Search results for: Clustering technique
333 Progress Towards Optimizing and Standardizing Fiducial Placement Geometry in Prostate, Renal, and Pancreatic Cancer
Authors: Shiva Naidoo, Kristena Yossef, Grimm Jimm, Mirza Wasique, Eric Kemmerer, Joshua Obuch, Anand Mahadevan
Abstract:
Background: Fiducial markers effectively enhance tumor target visibility prior to Stereotactic Body Radiation Therapy or Proton therapy. To streamline clinical practice, fiducial placement guidelines from a robotic radiosurgery vendor were examined with the goals of optimizing and standardizing feasible geometries for each treatment indication. Clinical examples of prostate, renal, and pancreatic cases are presented. Methods: Vendor guidelines (Accuray, Sunnyvale, Ca) suggest implantation of 4–6 fiducials at least 20 mm apart, with at least a 15-degree angular difference between fiducials, within 50 mm or less from the target centroid, to ensure that any potential fiducial motion (e.g., from respiration or abdominal/pelvic pressures) will mimic target motion. Also recommended is that all fiducials can be seen in 45-degree oblique views with no overlap to coincide with the robotic radiosurgery imaging planes. For the prostate, a standardized geometry that meets all these objectives is a 2 cm-by-2 cm square in the coronal plane. The transperineal implant of two pairs of preloaded tandem fiducials makes the 2 cm-by-2 cm square geometry clinically feasible. This technique may be applied for renal cancer, except repositioned in a sagittal plane, with the retroperitoneal placement of the fiducials into the tumor. Pancreatic fiducial placement via endoscopic ultrasound (EUS) is technically more challenging, as fiducial placement is operator-dependent, and lesion access may be limited by adjacent vasculature, tumor location, or restricted mobility of the EUS probe in the duodenum. Fluoroscopically assisted fiducial placement during EUS can help ensure fiducial markers are deployed with optimal geometry and visualization. Results: Among the first 22 fiducial cases on a newly installed robotic radiosurgery system, live x-ray images for all nine prostatic cases had excellent fiducial visualization at the treatment console. Renal and pancreatic fiducials were not as clearly visible due to difficult target access and smaller caliber insertion needle/fiducial usage. The geometry of the first prostate case was used to ensure accurate geometric marker placement for the remaining 8 cases. Initially, some of the renal and pancreatic fiducials were closer than the 20 mm recommendation, and interactive feedback with the proceduralists led to subsequent fiducials being too far to the edge of the tumor. Further feedback and discussion of all cases are being used to help guide standardized geometries and achieve ideal fiducial placement. Conclusion: The ideal tradeoffs of fiducial visibility versus the thinnest possible gauge needle to avoid complications needs to be systematically optimized among all patients, particularly in regards to body habitus. Multidisciplinary collaboration among proceduralists and radiation oncologists can lead to improved outcomes.Keywords: fiducial, prostate cancer, renal cancer, pancreatic cancer, radiotherapy
Procedia PDF Downloads 95332 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application
Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo
Abstract:
Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering
Procedia PDF Downloads 132331 Structure Modification of Leonurine to Improve Its Potency as Aphrodisiac
Authors: Ruslin, R. E. Kartasasmita, M. S. Wibowo, S. Ibrahim
Abstract:
An aphrodisiac is a substance contained in food or drug that can arouse sexual instinct and increase pleasure while working, these substances derived from plants, animals, and minerals. When consuming substances that have aphrodisiac activity and duration can improve the sexual instinct. The natural aphrodisiac effect can be obtained through plants, animals, and minerals. Leonurine compound has aphrodisiac activity, these compounds can be isolated from plants of Leonurus Sp, Sundanese people is known as deundereman, this plant is empirical has aphrodisiac activity and based on the isolation of active compounds from plants known to contain compounds leonurine, so that the compound is expected to have activity aphrodisiac. Leonurine compound can be isolated from plants or synthesized chemically with material dasa siringat acid. Leonurine compound can be obtained commercial and derivatives of these compounds can be synthesized in an effort to increase its activity. This study aims to obtain derivatives leonurine better aphrodisiac activity compared with