Search results for: deep work
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15338

Search results for: deep work

14678 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments

Authors: Romisaa Ali

Abstract:

This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.

Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment

Procedia PDF Downloads 102
14677 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 91
14676 Implementation of Data Science in Field of Homologation

Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande

Abstract:

For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.

Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)

Procedia PDF Downloads 163
14675 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 161
14674 Perceived Effects of Work-Family Balance on Employee’s Job Satisfaction among Extension Agents in Southwest Nigeria

Authors: B. G. Abiona, A. A. Onaseso, T. D. Odetayo, J. Yila, O. E. Fapojuwo, K. G. Adeosun

Abstract:

This study determines the perceived effects of work-family balance on employees’ job satisfaction among Extension Agents in the Agricultural Development Programme (ADP) in southwest Nigeria. A multistage sampling technique was used to select 256 respondents for the study. Data on personal characteristics, work-family balance domain, and job satisfaction were collected. The collected data were analysed using descriptive statistics, Chi-square, Pearson Product Moment Correlation (PPMC), multiple linear regression, and Student T-test. Results revealed that the mean age of the respondents was 40 years; the majority (59.3%) of the respondents were male, and slightly above half (51.6%) of the respondents had MSc as their highest academic qualification. Findings revealed that turnover intention (x ̅ = 3.20) and work-role conflict (x ̅ = 3.06) were the major perceived work-family balance domain in the studied areas. Further, the result showed that the respondents have a high (79%) level of job satisfaction. Multiple linear regression revealed that job involvement (ß=0.167, p<0.01) and work-role conflict (ß= -0.221, p<0.05) contributed significantly to employees’ level of job satisfaction. The results of the Student T-test revealed a significant difference in the perceived work-family balance domain (t = 0.43, p<0.05) between the two studied areas. The study concluded that work-role conflict among employees causes work-family imbalance and, therefore, negatively affects employees’ job satisfaction. The definition of job design among the respondents that will create a balance between work and family is highly recommended.

Keywords: work-life, conflict, job satisfaction, extension agent

Procedia PDF Downloads 94
14673 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 54
14672 Shoring System Selection for Deep Excavation

Authors: Faouzi Ahtchi-Ali, Marcus Vitiello

Abstract:

A study was conducted in the east region of the Middle East to assess the constructability of a shoring system for a 12-meter deep excavation. Several shoring systems were considered in this study including secant concrete piling, contiguous concrete piling, and sheet-piling. The excavation was carried out in a very dense sand with the groundwater level located at 3 meters below ground surface. The study included conducting a pilot test for each shoring system listed above. The secant concrete piling included overlapping concrete piles to a depth of 16 meters. Drilling method with full steel casing was utilized to install the concrete piles. The verticality of the piles was a concern for the overlap. The contiguous concrete piling required the installation of micro-piles to seal the gap between the concrete piles. This method revealed that the gap between the piles was not fully sealed as observed by the groundwater penetration to the excavation. The sheet-piling method required pre-drilling due to the high blow count of the penetrated layer of saturated sand. This study concluded that the sheet-piling method with pre-drilling was the most cost effective and recommended a method for the shoring system.

Keywords: excavation, shoring system, middle east, Drilling method

Procedia PDF Downloads 468
14671 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 84
14670 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 198
14669 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
14668 The Impact of the “Cold Ambient Color = Healthy” Intuition on Consumer Food Choice

Authors: Yining Yu, Bingjie Li, Miaolei Jia, Lei Wang

Abstract:

Ambient color temperature is one of the most ubiquitous factors in retailing. However, there is limited research regarding the effect of cold versus warm ambient color on consumers’ food consumption. This research investigates an unexplored lay belief named the “cold ambient color = healthy” intuition and its impact on food choice. We demonstrate that consumers have built the “cold ambient color = healthy” intuition, such that they infer that a restaurant with a cold-colored ambiance is more likely to sell healthy food than a warm-colored restaurant. This deep-seated intuition also guides consumers’ food choices. We find that using a cold (vs. warm) ambient color increases the choice of healthy food, which offers insights into healthy diet promotion for retailers and policymakers. Theoretically, our work contributes to the literature on color psychology, sensory marketing, and food consumption.

