Search results for: food distribution networks
4222 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete
Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević
Abstract:
This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.Keywords: compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis
Procedia PDF Downloads 1134221 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece
Authors: Panagiotis Karadimos, Leonidas Anthopoulos
Abstract:
Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.Keywords: actual cost and duration, attribute selection, bridge construction, neural networks, predicting models, FANN TOOL, WEKA
Procedia PDF Downloads 1384220 Evaluation of the Incorporation of Modified Starch in Puff Pastry Dough by Mixolab Rheological Analysis
Authors: Alejandra Castillo-Arias, Carlos A. Fuenmayor, Carlos M. Zuluaga-Domínguez
Abstract:
The connection between health and nutrition has driven the food industry to explore healthier and more sustainable alternatives. Key strategies to enhance nutritional quality and extend shelf life include reducing saturated fats and incorporating natural ingredients. One area of focus is the use of modified starch in baked goods, which has attracted significant interest in food science and industry due to its functional benefits. Modified starches are commonly used for their gelling, thickening, and water-retention properties. Derived from sources like waxy corn, potatoes, tapioca, or rice, these polysaccharides improve thermal stability and resistance to dough. The use of modified starch enhances the texture and structure of baked goods, which is crucial for consumer acceptance. In this study, it was evaluated the effects of modified starch inclusion on dough used for puff pastry elaboration, measured with Mixolab analysis. This technique assesses flour quality by examining its behavior under varying conditions, providing a comprehensive profile of its baking properties. The analysis included measurements of water absorption capacity, dough development time, dough stability, softening, final consistency, and starch gelatinization. Each of these parameters offers insights into how the flour will perform during baking and the quality of the final product. The performance of wheat flour with varying levels of modified starch inclusion (10%, 20%, 30%, and 40%) was evaluated through Mixolab analysis, with a control sample consisting of 100% wheat flour. Water absorption, gluten content, and retrogradation indices were analyzed to understand how modified starch affects dough properties. The results showed that the inclusion of modified starch increased the absorption index, especially at levels above 30%, indicating a dough with better handling qualities and potentially improved texture in the final baked product. However, the reduction in wheat flour resulted in a lower kneading index, affecting dough strength. Conversely, incorporating more than 20% modified starch reduced the retrogradation index, indicating improved stability and resistance to crystallization after cooling. Additionally, the modified starch improved the gluten index, contributing to better dough elasticity and stability, providing good structural support and resistance to deformation during mixing and baking. As expected, the control sample exhibited a higher amylase index, due to the presence of enzymes in wheat flour. However, this is of low concern in puff pastry dough, as amylase activity is more relevant in fermented doughs, which is not the case here. Overall, the use of modified starch in puff pastry enhanced product quality by improving texture, structure, and shelf life, particularly when used at levels between 30% and 40%. This research underscores the potential of modified starches to address health concerns associated with traditional starches and to contribute to the development of higher-quality, consumer-friendly baked products. Furthermore, the findings suggest that modified starches could play a pivotal role in future innovations within the baking industry, particularly in products aiming to balance healthfulness with sensory appeal. By incorporating modified starch into their formulations, bakeries can meet the growing demand for healthier, more sustainable products while maintaining the indulgent qualities that consumers expect from baked goods.Keywords: baking quality, dough properties, modified starch, puff pastry
Procedia PDF Downloads 294219 Anti-Proliferative Effect of Chanterelle (Cantharellus) Mushroom Extracts on Glioblastoma Multiforme Cell Line U87MG
Authors: Justyna Moskwa, Patryk Nowakowski, Sylwia K. Naliwajko, Renata Markiewicz-Zukowska, Krystyna Gromkowska-Kepka, Anna Puscion-Jakubik, Konrad Mielcarek, Maria H. Borawska
Abstract:
For centuries, mushrooms have been used in folk medicine; however, knowledge of the composition and properties of fungi comes from the last twenty years. Mushrooms show antibacterial, antioxidant, antitumor and immune-stimulating properties; however, there is a lack of reports, on anticancer treatment of brain gliomas. The aim of this study was to examine influence of Chanterelle mushroom (Cantharellus Adans. ex Fr.) ethanolic (CHE) and water (CHW) extracts, on glioblastoma multiforme cell line (U87MG). Anti-proliferative activity of CHE and CHW in concentration (50-1000 µg/mL) was determined by a cytotoxicity test and DNA binding by [³H]-thymidine incorporation after 24, 48 and 72h of incubation with U87MG glioblastoma cell line. The statistical analysis was performed using Statistica v. 13.0 software. Significant differences were assumed for p < 0.05. We examined that CHE extracts in all the tested concentrations (50, 100, 250, 500, 1000 µg/mL) after all hours of incubation significantly decreased cell viability (p < 0.05) on U87MG cell line, which was confirmed by the significant (p < 0.05) reduction of DNA synthesis. Our results suggest that only CHE extract a cytotoxic and anti-proliferation activities on U87MG cell line.Keywords: anticancer, food, glioblastoma, mushroom
