Search results for: Porosity volume fraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3808

Search results for: Porosity volume fraction

3148 Prediction of Index-Mechanical Properties of Pyroclastic Rock Utilizing Electrical Resistivity Method

Authors: İsmail İnce

Abstract:

The aim of this study is to determine index and mechanical properties of pyroclastic rock in a practical way by means of electrical resistivity method. For this purpose, electrical resistivity, uniaxial compressive strength, point load strength, P-wave velocity, density and porosity values of 10 different pyroclastic rocks were measured in the laboratory. A simple regression analysis was made among the index-mechanical properties of the samples compatible with electrical resistivity values. A strong exponentially relation was found between index-mechanical properties and electrical resistivity values. The electrical resistivity method can be used to assess the engineering properties of the rock from which it is difficult to obtain regular shaped samples as a non-destructive method.

Keywords: electrical resistivity, index-mechanical properties, pyroclastic rocks, regression analysis

Procedia PDF Downloads 464
3147 Preliminary Design, Production and Characterization of a Coral and Alginate Composite for Bone Engineering

Authors: Sthephanie A. Colmenares, Fabio A. Rojas, Pablo A. Arbeláez, Johann F. Osma, Diana Narvaez

Abstract:

The loss of functional tissue is a ubiquitous and expensive health care problem, with very limited treatment options for these patients. The golden standard for large bone damage is a cadaveric bone as an allograft with stainless steel support; however, this solution only applies to bones with simple morphologies (long bones), has a limited material supply and presents long term problems regarding mechanical strength, integration, differentiation and induction of native bone tissue. Therefore, the fabrication of a scaffold with biological, physical and chemical properties similar to the human bone with a fabrication method for morphology manipulation is the focus of this investigation. Towards this goal, an alginate and coral matrix was created using two production techniques; the coral was chosen because of its chemical composition and the alginate due to its compatibility and mechanical properties. In order to construct the coral alginate scaffold the following methodology was employed; cleaning of the coral, its pulverization, scaffold fabrication and finally the mechanical and biological characterization. The experimental design had: mill method and proportion of alginate and coral, as the two factors, with two and three levels each, using 5 replicates. The coral was cleaned with sodium hypochlorite and hydrogen peroxide in an ultrasonic bath. Then, it was milled with both a horizontal and a ball mill in order to evaluate the morphology of the particles obtained. After this, using a combination of alginate and coral powder and water as a binder, scaffolds of 1cm3 were printed with a SpectrumTM Z510 3D printer. This resulted in solid cubes that were resistant to small compression stress. Then, using a ESQUIM DP-143 silicon mold, constructs used for the mechanical and biological assays were made. An INSTRON 2267® was implemented for the compression tests; the density and porosity were calculated with an analytical balance and the biological tests were performed using cell cultures with VERO fibroblast, and Scanning Electron Microscope (SEM) as visualization tool. The Young’s moduli were dependent of the pulverization method, the proportion of coral and alginate and the interaction between these factors. The maximum value was 5,4MPa for the 50/50 proportion of alginate and horizontally milled coral. The biological assay showed more extracellular matrix in the scaffolds consisting of more alginate and less coral. The density and porosity were proportional to the amount of coral in the powder mix. These results showed that this composite has potential as a biomaterial, but its behavior is elastic with a small Young’s Modulus, which leads to the conclusion that the application may not be for long bones but for tissues similar to cartilage.

Keywords: alginate, biomaterial, bone engineering, coral, Porites asteroids, SEM

Procedia PDF Downloads 252
3146 Stromal Vascular Fraction Regenerative Potential in a Muscle Ischemia/Reperfusion Injury Mouse Model

Authors: Anita Conti, Riccardo Ossanna, Lindsey A. Quintero, Giamaica Conti, Andrea Sbarbati

Abstract:

Ischemia/reperfusion (IR) injury induces muscle fiber atrophy and skeletal muscle fiber death with subsequently functionality loss. The heterogeneous pool of cells, especially mesenchymal stem cells, contained in the stromal vascular fraction (SVF) of adipose tissue could promote muscle fiber regeneration. To prevent SVF dispersion, it has been proposed the use of injectable biopolymers that work as cells carrier. A significant element of the extracellular matrix is hyaluronic acid (HA), which has been widely used in regenerative medicine as a cell scaffold given its biocompatibility, degradability, and the possibility of chemical functionalization. Connective tissue micro-fragments enriched with SVF obtained from mechanical disaggregation of adipose tissue were evaluated for IR muscle injury regeneration using low molecular weight HA as a scaffold. IR induction. Hindlimb ischemia was induced in 9 athymic nude mice through the clamping of the right quadriceps using a plastic band. Reperfusion was induced by cutting the plastic band after 3 hours of ischemic period. Contralateral (left) muscular tissue was used as healthy control. Treatment. Twenty-four hours after the IR induction, animals (n=3) were intramuscularly injected with 100 µl of SVF mixed with HA (SVF-HA). Animals treated with 100 µl of HA (n=3) and 100 µl saline solution (n=3) were used as control. Treatment monitoring. All animals were in vivo monitored by magnetic resonance imaging (MRI) at 5, 7, 14 and 18 days post-injury (dpi). High-resolution morphological T2 weighed, quantitative T2 map and Dynamic Contrast-Enhanced (DCE) images were acquired in order to assess the regenerative potential of SVF-HA treatment. Ex vivo evaluation. After 18 days from IR induction, animals were sacrificed, and the muscles were harvested for histological examination. At 5 dpi T2 high-resolution MR images clearly reveal the presence of an extensive edematous area due to IR damage for all groups identifiable as an increase of signal intensity (SI) of muscular and surrounding tissue. At 7 dpi, animals of the SVF-HA group showed a reduction of SI, and the T2relaxation time of muscle tissue of the HA-SVF group was 29±0.5ms, comparable with the T2relaxation time of contralateral muscular tissue (30±0.7ms). These suggest a reduction of edematous overflow and swelling. The T2relaxation time at 7dpi of HA and saline groups were 84±2ms and 90±5ms, respectively, which remained elevated during the rest of the study. The evaluation of vascular regeneration showed similar results. Indeed, DCE-MRI analysis revealed a complete recovery of muscular tissue perfusion after 14 dpi for the SVF-HA group, while for the saline and HA group, controls remained in a damaged state. Finally, the histological examination of SVF-HA treated animals exhibited well-defined and organized fibers morphology with a lateralized nucleus, similar to contralateral healthy muscular tissue. On the contrary, HA and saline-treated animals presented inflammatory infiltrates, with HA slightly improving the diameter of the fibers and less degenerated tissue. Our findings show that connective tissue micro-fragments enriched with SVF induce higher muscle homeostasis and perfusion restoration in contrast to control groups.

Keywords: ischemia/reperfusion injury, regenerative medicine, resonance imaging, stromal vascular fraction

Procedia PDF Downloads 119
3145 Finite Volume Method in Loop Network in Hydraulic Transient

Authors: Hossain Samani, Mohammad Ehteram

Abstract:

In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.

Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation

Procedia PDF Downloads 344
3144 Investigation of the Cooling and Uniformity Effectiveness in a Sinter Packed Bed

Authors: Uzu-Kuei Hsu, Chang-Hsien Tai, Kai-Wun Jin

Abstract:

When sinters are filled into the cooler from the sintering machine, and the non-uniform distribution of the sinters leads to uneven cooling. This causes the temperature difference of the sinters leaving the cooler to be so large that it results in the conveyors being deformed by the heat. The present work applies CFD method to investigate the thermo flowfield phenomena in a sinter cooler by the Porous Media Model. Using the obtained experimental data to simulate porosity (Ε), permeability (κ), inertial coefficient (F), specific heat (Cp) and effective thermal conductivity (keff) of the sinter packed beds. The physical model is a similar geometry whose Darcy numbers (Da) are similar to the sinter cooler. Using the Cooling Index (CI) and Uniformity Index (UI) to analyze the thermo flowfield in the sinter packed bed obtains the cooling performance of the sinter cooler.

Keywords: porous media, sinter, cooling index (CI), uniformity index (UI), CFD

Procedia PDF Downloads 390
3143 Flow and Heat Transfer Analysis of Copper-Water Nanofluid with Temperature Dependent Viscosity past a Riga Plate

Authors: Fahad Abbasi

Abstract:

Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity, as well as the temperature of the nanofluid and, is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.

Keywords: heat transfer, peristaltic flows, radially varying magnetic field, curved channel

Procedia PDF Downloads 162
3142 Cardiotoxicity Associated with Radiation Therapy: The Role of Bone Marrow Mesenchymal Cells in Improvement of Heart Function

Authors: Isalira Peroba Ramos, Cherley Borba Vieira de Andrade, Grazielle Suhett, Camila Salata, Paulo Cesar Canary, Guilherme Visconde Brasil, Antonio Carlos Campos de Carvalho, Regina Coeli dos Santos Goldenberg

Abstract:

Background: The therapeutic options for patients with cancer now include increasingly complex combinations of medications, radiation therapy (RT), and surgical intervention. Many of these treatments have important potential adverse cardiac effects and are likely to have significant effects on patient outcomes. Cell therapy appears to be promising for the treatment of chronic and degenerative diseases, including cardiomyopathy induced by RT, as the current therapeutic options are insufficient. Aims: To evaluate the potential of bone marrow mesenchymal cells (BMMCs) in radioinduced cardiac damage Methods: Female Wistar rats, 3 months old (Ethics Committee 054/14), were divided into 2 groups, non-treated irradiated group (IR n=15) and irradiated and BMMC treated (IRT n=10). Echocardiography was performed to evaluate heart function. After euthanasia, 3 months post treatment; the left ventricle was removed and prepared for RT-qPCR (VEGF and Pro Collagen I) and histological (picrosirius) analysis. Results: In both groups, 45 days after irradiation, ejection fraction (EF) was in the normal range for these animals (> 70%). However, the BMMC treated group had EF (83.1%±2.6) while the non-treated IR group showed a significant reduction (76.1%±2.6) in relation to the treated group. In addition, we observed an increase in VEGF gene expression and a decrease in Pro Collagen I in IRT when compared to IR group. We also observed by histology that the collagen deposition was reduced in IRT (10.26%±0.83) when compared to IR group (25.29%±0.96). Conclusions: Treatment with BMMCs was able to prevent ejection fraction reduction and collagen deposition in irradiated animals. The increase of VEGF and the decrease of pro collagen I gene expression might explain, at least in part, the cell therapy benefits. All authors disclose no financial or personal relationships with individuals or organizations that could be perceived to bias their work. Sources of funding: FAPERJ, CAPES, CNPq, MCT.