Keywords: ambient color temperature, cold ambient color, food choice, consumer wellbeing

Procedia PDF Downloads 142
14667 Blocking of Random Chat Apps at Home Routers for Juvenile Protection in South Korea

Authors: Min Jin Kwon, Seung Won Kim, Eui Yeon Kim, Haeyoung Lee

Abstract:

Numerous anonymous chat apps that help people to connect with random strangers have been released in South Korea. However, they become a serious problem for young people since young people often use them for channels of prostitution or sexual violence. Although ISPs in South Korea are responsible for making inappropriate content inaccessible on their networks, they do not block traffic of random chat apps since 1) the use of random chat apps is entirely legal. 2) it is reported that they use HTTP proxy blocking so that non-HTTP traffic cannot be blocked. In this paper, we propose a service model that can block random chat apps at home routers. A service provider manages a blacklist that contains blocked apps’ information. Home routers that subscribe the service filter the traffic of the apps out using deep packet inspection. We have implemented a prototype of the proposed model, including a centralized server providing the blacklist, a Raspberry Pi-based home router that can filter traffic of the apps out, and an Android app used by the router’s administrator to locally customize the blacklist.

Keywords: deep packet inspection, internet filtering, juvenile protection, technical blocking

Procedia PDF Downloads 349
14666 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 161
14665 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process

Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul

Abstract:

The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.

Keywords: work-roll cooling system, hot strip process adjustment, feasibility study, stand reduction

Procedia PDF Downloads 370
14664 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 86
14663 A User Centred Based Approach for Designing Everyday Product: A Case Study of an Alarm Clock

Authors: Obokhai Kess Asikhia

Abstract:

This work explores design concept generation by understanding user needs through observation and interview. The aim is to examine several principles and guidelines in obtaining evidence from observing how users interact with the targeted product and interviewing them to acquire deep insights of their needs. With the help of Quality Function Deployment (QFD), the identified needs of the users while interacting with the product were ranked using the normalised weighting approach. Furthermore, a low fidelity prototype of the alarm clock is developed with a view of addressing the identified needs of the users. Finally, the low fidelity prototype design was evaluated with two design prototypes already existing in the market through a study involving 30 participants. Preliminary results reveal higher performance ratings by the majority of the participants of the new prototype compared to the other existing alarm clocks in the market used in the study.

Keywords: design concept, low fidelity prototype, normalised weighting approach, quality function deployment, user needs

Procedia PDF Downloads 184
14662 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 156
14661 Study on the Work-Life Balance of Selected Working Single Mothers in the Coastal Community of La Huerta, Paranaque

Authors: Idette Sheirina Biyo, Rhodora Lynn C. Lintag

Abstract:

This paper explores how the work-life balance of selected working single mothers situated in a coastal community is affecting their well-being. Working single mothers carry the responsibility of earning for their family while simultaneously exercising their motherhood. This study utilized a purposeful qualitative research through semi-structured interviews among ten working single mothers living in the coastal community of La Huerta, Parañaque in order to identify the following: a) experiences of the working single mothers, b) problems usually encountered, and c) how these problems are affecting their well-being. Dorothy Smith’s Feminist Standpoint theory is used as a theoretical lens in order to explain their work-life balance. Results have shown that despite their dual roles as the main income earners and heads of the households, they are not neglecting to care for their well-being. They consider getting sufficient rest, eating well, and going to church as forms of caring for their well-being. Other factors that affect their work-life balance include living arrangements, work hours, type of work, and income.

Keywords: coastal community, well-being, work-life balance, Working single mother

Procedia PDF Downloads 204
14660 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 196
14659 Geothermal Energy Potential Estimates of Niger Delta Basin from Recent Studies

Authors: Olumide J. Adedapo

Abstract:

In this work, geothermal energy resource maps of the Niger Delta Basin were constructed using borehole thermal log data from over 300 deep wells. Three major geothermal anomalies were delineated and quantitatively interpreted in both onshore and offshore parts of the Niger Delta. The geothermal maps present the distribution of geothermal energy stored in the sedimentary rock mass in two ways: the accessible resources in depth interval 0-4000 m and static geothermal energy resources stored in the complete sedimentary infill of the basin (from the ground surface to the basement). The first map shows two major onshore anomalies, one in the north (with maximum energy values, 800 GJ/m2), another in the east to northeastern part (maximum energy values of 1250–1500 GJ/m2). Another two major anomalies occur offshore, one in the south with values of 750-1000 GJ/m2, occurring at about 100 km seawards and the other, in the southwest offshore with values 750-1250 GJ/m2, still at about 100 km from the shore. A second map of the Niger Delta shows a small anomaly in the northern part with the maximum value of 1500 GJ/m2 and a major anomaly occurring in the eastern part of the basin, onshore, with values of 2000-3500 GJ/m2. Offshore in the south and southwest anomalies in the total sedimentary rock mass occur with highest values up to 4000GJ/m2, with the southwestern anomaly extending west to the shore. It is much of interest to note the seaward–westward extension of these anomalies both in size, configuration, and magnitude for the geothermal energy in the total sedimentary thickness to the underlying basement. These anomalous fields show the most favourable locations and areas for further work on geothermal energy resources.