Procedia PDF Downloads 1644218 Progressive Type-I Interval Censoring with Binomial Removal-Estimation and Its Properties
Authors: Sonal Budhiraja, Biswabrata Pradhan
Abstract:
This work considers statistical inference based on progressive Type-I interval censored data with random removal. The scheme of progressive Type-I interval censoring with random removal can be described as follows. Suppose n identical items are placed on a test at time T0 = 0 under k pre-fixed inspection times at pre-specified times T1 < T2 < . . . < Tk, where Tk is the scheduled termination time of the experiment. At inspection time Ti, Ri of the remaining surviving units Si, are randomly removed from the experiment. The removal follows a binomial distribution with parameters Si and pi for i = 1, . . . , k, with pk = 1. In this censoring scheme, the number of failures in different inspection intervals and the number of randomly removed items at pre-specified inspection times are observed. Asymptotic properties of the maximum likelihood estimators (MLEs) are established under some regularity conditions. A β-content γ-level tolerance interval (TI) is determined for two parameters Weibull lifetime model using the asymptotic properties of MLEs. The minimum sample size required to achieve the desired β-content γ-level TI is determined. The performance of the MLEs and TI is studied via simulation.Keywords: asymptotic normality, consistency, regularity conditions, simulation study, tolerance interval
Procedia PDF Downloads 2534217 Coping with Climate Change in Agriculture: Perception of Farmers in Oman
Authors: B. S. Choudri
Abstract:
Introduction: Climate change is a major threat to rural livelihoods and to food security in the developing world, including Oman. The aim of this study is to provide a basis for policymakers and researchers in order to understand the impacts of climate change on agriculture and developing adaptation strategies in Oman. Methodology: The data was collected from different agricultural areas across the country with the help of a questionnaire survey among farmers, discussion with community, and observations at the field level. Results: The analysis of data collected from different areas within the country shows a shift in the sowing period of major crops and increased temperatures over recent years. Farmer community is adopting through diversification of crops, use of heat-tolerant species, and improved measures of soil and water conservation. Agriculture has been the main livelihood for most of the farmer communities in rural areas in the country. Conclusions: In order to reduce the effects of climate change at the local and farmer communities, risk reduction would be important along with an in-depth analysis of the vulnerability. Therefore, capacity building of local farmers and providing them with scientific knowledge, mainstreaming adaptation into development activities would be essential with additional funding and subsidies.Keywords: agriculture, climate change, vulnerability, adaptation
Procedia PDF Downloads 1284216 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 4174215 Analysis of Hydro-Climatic Fluctuations in the Context of Climate Change. Case of the Oued Bouregreg Watershed (Morocco)
Authors: Abdelghani Qadem, Najat Itobi
Abstract:
Morocco, characterized by a semi-arid climate heavily influenced by the Mediterranean, includes regions particularly vulnerable to climatic hazards, notably the Oued Bouregreg watershed. This study examines the fluctuations in precipitation, temperature, and streamflow regimes within the Oued Bouregreg watershed, based on 50 years of data collected from measurement stations. The analysis begins with an assessment of the geographic distribution of the stations and the quality of the data, emphasizing the importance of adequate coverage for accurate analysis. The results reveal significant heterogeneity in annual precipitation, with peaks in 2010 and lows in 1995, as well as marked monthly variability, featuring a wet season from November to April and a dry season from May to October. The relationship between temperature and precipitation indicates an inverse correlation, while streamflow varies significantly from year to year, showing a positive correlation with rainfall. This study highlights the importance of understanding the interactions among these variables for sustainable water resource management and underscores the necessity of regular and precise monitoring of climatic and hydrological data.Keywords: fluctuations, water resources, rainfall, Morocco
Procedia PDF Downloads 84214 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract
Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie
Abstract:
In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.Keywords: biopolymer, microencapsulation, spray-drying, walnut green husk
