remittances, COVID-19, flood, economic development of Kerala

Procedia PDF Downloads 17
199 Community Level Vulnerabilities to Climate Change in Cox’s Bazar-Teknaf Coastal Area of Bangladesh

Authors: Pronob Kumar Mozumder, M. Abdur Rob Mollah

Abstract:

This research was conducted in two coastal locations of Bangladesh from February, 2013 to January, 2014.The objective of this research was to assess the potential vulnerabilities of climate change on local ecosystem and people and to identify and recommend local level adaptation strategies to climate change. Focus group discussions, participatory rural appraisal, interviewing local elderly people were conducted. Perceptions about climate change indicate that local people are experiencing impacts of climate change. According to local people, temperature, cyclone, rain, water-logging, siltation, salinity, erosion, and flash flood are increasing. Vulnerability assessment revealed that local people are variously affected by abnormal climate related disasters. This is jeopardizing their livelihoods, risking their lives, health, and their assets. This prevailing climatic situation in the area is also impacting their environmental conditions, biodiversity and natural resources, and their economic activities. The existing adaptation includes using traditional boat and mobile phone while fishing and making house on high land and lower height. Proposed adaptation for fishing boat are using more than 60 feet length with good timber, putting at least 3 longitudinal bar along upper side, using enough vertical side bars. The homestead measures include use of cross bracing of wall frame, roof tying with extra-post by ropes and plantation of timber tree against wind.

Keywords: community level vulnerabilities, climate change, Cox’s Bazar-Teknaf Coastal Area, Bangladesh

Procedia PDF Downloads 505
198 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis

Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate

Abstract:

This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.

Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull

Procedia PDF Downloads 46
197 Parental Involvement Among Host Community and Refugees in Iraqi Kurdistan

Authors: Peshawa Jalal Mohammed

Abstract:

Following the recent political conflict in the Middle East, the number of refugees and internally displaced people increased in the last decades. The flood of displaced people became a big issue for the host communities in the neighbouring countries and Europe. The need for research about the education and integration of the refugees became urgent. After the appearance of the Islamic State and displacing millions of Syrian people, the Kurdistan Region of Iraq became a safe shelter for hundreds of thousands of Syrians and international organisations helping the refugees. This study focuses on the factors of parental involvement among the host community and refugee parents and its role in the academic success of children. The setting is the three provinces of Iraqi Kurdistan (Erbil, Sulaimani, and Dohuk), including the refugee camps in the three provinces. Based on the purpose of the study, the study was designed as a descriptive survey study with a mixed approach, qualitative (open-ended), and quantitative (questionnaire) questions and both forms of data were integrated and analysed. The current study participants were 8th and 9th graders at the basic school level, studying at public schools and their parents. The sampling design was the selection of local schools and schools in the refugee camps in the region's three provinces. The number of participants for each of the two groups was 250 students and 250 parents. The results showed that parents' socioeconomic status, gender, and place of residency have significant roles in students' parental involvement and academic success of their students. The results also show the characteristics of parental inspiration to their children's future and their expectations from education.

Keywords: refugee, education, parental involvement, socioeconomic

Procedia PDF Downloads 156
196 The Influence of Market Attractiveness and Core Competence on Value Creation Strategy and Competitive Advantage and Its Implication on Business Performance

Authors: Firsan Nova

Abstract:

The average Indonesian watches 5.5 hours of TV a day. With a population of 242 million people and a Free-to-Air (FTA) TV penetration rate of 56%, that equates to 745 million hours of television watched each day. With such potential, it is no wonder that many companies are now attempting to get into the Pay TV market. Research firm Media Partner Asia has forecast in its study that the number of Indonesian pay-television subscribers will climb from 2.4 million in 2012 to 8.7 million by 2020, with penetration scaling up from 7 percent to 21 percent. Key drivers of market growth, the study says, include macro trends built around higher disposable income and a rising middle class, with leading players continuing to invest significantly in sales, distribution and content. New entrants, in the meantime, will boost overall prospects. This study aims to examine and analyze the effect of Market Attractiveness and the Core Competence on Value Creation and Competitive Advantage and its impact to Business Performance in the pay TV industry in Indonesia. The study using strategic management science approach with the census method in which all members of the population are as sample. Verification method is used to examine the relationship between variables. The unit of analysis in this research is all Indonesian Pay TV business units totaling 19 business units. The unit of observation is the director and managers of each business unit. Hypothesis testing is performed by using statistical Partial Least Square (PLS). The conclusion of the study shows that the market attractiveness affects business performance through value creation and competitive advantage. The appropriate value creation comes from the company ability to optimize its core competence and exploit market attractiveness. Value creation affects competitive advantage. The competitive advantage can be determined based on the company's ability to create value for customers and the competitive advantage has an impact on business performance.

Keywords: market attractiveness, core competence, value creation, competitive advantage, business performance

Procedia PDF Downloads 324
195 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China

Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao

Abstract:

Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.

Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake

Procedia PDF Downloads 112
194 A Data-Driven Agent Based Model for the Italian Economy

Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio

Abstract:

We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.

Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data

Procedia PDF Downloads 41
193 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems

Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain

Abstract:

This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.

Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order

Procedia PDF Downloads 536
192 Non-Revenue Water Management in Palestine

Authors: Samah Jawad Jabari

Abstract:

Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In this research, Hebron city water distribution network was taken as a case study to estimate and audit the NRW levels. The research also investigated the state of the existing water distribution system in the study area by investigating the water losses and obtained more information on NRW prevention and management practices. Data and information have been collected from the Palestinian Water Authority (PWA) and Hebron Municipality (HM) archive. In addition to that, a questionnaire has been designed and administered by the researcher in order to collect the necessary data for water auditing. The questionnaire also assessed the views of stakeholder in PWA and HM (staff) on the current status of the NRW in the Hebron water distribution system. The important result obtained by this research shows that NRW in Hebron city was high and in excess of 30%. The main factors that contribute to NRW were the inaccuracies in billing volumes, unauthorized consumption, and the method of estimating consumptions through faulty meters. Policy for NRW reduction is available in Palestine; however, it is clear that the number of qualified staff available to carry out the activities related to leak detection is low, and that there is a lack of appropriate technologies to reduce water losses and undertake sufficient system maintenance, which needs to be improved to enhance the performance of the network and decrease the level of NRW losses.

Keywords: non-revenue water, water auditing, leak detection, water meters

Procedia PDF Downloads 265
191 Nowcasting Indonesian Economy

Authors: Ferry Kurniawan

Abstract:

In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.

Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination

Procedia PDF Downloads 312
190 The Effect of Satisfaction with the Internet on Online Shopping Attitude With TAM Approach Controlled By Gender

Authors: Velly Anatasia

Abstract:

In the last few decades extensive research has been conducted into information technology (IT) adoption, testing a series of factors considered to be essential for improved diffusion. Some studies analyze IT characteristics such as usefulness, ease of use and/or security, others focus on the emotions and experiences of users and a third group attempts to determine the importance of socioeconomic user characteristics such as gender, educational level and income. The situation is similar regarding e-commerce, where the majority of studies have taken for granted the importance of including these variables when studying e-commerce adoption, as these were believed to explain or forecast who buys or who will buy on the internet. Nowadays, the internet has become a marketplace suitable for all ages and incomes and both genders and thus the prejudices linked to the advisability of selling certain products should be revised. The objective of this study is to test whether the socioeconomic characteristics of experienced e-shoppers such as gender rally moderate the effect of their perceptions of online shopping behavior. Current development of the online environment and the experience acquired by individuals from previous e-purchases can attenuate or even nullify the effect of these characteristics. The individuals analyzed are experienced e-shoppers i.e. individuals who often make purchases on the internet. The Technology Acceptance Model (TAM) was broadened to include previous use of the internet and perceived self-efficacy. The perceptions and behavior of e-shoppers are based on their own experiences. The information obtained will be tested using questionnaires which were distributed and self-administered to respondent accustomed using internet. The causal model is estimated using structural equation modeling techniques (SEM), followed by tests of the moderating effect of socioeconomic variables on perceptions and online shopping behavior. The expected findings of this study indicated that gender moderate neither the influence of previous use of the internet nor the perceptions of e-commerce. In short, they do not condition the behavior of the experienced e-shopper.