Keywords: mesenchymal cells, radioation, cardiotoxicity, bone marrow

Procedia PDF Downloads 253
3141 A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering

Authors: Sudhir Kumar Sharma, Abiy D. Woldetsadik, Mazin Magzoub, Ramesh Jagannathan

Abstract:

It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds.

Keywords: supercritical CO2, CaCO3 scaffolds, coffee-ring effect, ECM proteins

Procedia PDF Downloads 296
3140 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 269
3139 Effect of Roughness and Microstructure on Tribological Behaviour of 35NCD16 Steel

Authors: A. Jourani, C. Trevisiol, S. Bouvier

Abstract:

The aim of this work is to study the coupled effect of microstructure and surface roughness on friction coefficient, wear resistance and wear mechanisms. Friction tests on 35NCD16 steel are performed under different normal loads (50-110 N) on a pin-on-plane configuration at cyclic sliding with abrasive silicon carbide grains ranging from 35 µm to 200 µm. To vary hardness and microstructure, the specimens are subjected to water quenching and tempering at various temperatures from 200°C to 600°C. The evolution of microstructures and wear mechanisms of worn surfaces are analyzed using scanning electron microscopy (SEM). For a given microstructure and hardness, the friction coefficient decreases with increasing of normal load and decreasing of the abrasive particle size. The wear rate increase with increasing of normal load and abrasive particle size. The results also reveal that there is a critical hardness Hcᵣᵢₜᵢcₐₗ around 430 Hv which maximizes the friction coefficient and wear rate. This corresponds to a microstructure transition from martensite laths to carbides and equiaxed grains, for a tempering around 400°C. Above Hcᵣᵢₜᵢcₐₗ the friction coefficient and the amount of material loss decrease with an increase of hardness and martensite volume fraction. This study also shows that the debris size and the space between the abrasive particles decrease with a reduction in the particle size. The coarsest abrasive grains lost their cutting edges, accompanied by particle damage and empty space due to the particle detachment from the resin matrix. The compact packing nature of finer abrasive papers implicates lower particle detachment and facilitates the clogging and the transition from abrasive to adhesive wear.

Keywords: martensite, microstructure, friction, wear, surface roughness

Procedia PDF Downloads 154
3138 Precursor Synthesis of Carbon Materials with Different Aggregates Morphologies

Authors: Nikolai A. Khlebnikov, Vladimir N. Krasilnikov, Evgenii V. Polyakov, Anastasia A. Maltceva

Abstract:

Carbon materials with advanced surfaces are widely used both in modern industry and in environmental protection. The physical-chemical nature of these materials is determined by the morphology of primary atomic and molecular carbon structures, which are the basis for synthesizing the following materials: zero-dimensional (fullerenes), one-dimensional (fiber, tubes), two-dimensional (graphene) carbon nanostructures, three-dimensional (multi-layer graphene, graphite, foams) with unique physical-chemical and functional properties. Experience shows that the microscopic morphological level is the basis for the creation of the next mesoscopic morphological level. The dependence of the morphology on the chemical way and process prehistory (crystallization, colloids formation, liquid crystal state and other) is the peculiarity of the last called level. These factors determine the consumer properties of carbon materials, such as specific surface area, porosity, chemical resistance in corrosive environments, catalytic and adsorption activities. Based on the developed ideology of thin precursor synthesis, the authors discuss one of the approaches of the porosity control of carbon-containing materials with a given aggregates morphology. The low-temperature thermolysis of precursors in a gas environment of a given composition is the basis of the above-mentioned idea. The processes of carbothermic precursor synthesis of two different compounds: tungsten carbide WC:nC and zinc oxide ZnO:nC containing an impurity phase in the form of free carbon were selected as subjects of the research. In the first case, the transition metal (tungsten) forming carbides was the object of the synthesis. In the second case, there was selected zinc that does not form carbides. The synthesis of both kinds of transition metals compounds was conducted by the method of precursor carbothermic synthesis from the organic solution. ZnO:nC composites were obtained by thermolysis of succinate Zn(OO(CH2)2OO), formate glycolate Zn(HCOO)(OCH2CH2O)1/2, glycerolate Zn(OCH2CHOCH2OH), and tartrate Zn(OOCCH(OH)CH(OH)COO). WC:nC composite was synthesized from ammonium paratungstate and glycerol. In all cases, carbon structures that are specific for diamond- like carbon forms appeared on the surface of WC and ZnO particles after the heat treatment. Tungsten carbide and zinc oxide were removed from the composites by selective chemical dissolution preserving the amorphous carbon phase. This work presents the results of investigating WC:nC and ZnO:nC composites and carbon nanopowders with tubular, tape, plate and onion morphologies of aggregates that are separated by chemical dissolution of WC and ZnO from the composites by the following methods: SEM, TEM, XPA, Raman spectroscopy, and BET. The connection between the carbon morphology under the conditions of synthesis and chemical nature of the precursor and the possibility of regulation of the morphology with the specific surface area up to 1700-2000 m2/g of carbon-structured materials are discussed.