Procedia PDF Downloads 1624213 Contribution to the Study of the Microbiological Quality of Chawarma Sold in Biskra
Authors: Sara Boulmai̇z
Abstract:
In order to study the microbiological quality of chawarma sold in Biskra, a sampling through some fastfoods of the city was done, the parameters studied are highlighted according to the criteria required by the country's trade management. Microbiological analyzes revealed different levels of contamination by microorganisms. The 10 samples were of an overall view of unsatisfactory quality, and according to the standards, no sample was satisfactory. The range of total aerobic mesophilic flora found is between 105 and 1.2 × 10 7 CFU / g, that of fecal coliforms is 104 to 2.4 × 10 5 CFU / g. The suspected pathogenic staphylococci were between 3.103 and 2.7.106 CFU / g. Salmonellae were absent in all samples, whereas sulphite-reducing anaerobes were present in a single sample. The rate of E. cloacae was between 103 and 6.104 CFU / g. As for fungi and safe mice, their rate was 103 to 107 CFU / g. The study of the sensitivity of antibiotics showed multi-resistance to all the antibiotics tested, although there is a sensitivity towards others. All strains of Staphylococcus aureus tested demonstrated resistance against erythromycin, 30% against streptomycin, and 10% against tetracycline. While the strains of E. cloacae were resistant in all strains to amoxicillin, ceftazidime, cefotaxime, and erythromycin, while they were sensitive to fosfomycin, sulfamethoxazole trimethoperine, ciprofloxacin, and tetracycline. While against chlorophenicol and ofloxacin, the sensitivity was dominant, although there was intermediate resistance. In this study demonstrates that foodborne illnesses remain a problem that arises in addition to the increasingly observed bacterial resistance and that, after all, healthy eating is a right.Keywords: chawarma, microbiological quality, pathogens., street food
Procedia PDF Downloads 1184212 Brain Networks and Mathematical Learning Processes of Children
Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke
Abstract:
Neurological findings provide foundational results for many different disciplines. In this article we want to discuss these with a special focus on mathematics education. The intention is to make neuroscience research useful for the description of cognitive mathematical learning processes. A key issue of mathematics education is that students often behave as if their mathematical knowledge is constructed in isolated compartments with respect to the specific context of the original learning situation; supporting students to link these compartments to form a coherent mathematical society of mind is a fundamental task not only for mathematics teachers. This aspect goes hand in hand with the question if there is such a thing as abstract general mathematical knowledge detached from concrete reality. Educational Neuroscience may give answers to the question why students develop their mathematical knowledge in isolated subjective domains of experience and if it is generally possible to think in abstract terms. To address these questions, we will provide examples from different fields of mathematics education e.g. students’ development and understanding of the general concept of variables or the mathematical notion of universal proofs. We want to discuss these aspects in the reflection of functional studies which elucidate the role of specific brain regions in mathematical learning processes. In doing this the paper addresses concept formation processes of students in the mathematics classroom and how to support them adequately considering the results of (educational) neuroscience.Keywords: brain regions, concept formation processes in mathematics education, proofs, teaching-learning processes
Procedia PDF Downloads 1544211 Comparative Analysis of Motor Insurance Claims using Machine Learning
Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah
Abstract:
From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability
Procedia PDF Downloads 94210 Resource Orchestration Based on Two-Sides Scheduling in Computing Network Control Sytems
Authors: Li Guo, Jianhong Wang, Dian Huang, Shengzhong Feng
Abstract:
Computing networks as a new network architecture has shown great promise in boosting the utilization of different resources, such as computing, caching, and communications. To maximise the efficiency of resource orchestration in computing network control systems (CNCSs), this work proposes a dynamic orchestration strategy of a different resource based on task requirements from computing power requestors (CPRs). Specifically, computing power providers (CPPs) in CNCSs could share information with each other through communication channels on the basis of blockchain technology, especially their current idle resources. This dynamic process is modeled as a cooperative game in which CPPs have the same target of maximising long-term rewards by improving the resource utilization ratio. Meanwhile, the task requirements from CPRs, including size, deadline, and calculation, are simultaneously considered in this paper. According to task requirements, the proposed orchestration strategy could schedule the best-fitting resource in CNCSs, achieving the maximum long-term rewards of CPPs and the best quality of experience (QoE) of CRRs at the same time. Based on the EdgeCloudSim simulation platform, the efficiency of the proposed strategy is achieved from both sides of CPRs and CPPs. Besides, experimental results show that the proposed strategy outperforms the other comparisons in all cases.Keywords: computing network control systems, resource orchestration, dynamic scheduling, blockchain, cooperative game