Keywords: Internet shopping, age groups, gender, income, electronic commerce

Procedia PDF Downloads 309
189 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 139
188 Comfort Needs and Energy Practices in Low-Income, Tropical Housing from a Socio-Technical Perspective

Authors: Tania Sharmin

Abstract:

Energy use, overheating and thermal discomfort in low-income tropical housing remains an under-researched area. This research attempts to explore these aspects in the Loving Community, a housing colony created for former leprosy patients and their families in Ahmedabad in India. The living conditions in these households and working practices of the inhabitants in terms of how the building and its internal and external spaces are used, will be explored through interviews and monitoring which will be based on a household survey and a focus group discussion (FGD). The findings from the study will provide a unique and in-depth account of how the relocation of the affected households to the new, flood-resistant and architecturally-designed buildings may have affected the dwellers’ household routines (health and well-being, comfort, satisfaction and working practices) and overall living conditions compared to those living in poorly-designed, existing low-income housings. The new houses were built under an innovative building project supported by De Montfort University Leicester (DMU)’s Square Mile India project. A comparison of newly-built and existing building typologies will reveal how building design can affect people’s use of space and energy use. The findings will be helpful to design healthier, energy efficient and socially acceptable low-income housing in future, thus addressing United Nation’s sustainable development goals on three aspects: 3 (health and well-being), 7 (energy) and 11 (safe, resilient and sustainable human settlements). This will further facilitate knowledge exchange between policy makers, developers, designers and occupants focused on strategies to increase stakeholders’ participation in the design process.

Keywords: thermal comfort, energy use, low-income housing, tropical climate

Procedia PDF Downloads 105
187 Study on the Effect of Different Media on Green Roof Water Retention

Authors: Chen Zhi-Wei, Hsieh Wei-Fang

Abstract:

Taiwan annual rainfall is global average of 2.5 times, plus city excessive development, green constantly to reduced, instead of is big area of artificial base disc, makes Taiwan rainy season during occurred of storm cannot timely of emissions, led to flood constantly, and rain also cannot was retained again using, led to city hydrological balance suffered damage, and to Regulation city of by brings of negative effect, increased green covered rate became most effective of method, and city land limited, so roof green gradually became a alternative program. Green roofs have become one of the Central and local government policy initiatives for urban development, in foreign countries, such as the United States, and Japan, and Singapore etc. Development of roof greening as an important policy, has become a trend of the times. In recent years, many experts and scholars are also on the roof greening all aspects of research, mostly for green roof for the environmental impact of benefits, such as: carbon reduction, cooling, thermostat, but research on the benefits of green roofs under water cut but it is rare. Therefore, this research literature from green roof in to view and analyze what kind of medium suitable for roof greening and use of green base plate combination simulated green roof structure, via different proportions of the medium with water retention plate and drainage board, experiment with different planting base plate combination of water conservation performance. Research will want to test the effect of roof planting base mix, promotion of relevant departments and agencies in future implementation of green roofs, prompted the development of green roofs, which in the end Taiwan achieve sustainable development of the urban environment help.

Keywords: thin-layer roof greening and planting medium, water efficiency

Procedia PDF Downloads 328
186 Quantifying Wave Attenuation over an Eroding Marsh through Numerical Modeling

Authors: Donald G. Danmeier, Gian Marco Pizzo, Matthew Brennan

Abstract:

Although wetlands have been proposed as a green alternative to manage coastal flood hazards because of their capacity to adapt to sea level rise and provision of multiple ecological and social co-benefits, they are often overlooked due to challenges in quantifying the uncertainty and naturally, variability of these systems. This objective of this study was to quantify wave attenuation provided by a natural marsh surrounding a large oil refinery along the US Gulf Coast that has experienced steady erosion along the shoreward edge. The vegetation module of the SWAN was activated and coupled with a hydrodynamic model (DELFT3D) to capture two-way interactions between the changing water level and wavefield over the course of a storm event. Since the marsh response to relative sea level rise is difficult to predict, a range of future marsh morphologies is explored. Numerical results were examined to determine the amount of wave attenuation as a function of marsh extent and the relative contributions from white-capping, depth-limited wave breaking, bottom friction, and flexing of vegetation. In addition to the coupled DELFT3D-SWAN modeling of a storm event, an uncoupled SWAN-VEG model was applied to a simplified bathymetry to explore a larger experimental design space. The wave modeling revealed that the rate of wave attenuation reduces for higher surge but was still significant over a wide range of water levels and outboard wave heights. The results also provide insights to the minimum marsh extent required to fully realize the potential wave attenuation so the changing coastal hazards can be managed.

Keywords: green infrastructure, wave attenuation, wave modeling, wetland

Procedia PDF Downloads 111
185 Buy-and-Hold versus Alternative Strategies: A Comparison of Market-Timing Techniques

Authors: Jonathan J. Burson

Abstract:

With the rise of virtually costless, mobile-based trading platforms, stock market trading activity has increased significantly over the past decade, particularly for the millennial generation. This increased stock market attention, combined with the recent market turmoil due to the economic upset caused by COVID-19, make the topics of market-timing and forecasting particularly relevant. While the overall stock market saw an unprecedented, historically-long bull market from March 2009 to February 2020, the end of that bull market reignited a search by investors for a way to reduce risk and increase return. Similar searches for outperformance occurred in the early, and late 2000’s as the Dotcom bubble burst and the Great Recession led to years of negative returns for mean-variance, index investors. Extensive research has been conducted on fundamental analysis, technical analysis, macroeconomic indicators, microeconomic indicators, and other techniques—all using different methodologies and investment periods—in pursuit of higher returns with lower risk. The enormous variety of timeframes, data, and methodologies used by the diverse forecasting methods makes it difficult to compare the outcome of each method directly to other methods. This paper establishes a process to evaluate the market-timing methods in an apples-to-apples manner based on simplicity, performance, and feasibility. Preliminary findings show that certain technical analysis models provide a higher return with lower risk when compared to the buy-and-hold method and to other market-timing strategies. Furthermore, technical analysis models tend to be easier for individual investors both in terms of acquiring the data and in analyzing it, making technical analysis-based market-timing methods the preferred choice for retail investors.

Keywords: buy-and-hold, forecast, market-timing, probit, technical analysis

Procedia PDF Downloads 77
184 Spatial Variation of WRF Model Rainfall Prediction over Uganda

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo

Abstract:

Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.

Keywords: convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model

Procedia PDF Downloads 291
183 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs

Authors: Anika Chebrolu

Abstract:

Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.

Keywords: drug design, multitargeticity, de-novo, reinforcement learning

Procedia PDF Downloads 60
182 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change

Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang

Abstract:

As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.

Keywords: radon, Northern China, soil gas, earthquake

Procedia PDF Downloads 49
181 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies

Authors: Mark Andrew

Abstract:

Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.

Keywords: forecasting, technology futures, uncertainty, complexity

Procedia PDF Downloads 87
180 Decoding the Natural Hazards: The Data Paradox, Juggling Data Flows, Transparency and Secrets, Analysis of Khuzestan and Lorestan Floods of Iran

Authors: Kiyanoush Ghalavand

Abstract:

We have a complex paradox in the agriculture and environment sectors in the age of technology. In the one side, the achievements of the science and information ages are shaping to come that is very dangerous than ever last decades. The progress of the past decades is historic, connecting people, empowering individuals, groups, and states, and lifting a thousand people out of land and poverty in the process. Floods are the most frequent natural hazards damaging and recurring of all disasters in Iran. Additionally, floods are morphing into new and even more devastating forms in recent years. Khuzestan and Lorestan Provinces experienced heavy rains that began on March 28, 2019, and led to unprecedented widespread flooding and landslides across the provinces. The study was based on both secondary and primary data. For the present study, a questionnaire-based primary survey was conducted. Data were collected by using a specially designed questionnaire and other instruments, such as focus groups, interview schedules, inception workshops, and roundtable discussions with stakeholders at different levels. Farmers in Khuzestan and Lorestan provinces were the statistical population for this study. Data were analyzed with several software such as ATLASti, NVivo SPSS Win, ،E-Views. According to a factorial analysis conducted for the present study, 10 groups of factors were categorized climatic, economic, cultural, supportive, instructive, planning, military, policymaking, geographical, and human factors. They estimated 71.6 percent of explanatory factors of flood management obstacles in the agricultural sector in Lorestan and Khuzestan provinces. Several recommendations were finally made based on the study findings.

Keywords: chaos theory, natural hazards, risks, environmental risks, paradox

Procedia PDF Downloads 113
179 Stability of Pump Station Cavern in Chagrin Shale with Time

Authors: Mohammad Moridzadeh, Mohammad Djavid, Barry Doyle

Abstract:

An assessment of the long-term stability of a cavern in Chagrin shale excavated by the sequential excavation method was performed during and after construction. During the excavation of the cavern, deformations of rock mass were measured at the surface of excavation and within the rock mass by surface and deep measurement instruments. Rock deformations were measured during construction which appeared to result from the as-built excavation sequence that had potentially disturbed the rock and its behavior. Also some additional time dependent rock deformations were observed during and post excavation. Several opinions have been expressed to explain this time dependent deformation including stress changes induced by excavation, strain softening (or creep) in the beddings with and without clay and creep of the shaley rock under compressive stresses. In order to analyze and replicate rock behavior observed during excavation, including current and post excavation elastic, plastic, and time dependent deformation, Finite Element Analysis (FEA) was performed. The analysis was also intended to estimate long term deformation of the rock mass around the excavation. Rock mass behavior including time dependent deformation was measured by means of rock surface convergence points, MPBXs, extended creep testing on the long anchors, and load history data from load cells attached to several long anchors. Direct creep testing of Chagrin Shale was performed on core samples from the wall of the Pump Room. Results of these measurements were used to calibrate the FEA of the excavation. These analyses incorporate time dependent constitutive modeling for the rock to evaluate the potential long term movement in the roof, walls, and invert of the cavern. The modeling was performed due to the concerns regarding the unanticipated behavior of the rock mass as well as the forecast of long term deformation and stability of rock around the excavation.

Keywords: Cavern, Chagrin shale, creep, finite element.

Procedia PDF Downloads 322
178 People's Perspective on Water Commons in Trans-Boundary Water Governance: A Case Study from Nepal

Authors: Sristi Silwal

Abstract:

South Asian rivers support ecosystems and sustain well-being of thousands of riparian communities. Rivers however are also sources of conflict between countries and one of the contested issues between governments of the region. Governments have signed treaties to harness some of the rivers but their provisions have not been successful in improving the quality of life of those who depend on water as common property resources. This paper will present a case of the study of the status of the water commons along the lower command areas of Koshi, Gandka and Mahakali rivers. Nepal and India have signed treaties for development and management of these rivers in 1928, 1954 and 1966. The study investigated perceptions of the local community on climate-induced disasters, provision of the treaties such as water for irrigation, participation in decision-making and specific impact of women. It looked at how the local community coped with adversities. The study showed that the common pool resources are gradually getting degraded, flood events increasing while community blame ‘other state’ and state administration for exacerbating these ills. The level of awareness about provisions of existing treatise is poor. Ongoing approach to trans-boundary water management has taken inadequate cognizance of these realities as the dominant narrative perpetuates cooperation between the governments. The paper argues that on-going discourses on trans-boundary water development and management need to use a new metrics of taking cognizance of the condition of the commons and that of the people depended on them for sustenance. In absence of such narratives, the scale of degradation would increase making those already marginalized more vulnerable to impacts of global climate change.

Keywords: climate change vulnerability, conflict, cooperation, water commons

Procedia PDF Downloads 208