Keywords: carbon morphology, composite materials, precursor synthesis, tungsten carbide, zinc oxide

Procedia PDF Downloads 327
3137 The Impact of Using Flattening Filter-Free Energies on Treatment Efficiency for Prostate SBRT

Authors: T. Al-Alawi, N. Shorbaji, E. Rashaidi, M.Alidrisi

Abstract:

Purpose/Objective(s): The main purpose of this study is to analyze the planning of SBRT treatments for localized prostate cancer with 6FFF and 10FFF energies to see if there is a dosimetric difference between the two energies and how we can increase the plan efficiency and reduce its complexity. Also, to introduce a planning method in our department to treat prostate cancer by utilizing high energy photons without increasing patient toxicity and fulfilled all dosimetric constraints for OAR (an organ at risk). Then toevaluate the target 95% coverage PTV95, V5%, V2%, V1%, low dose volume for OAR (V1Gy, V2Gy, V5Gy), monitor unit (beam-on time), and estimate the values of homogeneity index HI, conformity index CI a Gradient index GI for each treatment plan.Materials/Methods: Two treatment plans were generated for15 patients with localized prostate cancer retrospectively using the CT planning image acquired for radiotherapy purposes. Each plan contains two/three complete arcs with two/three different collimator angle sets. The maximum dose rate available is 1400MU/min for the energy 6FFF and 2400MU/min for 10FFF. So in case, we need to avoid changing the gantry speed during the rotation, we tend to use the third arc in the plan with 6FFF to accommodate the high dose per fraction. The clinical target volume (CTV) consists of the entire prostate for organ-confined disease. The planning target volume (PTV) involves a margin of 5 mm. A 3-mm margin is favored posteriorly. Organs at risk identified and contoured include the rectum, bladder, penile bulb, femoral heads, and small bowel. The prescription dose is to deliver 35Gyin five fractions to the PTV and apply constraints for organ at risk (OAR) derived from those reported in references. Results: In terms of CI=0.99, HI=0.7, and GI= 4.1, it was observed that they are all thesame for both energies 6FFF and 10FFF with no differences, but the total delivered MUs are much less for the 10FFF plans (2907 for 6FFF vs.2468 for 10FFF) and the total delivery time is 124Sc for 6FFF vs. 61Sc for 10FFF beams. There were no dosimetric differences between 6FFF and 10FFF in terms of PTV coverage and mean doses; the mean doses for the bladder, rectum, femoral heads, penile bulb, and small bowel were collected, and they were in favor of the 10FFF. Also, we got lower V1Gy, V2Gy, and V5Gy doses for all OAR with 10FFF plans. Integral dosesID in (Gy. L) were recorded for all OAR, and they were lower with the 10FFF plans. Conclusion: High energy 10FFF has lower treatment time and lower delivered MUs; also, 10FFF showed lower integral and meant doses to organs at risk. In this study, we suggest usinga 10FFF beam for SBRTprostate treatment, which has the advantage of lowering the treatment time and that lead to lessplan complexity with respect to 6FFF beams.

Keywords: FFF beam, SBRT prostate, VMAT, prostate cancer

Procedia PDF Downloads 81
3136 Bioactivities and Phytochemical Studies of Acrocarpus fraxinifolius Bark Wight and Arn

Authors: H. M. El-Rafie, A. H. Abou Zeid, R. S. Mohammed, A. A. Sleem

Abstract:

Acrocarpus is a genus of flowering plants in the legume family Fabaceae which considered as a large and economically important family. This study aimed to investigate the phytoconstituents of the petroleum ether extract (PEE) of Acrocarpus fraxinofolius bark by Gas chromatography coupled with mass spectrometry (GC/MS) analysis of its fractions (fatty acid and unsaponifiable matter). Concerning this, identification of 52 compounds constituting 97.03 % of the total composition of the unsaponifiable matter fraction. Cycloeucalenol was found to be the major compound representing 32.52% followed by 4a, 14a-dimethyl-A8~24(28)-ergostadien (26.50%) and ß-sitosterol(13.74%), furthermore Gas liquid chromatography (GLC) analysis of the sterol fraction revealed the identification of cholesterol (7.22 %), campesterol (13.30 %), stigmasterol (10.00 %) and β - sitosterol (69.48 %). Meanwhile, the identification of 33 fatty acids representing 90.71% of the total fatty acid constituents. Methyl-9,12-octadecadienoate (40.39%) followed by methyl hexadecanoate (23.64%) were found to be the major compounds. On the other hand, column chromatography and Thin layer chromatography (TLC) fractionation of PEE separate the triterpenoid: 21β-hydroxylup-20(29)-en-3-one and β- amyrin which were structurally identified by spectroscopic analysis (NMR, MS and IR). PEE has been biologically evaluated for 1: management of diabetes in alloxan induced diabetic rats 2: cytotoxic activity against four human tumor cell lines (Cervix carcinoma cell line[HELA], Breast carcinoma cell line [MCF7], Liver carcinoma cell line[HEPG2] and Colon carcinoma cell line[HCT-116] 3: hepatoprotective activity against CCl4-induced hepatotoxicity in rats and the activity was studied by assaying the serum marker enzymes like AST, ALT, and ALP. Concerning this, the anti-diabetic activity exhibited by 100mg of PEE extract was 74.38% relative to metformin (100% potency). It also showed a significant anti-proliferative activity against MCF-7 (IC50= 2.35µg), Hela(IC50=3.85µg) and HEPG-2 (IC50= 9.54µg) compared with Doxorubicin as reference drug. The hepatoprotective activity was evidenced by significant decrease in liver function enzymes, i.e. AST, ALT and ALP by (29.18%, 28.26%, and 34.11%, respectively using silymarin as the reference drug, compared to their concentration levels in an untreated group with liver damage induced by CCl₄. This study was performed for the first time on the bark of this species.