Procedia PDF Downloads 1214209 ARCS Model for Enhancing Intrinsic Motivation in Learning Biodiversity Subjects: A Case Study of Tertiary Level Students in Malaysia
Authors: Nadia Nisha Musa, Nur Atirah Hasmi, Hasnun Nita Ismail, Zulfadli Mahfodz
Abstract:
In Malaysian Education System, subject related to biodiversity has started in the curriculum from Foundation Study until tertiary education. Biodiversity become the focus of attention due to awareness on global warming which potentially leads to a loss of biodiversity. A loss in biodiversity means a loss in medicinal discoveries and reduces food supply. It is of great important to ensure that young generations become aware of biodiversity conservation. The more interactive approaches are needed to build society with a high awareness for biodiversity conservation. To address this challenge, the goal of this study is to enhance intrinsic motivation of biological students via ARCS model of instruction. Self-access learning materials such as tutorial, module and fieldwork were designed with ARCS elements to a sample size of 70 university students from the beginning of the semester. Both paper and online surveys were used to collect data from the respondents. The results showed that elements of attention, relevance, confidence and satisfaction have a positive impact on intrinsic motivation of students and their academic performance.Keywords: intrinsic motivation, ARCS model of instruction, biodiversity, self-access learning
Procedia PDF Downloads 2264208 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011
Authors: S. Abera, T. Gidey, W. Terefe
Abstract:
Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.Keywords: data mining, HIV, testing, ethiopia
Procedia PDF Downloads 5034207 Treatment of Psoriasis through Thai Traditional Medicine
Authors: Boonsri Lertviriyachit
Abstract:
The objective of this research is to investigate the treatment of psoriasis through Thai traditional medicine in the selected areas of 2 east coast provinces; Samudprakarn Province and Chantaburi Province. The informants in this study were two famous and accepted Thai traditional doctors, who have more than 20 year experiences. Data were collected by in depth interviews and participant-observation method. The research instrument included unstructured interviews, camera, and cassette tape to collect data analyzed by descriptive statistics. The results revealed that the 2 Thai traditional doctors were 54 and 85 years old with 25 and 45 years of treatment experiences. The knowledge of Thai traditional medicine was transferred from generations to generations in the family. The learning process was through close observation as an apprentice with the experience ones and assisted them in collecting herbs and learning by handling real case in individual situations. Before being doctors, they had to take exam to get the Thai traditional medical certificate. Knowledge of being Thai traditional doctors included diagnosis and find to the suitable way of treatment. They have to look into disorder physical fundamental factors such as blood circulation, lymph, emotion, and food consumption habit. It is important that the treatment needs to focus on balancing the fundamental factors and to observe contraindication.Keywords: Thai traditional medicine, psoriasis, Samudprakarn Province, Chantaburi Province
Procedia PDF Downloads 3684206 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network
Authors: Yinggang Guo, Zongchun Li
Abstract:
In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum
Procedia PDF Downloads 1954205 Burden of Communicable and Non-Communicable Disease in India: A Regional Analysis
Authors: Ajit Kumar Yadav, Priyanka Yadav, F. Ram
Abstract:
In present study is an effort to analyse the burden of diseases in the state. Disability Adjusted Life Years (DALY) is estimated non-communicable diseases. Multi-rounds (52nd, 60th and 71st round) of the National Sample Surveys (NSSO), conducted in 1995-96, 2004 and 2014 respectively, and Million Deaths Study (MDS) of 2001-03, 2006 and 2013-14 datasets are used. Descriptive and multivariate analyses are carried out to identify the determinants of different types of self-reported morbidity and DALY. The prevalence was higher for population aged 60 and above, among females, illiterates, and rich across the time period and for all the selected morbidities. The results were found to be significant at P<0.001. The estimation of DALY revealed that, the burden of communicable diseases was higher during infancy, noticeably among males than females in 2002. However, females aged 1-5 years were more vulnerable to report communicable diseases than the corresponding males. The age distribution of DALY indicates that individuals aged below 5 years and above 60 year were more susceptible to ill health. The growing incidence of non-communicable diseases especially among the older generations put additional burden on the health system in the state. The state has to grapple with the unsettled preventable infectious diseases in one hand and growing non-communicable in other hand.Keywords: disease burden, non-communicable, communicable, India and region