Keywords: geothermal energy, offshore, Niger delta, basin

Procedia PDF Downloads 213
14658 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 338
14657 Depth of Penetration and Nature of Interferential Current in Cutaneous, Subcutaneous and Muscle Tissues

Authors: A. Beatti, L. Chipchase, A. Rayner, T. Souvlis

Abstract:

The aims of this study were to investigate the depth of interferential current (IFC) penetration through soft tissue and to investigate the area over which IFC spreads during clinical application. Premodulated IFC and ‘true’ IFC at beat frequencies of 4, 40 and 90Hz were applied via four electrodes to the distal medial thigh of 15 healthy subjects. The current was measured via three Teflon coated fine needle electrodes that were inserted into the superficial layer of skin, then into the subcutaneous tissue (≈1 cm deep) and then into muscle tissue (≈2 cm deep). The needle electrodes were placed in the middle of the four IFC electrodes, between two channels and outside the four electrodes. Readings were taken at each tissue depth from each electrode during each treatment frequency then digitized and stored for analysis. All voltages were greater at all depths and locations than baseline (p < 0.01) and voltages decreased with depth (P=0.039). Lower voltages of all currents were recorded in the middle of the four electrodes with the highest voltage being recorded outside the four electrodes in all depths (P=0.000).For each frequency of ‘true’ IFC, the voltage was higher in the superficial layer outside the electrodes (P ≤ 0.01).Premodulated had higher voltages along the line of one circuit (P ≤ 0.01). Clinically, IFC appears to pass through skin layers to depth and is more efficient than premodulated IFC when targeting muscle tissue.

Keywords: electrotherapy, interferential current, interferential therapy, medium frequency current

Procedia PDF Downloads 346
14656 Trapped Versus Stepping Stones: Work Trajectories of Young Workers During the COVID-19 Pandemic

Authors: Goh Mingyuan Asher, Nurul Fadiah Johari, Neo Yu Wei, Kim Aryung, Ho Kong Chong, Irene Y. H. N. G.

Abstract:

The COVID-19 pandemic represents an externally induced force as they face a combination of reduced work, dismissal, and job change for young precarious workers. The paper drew insights from two interview waves of the in-work poverty study in Singapore which were conducted a year apart. By analysing respondents’ job histories before and at the start of the pandemic as well as their job experiences over the two waves of interviews, the study found the presence of what scholars describe as trap and stepping stone trajectories. Trap trajectories refer to how the nature of precarious employment leads respondents to be in dead-end jobs with no room for progression while stepping stone trajectories refer to how poor work provides opportunities for the accumulation of work experiences. We also look at how structure, agency and biographical factors affect job trajectories and discuss the impacts of COVID-19 on work experiences and the implications of the bifurcation of trajectory outcomes on poverty and inequality among the young working poor in Singapore.

Keywords: working poor, precarity, young workers, COVID-19, work trajectories

Procedia PDF Downloads 96
14655 An Ecological Grandeur: Environmental Ethics in Buddhist Perspective

Authors: Merina Islam

Abstract:

There are many environmental problems. Various counter measures have been taken for environmental problems. Philosophy is an important contributor to environmental studies as it takes deep interest in meaning analysis of the concept environment and other related concepts. The Buddhist frame, which is virtue ethical, remains a better alternative to the traditional environmental outlook. Granting the unique role of man in immoral deliberations, the Buddhist approach, however, maintains a holistic concept of ecological harmony. Buddhist environmental ethics is more concerned about the complete moral community, the total ecosystem, than any particular species within the community. The moral reorientation proposed here has resemblance to the concept of 'deep ecology. Given the present day prominence of virtue ethics, we need to explore further into the Buddhist virtue theory, so that a better framework to treat the natural world would be ensured. Environment has turned out to be one of the most widely discussed issues in the recent times. Buddhist concepts such as Pratityasamutpadavada, Samvrit Satya, Paramartha Satya, Shunyata, Sanghatvada, Bodhisattva, Santanvada and others deal with interdependence in terms of both internal as well external ecology. The internal ecology aims at mental well-being whereas external ecology deals with physical well-being. The fundamental Buddhist concepts for dealing with environmental Problems are where the environment has the same value as humans as from the two Buddhist doctrines of the Non-duality of Life and its Environment and the Origination in Dependence; and the inevitability of overcoming environmental problems through the practice of the way of the Bodhisattva, because environmental problems are evil for people and nature. Buddhism establishes that there is a relationship among all the constituents of the world. There is nothing in the world which is independent from any other thing. Everything is dependent on others. The realization that everything in the universe is mutually interdependent also shows that the man cannot keep itself unaffected from ecology. This paper would like to focus how the Buddhist’s identification of nature and the Dhamma can contribute toward transforming our understanding, attitudes, and actions regarding the care of the earth. Environmental Ethics in Buddhism presents a logical and thorough examination of the metaphysical and ethical dimensions of early Buddhist literature. From the Buddhist viewpoint, humans are not in a category that is distinct and separate from other sentient beings, nor are they intrinsically superior. All sentient beings are considered to have the Buddha-nature, that is, the potential to become fully enlightened. Buddhists do not believe in treating of non-human sentient beings as objects for human consumption. The significance of Buddhist theory of interdependence can be understood from the fact that it shows that one’s happiness or suffering originates from ones realization or non-realization respectively of the dependent nature of everything. It is obvious, even without emphasis, which in the context of deep ecological crisis of today there is a need to infuse the consciousness of interdependence.

Keywords: Buddhism, deep ecology, environmental problems, Pratityasamutpadavada

Procedia PDF Downloads 314
14654 Transformative Learning and the Development of Cultural Humility in Social Work Students

Authors: Ruilin Zhu, Katarzyna Olcoń, Rose M. Pulliam, Dorie J. Gilbert

Abstract:

Cultural humility is increasingly important in social work literature, given its emphasis on mitigating power imbalances in helping relationships, particularly across cultural differences. Consequently, there is a need to understand whether and how cultural humility can be taught in social work education. Relying on ethnographic observations and reflective journals from a cultural immersion program, this study identified the learning process required to develop cultural humility: confusion and discomfort, re-moulding, and humility in action.

Keywords: social work education, cultural humility, transformative learning theory, study abroad, ethnographic observations

Procedia PDF Downloads 154
14653 Vocational and Technical Educators’ Acceptance and Use of Digital Learning Environments Beyond Working Hours: Implications for Work-Life Balance and the Role of Integration Preference

Authors: Jacinta Ifeoma Obidile

Abstract:

Teachers (vocational and technical educators inclusive) use Information and Communications Technology (ICT) for tasks outside of their normal working hours. This expansion of work duties to non-work time challenges their work-life balance. However, there has been inconsistency in the results on how these relationships correlate. This, therefore, calls for further research studies to examine the moderating mechanisms of such relationships. The present study, therefore, ascertained how vocational and technical educators’ technology acceptance relates to their work-related ICT use beyond their working hours and work-life balance, as well as how their integration affects these relationships. The population of the study comprised 320 Vocational and Technical Educators from the Southeast geopolitical zone of Nigeria. Data were collected from the respondents using the structured questionnaire. The questionnaire was validated by three experts. The reliability of the study was conducted using 20 vocational and technical educators from the South who were not part of the population. The overall reliability coefficient of 0.81 was established using Cronbach’s alpha method. The data collected was analyzed using Structural equation modeling. Findings, among others, revealed that vocational and technical educators’ work-life balance was mediated by increased digital learning environment use after work hours, although reduced by social influence.

Keywords: vocational and technical educators, digital learning environment, working hours, work-life balance, integration preference

Procedia PDF Downloads 67
14652 Unlocking Retention: Nurturing Ownership and Shared Values to Overcome Work-Family Conflict Among Chinese Social Workers

Authors: Zurong Liang

Abstract:

Chinese social work has experienced a sharp rise in staff turnover. Work-family conflict is a key risk factor for employees’ turnover intention. While the relationship between work-family conflict and turnover intention has been widely documented, little is known about its mediating and moderating mechanisms, especially among social workers in China. This study explored the mediating role of job-based and collective psychological ownership and the moderating role of person-organization value congruence. The study drew on data from the China Social Work Longitudinal Study 2019, a nationally representative sample of 1,421 Chinese social workers (79.73% female; mean age = 28.9 years old). We performed a moderated mediation analysis combining a simple slope test and the Johnson-Neyman technique. Both job-based psychological ownership and collective psychological ownership were found to mediate the association between work-family conflict and turnover intention. Person-organization value congruence moderated the indirect relationship between work-family conflict and turnover intention via collective psychological ownership. This study enhances understanding of the impact of the psychological mechanisms of work-family conflict on Chinese social workers’ turnover intention. Specific strategies should be adopted to establish a work environment that supports psychological ownership, enhances social workers’ identification with and attachment to their organizations, and thus reduces their turnover intention.

Keywords: turnover, work-family conflict, ownership, social worker, China

Procedia PDF Downloads 59
14651 First Occurrence of Histopathological Assessment in Gadoid Deep-Fish Phycis blennoides from the Southwestern Mediterranean Sea

Authors: Zakia Alioua, Amira Soumia, Zerouali-Khodja Fatiha

Abstract:

In spite of a wide variety of contaminants such as heavy metals and organic compounds in addition to the importance of extended pollution, the deep-sea and its species are not in haven and being affected through contaminants exposure. This investigation is performed in order to provide data on the presence of pathological changes in the liver and gonads of the greater forkbeard. A total of 998 specimens of the teleost fish Phycis blennoides Brünnich, 1768 ranged from 5,7 to 62,7 cm in total length, were obtained from the commercial fisheries of Algerian ports. The sampling has been carried out monthly from December 2013 to June 2015 and from January to June 2016 caught by trawlers and longlines between 75 and 600 fathoms in the coast of Algeria. Individuals were sexed their gonads, and their livers were removed and processed for light microscopy and one case of atresia was identified. In whole, overall 0,002% of the specimens presented some degree of liver steatosis. For the gastric section, 442 selected stomachs contents were observed looking for parasitic infestation and enumerate 212 nematodes. A prospecting survey for metal contaminant was performed on the liver by atomic absorption spectrophotometry analysis.

Keywords: atresia, coast of Algeria, histopathology, nematode, Phycis blennoides, steatosis

Procedia PDF Downloads 230
14650 Social Work Profession in a Mirror of the Russian Immigrant Media in Israel

Authors: Natalia Khvorostianov, Nelly Elias

Abstract:

The present study seeks to analyze representation of social work in immigrant media, focusing on the case of online newspapers established by immigrants from the Former Soviet Union (FSU) in Israel. This immigrant population is particularly interesting because social work did not exist as a profession practiced in the USSR and hence most FSU immigrants arrive in Israel without a basic knowledge of the essence of social work, the services it provides and the logic behind its treatment methods. The sample of 37 items was built through a Google search of the Russian online newspapers and portals originated in Israel by using keywords such as “social worker,” “social work services” and the like. All items were analyzed by using qualitative content analysis. Principal analytical categories used for the analysis were: Assessment of social work services (negative, positive, neutral); social workers’ professionalism and effectiveness; goals and motives underlying their activity; cross-cultural contact with immigrants and methods used in working with immigrants. On this basis, four dominant images used to portray Israeli social work services and social workers were identified: Lack of professionalism, cultural gaps between FSU immigrants and Israeli social workers, repressive character of social work services and social workers’ involvement in corruption and crime.

Keywords: FSU immigrants, immigrant media, media images, social workers

Procedia PDF Downloads 357
14649 Study for Establishing a Concept of Underground Mining in a Folded Deposit with Weathering

Authors: Chandan Pramanik, Bikramjit Chanda

Abstract:

Large metal mines operated with open-cast mining methods must transition to underground mining at the conclusion of the operation; however, this requires a period of a difficult time when production convergence due to interference between the two mining methods. A transition model with collaborative mining operations is presented and established in this work, based on the case of the South Kaliapani Underground Project, to address these technical issues of inadequate production security and other mining challenges during the transition phase and beyond. By integrating the technology of the small-scale Drift and Fill method and Highly productive Sub Level Open Stoping at deep section, this hybrid mining concept tries to eliminate major bottlenecks and offers an optimized production profile with the safe and sustainable operation. Considering every geo-mining aspect, this study offers a genuine and precise technical deliberation for the transition from open pit to underground mining.

Keywords: drift and fill, geo-mining aspect, sublevel open stoping, underground mining method

Procedia PDF Downloads 100