Keywords: Acrocarpus fraxinofolius, antidiabetic, cytotoxic, hepatoprotective

Procedia PDF Downloads 191
3135 Radionuclide Determination Study for Some Fish Species in Kuwait

Authors: Ahmad Almutairi

Abstract:

Kuwait lies to the northwest of the Arabian Gulf. The levels of radionuclides are unknown in this area. Radionuclide like ²¹⁰Po, ²²⁶Ra, and ⁹⁰Sr accumulated in certain body tissues and bones, relate primarily to dietary uptake and inhalation. A large fraction of radiation exposure experienced by individuals comes from food chain transfer. In this study, some types of Kuwait fish were studied for radionuclide determination. These fish were taken from the Kuwaiti water territory during May. The study is to determine the radiation exposure for ²¹⁰Po in some fish species in Kuwait the ²¹⁰Po concentration was found to be between 0.089 and 2.544 Bq/kg the highs was in Zubaidy and the lowest was in Hamour.

Keywords: the radionuclide, radiation exposure, fish species, Zubaida, Hamour

Procedia PDF Downloads 197
3134 Effect of Methanol Root Extracts of Moringa Oleifera on Lipid Profile Parameters, Atherogenic Indices and HMG – CoA Reductase Activities of Poloxamer 407-Induced Hyperlipidemic Rats

Authors: Matthew Ocheleka Itodo, Ogo Agbo Ogo, Agnes Ogbene Abutu, Bawa Inalegwu

Abstract:

Hyperlipidemia is characterised by elevated serum total cholesterol and low density and very low-density lipoprotein cholesterol and decreased high-density lipoprotein are the risk factor for coronary heart diseases. There are claims by traditional medicine practitioners in Nigeria that Moringa oleifera plants are used for the treatment of cardiovascular diseases, but it appears there is no scientific research and, publication or documented work to verify these claims. This study aimed to determine the effect of methanol root extracts of Moringa oleifera on Lipid profile, Atherogenic indices and 3 hydroxyl 3 methylglutaryl Coenzyme A reductase activity of poloxamer 407-induced hyperlipidemic rats. The animals were grouped into 8; Group 1: Normal control, Group 2: Hyperlipidemic control. Groups 2 to 8 were induced with Poloxamer 407 1000 mg/Kg body weight. However, group 3 were treated with standard drugs (atorvastatin). Group 4 was treated with crude extract, and groups 5 to 8 were treated with purified fractions from column chromatography. The preliminary antihyperlipidemic study showed Methanol root extract at 200 mg/kg body weight significantly (p≤0.05) decreased total cholesterol, low-density lipoprotein, triacylglyceride, 3 hydroxyls 3 methylglutaryl Coenzyme A reductase, and increase high-density lipoprotein of hyperlipidemic treated groups. Screening the extracts for the most potent anti-hyperlipidemic activity reveals that fraction 1 of Total Cholesterol and Fraction 3 of Triacylglyceride have the highest percentage reduction of 56% and 51%, respectively. The atherogenic risk factor of all induced treated rats shows a significant (p<0.05) decrease in levels of Castelli’s risk index II, atherogenic index of plasma and a significant (p<0.05) higher level of Castelli’s risk index I ratio. The study shows that the methanol extract of root possesses antihyperlipidemic effects and may explain why it has been found to be useful in the management of cardiovascular diseases by traditional medicine practitioners.

Keywords: hyperlipidemia, moringa oleifera, poloxamer 407, lipid profile

Procedia PDF Downloads 74
3133 Densities and Viscosities of Binary Mixture Containing Diethylamine and 2-Alkanol

Authors: Elham jassemi Zargani, Mohammad almasi

Abstract:

Densities and viscosities for binary mixtures of diethylamine + 2 Alkanol (2 propanol up to 2 pentanol) were measured over the entire composition range and temperature interval of 293.15 to 323.15 K. Excess molar volumes V_m^E and viscosity deviations Δη were calculated and correlated by the Redlich−Kister type function to derive the coefficients and estimate the standard error. For mixtures of diethylamine with used 2-alkanols, V_m^E and Δη are negative over the entire range of mole fraction. The observed variations of these parameters, with alkanols chain length and temperature, are discussed in terms of the inter-molecular interactions between the unlike molecules of the binary mixtures.

Keywords: densities, viscosities, diethylamine, 2-alkanol, Redlich-Kister

Procedia PDF Downloads 383
3132 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber

Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo

Abstract:

In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.

Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect

Procedia PDF Downloads 174
3131 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore

Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie

Abstract:

Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.

Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model

Procedia PDF Downloads 146
3130 Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping

Authors: Jung-Feng Lin, Wei-Tang Chen, Chung-King Hsu, Chun-Pin Lin, Feng-Huei Lin

Abstract:

One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility.

Keywords: calcium phosphate cement, calcium sulphate hemihydrate, pulp capping, fast setting time

Procedia PDF Downloads 380
3129 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites

Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal

Abstract:

Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.

Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures

Procedia PDF Downloads 269
3128 Phytochemical Profile of Ripe Juniperus excelsa M. Bieb. Galbuli from Bulgaria

Authors: S. Stankov, H. Fidan, N. Petkova, M. Stoyanova, Tz. Radoukova, A. Stoyanova

Abstract:

The aim of this study was to evaluate the chemical composition of ripe Juniperus excelsa M. Bieb. galbuli (female cones) collected from "Izgoraloto Gyune" Reserve in Krichim, Bulgaria. The moisture (36.88%), abs. weight 693.96 g/1000 pcs., and the ash content (10.57%) of ripe galbuli were determined. Lipid fraction (9.12%), cellulose (13.54%), protein (13.64%), and total carbohydrates (31.20%) were evaluated in the ripe galbuli. It was found that the ripe galbuli contained glucose (4.00%) and fructose (4.25%), but disaccharide sucrose was not identified. The main macro elements presented in the sample were K (8390.00 mg/kg), Ca (4596.00 g/kg), Mg (837.72 mg/kg), followed by Na (7.69 mg/kg); while the detected microelements consisted of Zn (8.51 mg/kg), Cu (4.66 mg/kg), Mn (3.65 mg/kg), Fe (3.26 mg/kg), Cr (3.00 mg/kg), Cd (< 0.1 mg/kg), and Pb (0.01 mg/kg).

Keywords: chemical composition, Juniperus excelsa M. Bieb, minerals, ripe galbuli

Procedia PDF Downloads 143
3127 Hypothesis on Annual Sea Level Variation and Increased Volume Transport in Korea Strait

Authors: Young-Taeg Kim, Gwang Ho Seo, Hyungju Oh, Ho Kyung Ha, Kuk Jin Kim

Abstract:

Kim et al., hypothesized an increase in volume transport in the Korea Strait based on the concurrent increase in water temperature and mean sea level observed by the Korea Hydrographic and Oceanographic Agency (KHOA) in the vicinity of the Korea Strait from 2000 to 2009. Since then, to our best knowledge, no definitive studies have been reported on the increase in volume transport through the Korea Strait, but the observed water temperature (2000-2021) and sea level (1989-2021) in the Korea Strait and East Sea have been found to be increasing. In particular, the rapid increase rate in the mean sea level rise (2.55~3.53 mm/y) in these areas cannot be explained by only steric effect due to the increased water temperature. It is more reasonable interpretation that the sea level rise is due to an increase in the volume transport of warm and salty currents. If the increase in the volume transport is explained by the geostrophic equation without considering the sea level rise in the Korea Strait, the current velocity should increase. However, up to now, there are no reports of an increase in current velocity from direct observations using ADCP (e.g., observations of Camellia) or from various numerical models. Therefore, the increase in volume transport cannot be explained by the geostrophic equation. Another possible explanation for the increase in the volume transport is the effect of wind. Although Korea is dominated by monsoon, it is affected by winds according to El Niño and La Niña, which have a cycle of about 3 to 4 years. During El Niño (La Niña), northerly winds (southerly winds) prevail in Korea. Consequently, it is inferred that the transported volume in the Korea Strait slowly increases interannually. However, in this study, it was difficult to find a clear correlation between annually-averaged mean sea level and El Niño (or La Niña) during 1989-2021. This is probably due to the interactions of the PDO (Pacific Decadal Oscillation) and AO (Arctic Oscillation) along with the ENSO (El niño-Southern Oscillation). However, it is clear that the interannual variability of winds is affecting the volume transport in the Korean Strait. On the other hand, the effect of global sea level rise on the volume transport in the Korea Strait is small compared to the interannual variability of the volume transport, but it seems to play a constant role.

Keywords: mean sea level, volume transport, El nino, La nina

Procedia PDF Downloads 78
3126 Prediction of Super-Response to Cardiac Resynchronisation Therapy

Authors: Vadim A. Kuznetsov, Anna M. Soldatova, Tatyana N. Enina, Elena A. Gorbatenko, Dmitrii V. Krinochkin

Abstract:

The aim of the study was to evaluate potential parameters related with super-response to CRT. Methods: 60 CRT patients (mean age 54.3 ± 9.8 years; 80% men) with congestive heart failure (CHF) II-IV NYHA functional class, left ventricular ejection fraction < 35% were enrolled. At baseline, 1 month, 3 months and each 6 months after implantation clinical, electrocardiographic and echocardiographic parameters, NT-proBNP level were evaluated. According to the best decrease of left ventricular end-systolic volume (LVESV) (mean follow-up period 33.7 ± 15.1 months) patients were classified as super-responders (SR) (n=28; reduction in LVESV ≥ 30%) and non-SR (n=32; reduction in LVESV < 30%). Results: At baseline groups differed in age (58.1 ± 5.8 years in SR vs 50.8 ± 11.4 years in non-SR; p=0.003), gender (female gender 32.1% vs 9.4% respectively; p=0.028), width of QRS complex (157.6 ± 40.6 ms in SR vs 137.6 ± 33.9 ms in non-SR; p=0.044). Percentage of LBBB was equal between groups (75% in SR vs 59.4% in non-SR; p=0.274). All parameters of mechanical dyssynchrony were higher in SR, but only difference in left ventricular pre-ejection period (LVPEP) was statistically significant (153.0 ± 35.9 ms vs. 129.3 ± 28.7 ms p=0.032). NT-proBNP level was lower in SR (1581 ± 1369 pg/ml vs 3024 ± 2431 pg/ml; p=0.006). The survival rates were 100% in SR and 90.6% in non-SR (log-rank test P=0.002). Multiple logistic regression analysis showed that LVPEP (HR 1.024; 95% CI 1.004–1.044; P = 0.017), baseline NT-proBNP level (HR 0.628; 95% CI 0.414–0.953; P=0.029) and age at baseline (HR 1.094; 95% CI 1.009-1.168; P=0.30) were independent predictors for CRT super-response. ROC curve analysis demonstrated sensitivity 71.9% and specificity 82.1% (AUC=0.827; p < 0.001) of this model in prediction of super-response to CRT. Conclusion: Super-response to CRT is associated with better survival in long-term period. Presence of LBBB was not associated with super-response. LVPEP, NT-proBNP level, and age at baseline can be used as independent predictors of CRT super-response.

Keywords: cardiac resynchronisation therapy, superresponse, congestive heart failure, left bundle branch block

Procedia PDF Downloads 389
3125 Scope of Samarium Content on Microstructural and Structural Properties of Potassium-Sodium Niobate (KNN) Based Ceramics

Authors: Geraldine Giraldo

Abstract:

In the research of advanced materials, ceramics based on KNN are an important topic, especially for multifunctional applications. In this work, the physical, structural, and microstructural properties of the (KNN-CaLi-xSm) system were analyzed by varying the concentration of samarium, which was prepared using the conventional solid-state reaction method by mixing oxides. It was found that the increase in Sm+3 concentration led to higher porosity in the sample and, consequently, a decrease in density, which is attributed to the structural vacancies at the A-sites of the perovskite-type structure of the ceramic system. In the structural analysis, a coexistence of Tetragonal (T) and Orthorhombic (O) phases were observed at different rare-earth ion contents, with a higher content of the T phase at xSm=0.010. Furthermore, the structural changes in the calcined powders at different temperatures were studied using the results of DTA-TG, which allowed for the analysis of the system's composition. It was found that the lowest total decomposition temperature occurred when xSm=0.010 at 770°C.

Keywords: perovskite, piezoelectric, multifunctional, Structure, ceramic

Procedia PDF Downloads 61
3124 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger

Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe

Abstract:

Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fraction

Keywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat

Procedia PDF Downloads 149
3123 Antioxidant, Hypoglycemic and Hypotensive Effects Affected by Various Molecular Weights of Cold Water Extract from Pleurotus Citrinopileatus

Authors: Pao-Huei Chen, Shu-Mei Lin, Yih-Ming Weng, Zer-Ran Yu, Be-Jen Wang

Abstract:

Pancreatic α-amylase and intestinal α-glucosidase are the critical enzymes for the breakdown of complex carbohydrates into di- or mono-saccharide, which play an important role in modulating postprandial blood sugars. Angiotensin converting enzyme (ACE) converts inactive angiotensin-I into active angiotensin-II, which subsequently increase blood pressure through triggering vasoconstriction and aldosterone secretion. Thus, inhibition of carbohydrate-digestion enzymes and ACE will help the management of blood glucose and blood pressure, respectively. Studies showed Pleurotus citrinopileatus (PC), an edible mushroom and commonly cultured in oriental countries, exerted anticancer, immune improving, antioxidative, hypoglycemic and hypolipidemic effects. Previous studies also showed various molecular weights (MW) fractioned from extracts may affect biological activities due to varying contents of bioactive components. Thus, the objective of this study is to investigate the in vitro antioxidant, hypoglycemic and hypotenstive effects and distribution of active compounds of various MWs of cold water extract from P. citrinopileatus (CWEPC). CWEPC was fractioned into four various MW fractions, PC-I (<1 kDa), PC-II (1-3.5 kDa), PC-III (3.5-10 kDa), and PC-IV (>10 kDa), using an ultrafiltration system. The physiological activities, including antioxidant activities, the inhibition capabilities of pancreatic α-amylase, intestinal α-glucosidase, and hypertension-linked ACE, and the active components, including polysaccharides, protein, and phenolic contents, of CWEPC and four fractions were determined. The results showed that fractions with lower MW exerted a higher antioxidant activity (p<0.05), which was positively correlated to the levels of total phenols. In contrast, the inhibition effects on the activities of α-amylase, α-glucosidase, and ACE of PC-IV fraction were significantly higher than CWEPC and the other three low MW fractions (< 10 kDa), which was more related to protein contents. The inhibition capability of CWEPC and PC-IV on α-amylase activity was 1/13.4 to 1/2.7 relative to that of acarbose (positive control), respectively. However, the inhibitory ability of PC-IV on α-glucosidase (IC50 = 0.5 mg/mL) was significantly higher than acarbose (IC50 = 1.7 mg/mL). Kinetic data revealed that PC-IV fraction followed a non-competitive inhibition on α-glucosidase activity. In conclusion, the distribution of various bioactive components contribute to the functions of different MW fractions on oxidative stress prevention, and blood pressure and glucose modulation.