Procedia PDF Downloads 2544204 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force
Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases.Keywords: axial force ratio, fire, reinforced concrete wall, residual strength
Procedia PDF Downloads 4654203 Low Probability of Intercept (LPI) Signal Detection and Analysis Using Choi-Williams Distribution
Authors: V. S. S. Kumar, V. Ramya
Abstract:
In the modern electronic warfare, the signal scenario is changing at a rapid pace with the introduction of Low Probability of Intercept (LPI) radars. In the modern battlefield, radar system faces serious threats from passive intercept receivers such as Electronic Attack (EA) and Anti-Radiation Missiles (ARMs). To perform necessary target detection and tracking and simultaneously hide themselves from enemy attack, radar systems should be LPI. These LPI radars use a variety of complex signal modulation schemes together with pulse compression with the aid of advancement in signal processing capabilities of the radar such that the radar performs target detection and tracking while simultaneously hiding enemy from attack such as EA etc., thus posing a major challenge to the ES/ELINT receivers. Today an increasing number of LPI radars are being introduced into the modern platforms and weapon systems so these LPI radars created a requirement for the armed forces to develop new techniques, strategies and equipment to counter them. This paper presents various modulation techniques used in generation of LPI signals and development of Time Frequency Algorithms to analyse those signals.Keywords: anti-radiation missiles, cross terms, electronic attack, electronic intelligence, electronic warfare, intercept receiver, low probability of intercept
Procedia PDF Downloads 4774202 Strategies Used by the Saffron Producers of Taliouine (Morocco) to Adapt to Climate Change
Authors: Aziz Larbi, Widad Sadok
Abstract:
In Morocco, the mountainous regions extend over about 26% of the national territory where 30% of the total population live. They contain opportunities for agriculture, forestry, pastureland and mining. The production systems in these zones are characterised by crop diversification. However, these areas have become vulnerable to the effects of climate change. To understand these effects in relation to the population living in these areas, a study was carried out in the zone of Taliouine, in the Anti-Atlas. The vulnerability of crop productions to climate change was analysed and the different ways of adaptation adopted by farmers were identified. The work was done on saffron, the most profitable crop in the target area even though it requires much water. Our results show that the majority of the farmers surveyed had noticed variations in the climate of the region: irregularity of precipitation leading to a decrease in quantity and an uneven distribution throughout the year; rise in temperature; reduction in the cold period and less snow. These variations had impacts on the cropping system of saffron and its productivity. To cope with these effects, the farmers adopted various strategies: better management and use of water; diversification of agricultural activities; increase in the contribution of non-agricultural activities to their gross income; and seasonal migration.Keywords: climate change, Taliouine, saffron, perceptions, adaptation strategies
Procedia PDF Downloads 654201 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks
Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE
Abstract:
Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network
Procedia PDF Downloads 1264200 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia
Authors: Halefom Kidane
Abstract:
This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.Keywords: artificial neural networks, forecasting, min-max normalization, wind speed
Procedia PDF Downloads 804199 Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro
Authors: Prativa Das, Lay Poh Tan
Abstract:
Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro.Keywords: electrospinning, collagen-I and fibronectin, surface modification of fiber, LX-2 cells, liver fibrosis
Procedia PDF Downloads 1304198 Perspectives on Sustainable Bioeconomy in the Baltic Sea Region
Authors: Susanna Vanhamäki, Gabor Schneider, Kati Manskinen
Abstract:
‘Bioeconomy’ is a complex concept that cuts across many sectors and covers several policy areas. To achieve an overall understanding and support a successful bioeconomy, a cross-sectorial approach is necessary. In practice, due to the concept’s wide scope and varying international approaches, fully understanding bioeconomy is challenging on policy level. This paper provides a background of the topic through an analysis of bioeconomy strategies in the Baltic Sea region. Expert interviews and a small survey were conducted to discover the current and intended focuses of these countries’ bioeconomy sectors. The research shows that supporting sustainability is one of the keys in developing the future bioeconomy. The results highlighted that the bioeconomy has to be sustainable and based on circular economy principles. Currently, traditional bioeconomy sectors like food, wood, fish & waters as well as fuel & energy, which are in the core of national bioeconomy strategies, are best known and are considered more relevant than other bioeconomy industries. However, there is increasing potential for novel sectors, such as textiles and pharmaceuticals. The present research indicates that the opportunities presented by these bioeconomy sectors should be recognised and promoted. Education, research and innovation can play key roles in developing transformative and sustainable improvements in primary production and renewable resources. Furthermore, cooperation between businesses and educators is important.Keywords: bioeconomy, circular economy, policy, strategy
Procedia PDF Downloads 1794197 Rheological Properties and Consumer Acceptability of Supplemented with Flaxseed
Authors: A. Albaridi Najla
Abstract:
Flaxseed (Linum usitatissimum) is well known to have beneficial effect on health. The seeds are rich in protein, α-linolenic fatty acid and dietary fiber. Bakery products are important part of our daily meals. Functional food recently received considerable attention among consumers. The increase in bread daily consumption leads to the production of breads with functional ingredients such as flaxseed The aim of this Study was to improve the nutritional value of bread by adding flaxseed flour and assessing the effect of adding 0, 5, 10 and 15% flaxseed on whole wheat bread rheological and sensorial properties. The total consumer's acceptability of the flaxseed bread was assessed. Dough characteristics were determined using Farinograph (C.W. Brabender® Instruments, Inc). The result shows no change was observed in water absorption between the stander dough (without flaxseed) and the bread with flaxseed (67%). An Increase in the peak time and dough stickiness was observed with the increase in flaxseed level. Further, breads were evaluated for sensory parameters, colour and texture. High flaxseed level increased the bread crumb softness. Bread with 5% flaxseed was optimized for total sensory evaluation. Overall, flaxseed bread produced in this study was highly acceptable for daily consumption as a functional foods with a potentially health benefits.Keywords: bread, flaxseed, rheological properties, whole-wheat bread
Procedia PDF Downloads 4404196 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 4234195 Synthesis and Characterization of Poly (N-(Pyridin-2-Ylmethylidene)Pyridin-2-Amine: Thermal and Conductivity Properties
Authors: Nuray Yılmaz Baran
Abstract:
The conjugated Schiff base polymers which are also called as polyazomethines are promising materials for various applications due to their good thermal resistance semiconductive, liquid crystal, fiber forming, nonlinear optical outstanding photo- and electroluminescence and antimicrobial properties. In recent years, polyazomethines have attracted intense attention of researchers especially due to optoelectronic properties which have made its usage possible in organic light emitting diodes (OLEDs), solar cells (SCs), organic field effect transistors (OFETs), and photorefractive holographic materials (PRHMs). In this study, N-(pyridin-2-ylmethylidene)pyridin-2-amine Schiff base was synthesized from condensation reaction of 2-aminopyridine with 2-pyridine carbaldehyde. Polymerization of Schiff base was achieved by polycondensation reaction using NaOCl oxidant in methanol medium at various time and temperatures. The synthesized Schiff base monomer and polymer (Poly(N-(pyridin-2-ylmethylidene)pyridin-2-amine)) was characterized by UV-vis, FT-IR, 1H-NMR, XRD techniques. Molecular weight distribution and the surface morphology of the polymer was determined by GPC and SEM-EDAX techniques. Thermal behaviour of the monomer and polymer was investigated by TG/DTG, DTA and DSC techniques.Keywords: polyazomethines, polycondensation reaction, Schiff base polymers, thermal stability
Procedia PDF Downloads 2324194 Gas Network Noncooperative Game
Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos
Abstract:
The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition
Procedia PDF Downloads 1574193 Sardine Oil as a Source of Lipid in the Diet of Giant Freshwater Prawn (Macrobrachium rosenbergii)
Authors: A. T. Ramachandra Naik, H. Shivananda Murthy, H. n. Anjanayappa
Abstract:
The freshwater prawn, Macrobrachium rosenbergii is a more popular crustacean cultured widely in monoculture system in India. It has got high nutritional value in the human diet. Hence, understanding its enzymatic and body composition is important in order to judge its flesh quality. Fish oil specially derived from Indian oil sardine is a good source of highly unsaturated fatty acid and lipid source in fish/prawn diet. A 35% crude protein diet with graded levels of Sardine oil as a source of fat was incorporated at four levels viz, 2.07, 4.07, 6.07 and 8.07% maintaining a total lipid level of feed at 8.11, 10.24, 12.28 and 14.33% respectively. Diet without sardine oil (6.05% total lipid) was served as basal treatment. The giant freshwater prawn, Macrobrachium rosenbergii was used as test animal and the experiment was lost for 112 days. Significantly, higher gain in weight of prawn was recorded in the treatment with 6.07% sardine oil incorporation followed by higher specific growth rate, food conversion rate and protein efficiency ratio. The 8.07% sardine oil diet produced the highest RNA: DNA ratio in the prawn muscle. Digestive enzyme analyses in the digestive tract and mid-gut gland showed the greatest activity in prawns fed the 8.07% diet.Keywords: digestive enzyme, fish diet, Macrobrachium rosenbergii, sardine oil
Procedia PDF Downloads 334