Keywords: α-Amylase, angiotensin converting enzyme, α-Glucosidase, Pleurotus citrinopileatus

Procedia PDF Downloads 456
3122 Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Authors: Kanchan Maji, Debasmita Pani, Sudip Dasgupta

Abstract:

Calcium phosphate cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve its mechanical strength. Here we study the setting behaviour of Si-doped and un-doped alpha tri-calcium phosphate (α-TCP) based CPC and its reinforcement with the addition of E-glass fibre. Alpha tri-calcium phosphate powders were prepared by solid state sintering of CaCO3, CaHPO4 and tetra ethyl ortho silicate (TEOS) was used as silicon source to synthesise Si doped α-TCP powders. Alpha tri-calcium phosphate based CPC hydrolyzes to form hydroxyapatite (HA) crystals having excellent osteoconductivity and bone-replacement capability thus self-hardens through the entanglement of HA crystals. Setting time, phase composition, hydrolysis conversion rate, microstructure, and diametral tensile strength (DTS) of un-doped CPC and Si-doped CPC were studied and compared. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9-432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. The intensities of the α-TCP peaks of (201) and (161) at 2θ of 22.2°and 24.1° decreased when the time of immersion of CPC in SBF increased from 0 hours to 10 days, due to its transformation into HA. As Si incorporation in the crystal lattice stabilised the TCP phase, Si doped CPC showed a little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. This lower porosity and greater compactness in the microstructure attributes to greater DTS values observed in Si-doped CPC. E-glass fibres of the average diameter of 12 μm were cut into approximately 1 mm in length and immersed in SBF to deposit carbonated apatite on its surface. This was performed to promote HA crystal growth and entanglement along the fibre surface to promote stronger interface between dispersed E-glass fibre and CPC matrix. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resist the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its bioactivity.

Keywords: Calcium phosphate cement, biocompatibility, e-glass fibre, diametral tensile strength

Procedia PDF Downloads 343
3121 CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies

Authors: Shashi Kant Verma, S. L. Sinha, D. K. Chandraker

Abstract:

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Keywords: single-phase flow, turbulent mixing, tracer, sub channel analysis

Procedia PDF Downloads 203
3120 Dual-Phase High Entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅) BxCy Ceramics Produced by Spark Plasma Sintering

Authors: Ana-Carolina Feltrin, Daniel Hedman, Farid Akhtar

Abstract:

High entropy ceramic (HEC) materials are characterized by their compositional disorder due to different metallic element atoms occupying the cation position and non-metal elements occupying the anion position. Several studies have focused on the processing and characterization of high entropy carbides and high entropy borides, as these HECs present interesting mechanical and chemical properties. A few studies have been published on HECs containing two non-metallic elements in the composition. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BxCy ceramics with different amounts of x and y, (0.25 HfC + 0.25 ZrC + 0.25 VC + 0.25 TiB₂), (0.25 HfC + 0.25 ZrC + 0.25 VB2 + 0.25 TiB₂) and (0.25 HfC + 0.25 ZrB2 + 0.25 VB2 + 0.25 TiB₂) were sintered from boride and carbide precursor powders using SPS at 2000°C with holding time of 10 min, uniaxial pressure of 50 MPa and under Ar atmosphere. The sintered specimens formed two HEC phases: a Zr-Hf rich FCC phase and a Ti-V HCP phase, and both phases contained all the metallic elements from 5-50 at%. Phase quantification analysis of XRD data revealed that the molar amount of hexagonal phase increased with increased mole fraction of borides in the starting powders, whereas cubic FCC phase increased with increased carbide in the starting powders. SPS consolidated (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BC0.5 and (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B1.5C0.25 had respectively 94.74% and 88.56% relative density. (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B0.5C0.75 presented the highest relative density of 95.99%, with Vickers hardness of 26.58±1.2 GPa for the borides phase and 18.29±0.8 GPa for the carbides phase, which exceeded the reported hardness values reported in the literature for high entropy ceramics. The SPS sintered specimens containing lower boron and higher carbon presented superior properties even though the metallic composition in each phase was similar to other compositions investigated. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅H₀.₂₅)BxCy ceramics were successfully fabricated in a boride-carbide solid solution and the amount of boron and carbon was shown to influence the phase fraction, hardness of phases, and density of the consolidated HECs. The microstructure and phase formation was highly dependent on the amount of non-metallic elements in the composition and not only the molar ratio between metals when producing high entropy ceramics with more than one anion in the sublattice. These findings show the importance of further studies about the optimization of the ratio between C and B for further improvements in the properties of dual-phase high entropy ceramics.

Keywords: high-entropy ceramics, borides, carbides, dual-phase

Procedia PDF Downloads 167
3119 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 52