the parent compound, modified the structure of the compounds in the form leonurin guanidino butyl ester group with butyl amin and bromoetanol. ArgusLab program version 4.0.1 is used to determine the binding energy, hydrogen bonds and amino acids involved in the interaction of the compound PDE5 receptor. The in vivo test leonurine compounds and derivatives as an aphrodisiac ingredients and hormone testosterone levels using 27 male rats Wistar strain and 9 female mice of the same species, ages ranged from 12 weeks rats weighing + 200 g / tail. The test animal is divided into 9 groups according to the type of compounds and the dose given. Each treatment group was orally administered 2 ml per day for 5 days. On the sixth day was observed male rat sexual behavior and taking blood from the heart to measure testosterone levels using ELISA technique. Statistical analysis was performed in this study is the ANOVA test Least Square Differences (LSD) using the program Statistical Product and Service Solutions (SPSS). Aphrodisiac efficacy of the leonurine compound and its derivatives have proven in silico and in vivo test, the in silico testing leonurine derivatives have smaller binding energy derivatives leonurine so that activity better than leonurine compounds. Testing in vivo using rats of wistar strain that better leonurine derivative of this compound shows leonurine that in silico studies in parallel with in vivo tests. Modification of the structure in the form of guanidine butyl ester group with butyl amin and bromoethanol increase compared leonurine compound for aphrodisiac activity, testosterone derivatives of compounds leonurine experienced a significant improvement especial is 1RD compounds especially at doses of 100 and 150 mg/bb. The results showed that the compound leonurine and its compounds contain aphrodisiac activity and increase the amount of testosterone in the blood. The compound test used in this study acts as a steroid precursor resulting in increased testosterone.Keywords: aphrodisiac dysfunction erectile leonurine 1-RD 2-RD, dysfunction, erectile leonurine, 1-RD 2-RD
Procedia PDF Downloads 283330 Examinations of Sustainable Protection Possibilities against Granary Weevil (Sitophilus granarius L.) on Stored Products
Authors: F. Pal-Fam, R. Hoffmann, S. Keszthelyi
Abstract:
Granary weevil, Sitophilus granarius (L.) (Col.: Curculionidae) is a typical cosmopolitan pest. It can cause significant damage to stored grains, and can drastically decrease yields. Damaged grain has reduced nutritional and market value, weaker germination, and reduced weight. The commonly used protectants against stored-product pests in Europe are residual insecticides, applied directly to the product. Unfortunately, these pesticides can be toxic to mammals, the residues can accumulate in the treated products, and many pest species could become resistant to the protectants. During recent years, alternative solutions of grain protection have received increased attention. These solutions are considered as the most promising alternatives to residual insecticides. The aims of our comparative study were to obtain information about the efficacies of the 1. diatomaceous earth, 2. sterile insect technology and 3. herbal oils against the S. granarius on grain (foremost maize), and to evaluate the influence of the dose rate on weevil mortality and progeny. The main results of our laboratory experiments are the followings: 1. Diatomaceous earth was especially efficacious against S. granarius, but its insecticidal properties depend on exposure time and applied dose. The efficacy on barley was better than on maize. Mortality value of the highest dose was 85% on the 21st day in the case of barley. It can be ascertained that complete elimination of progeny was evidenced on both gain types. To summarize, a satisfactory efficacy level was obtained only on barley at a rate of 4g/kg. Alteration of efficacy between grain types can be explained with differences in grain surface. 2. The mortality consequences of Roentgen irradiation on the S. granarius was highly influenced by the exposure time, and the dose applied. At doses of 50 and 70Gy, the efficacy accepted in plant protection (mortality: 95%) was recorded only on the 21st day. During the application of 100 and 200Gy doses, high mortality values (83.5% and 97.5%) were observed on the 14th day. Our results confirmed the complete sterilizing effect of the doses of 70Gy and above. The autocide effect of 50 and 70Gy doses were demonstrated when irradiated specimens were mixed into groups of fertile specimens. Consequently, these doses might be successfully applied to put sterile insect technique (SIT) into practice. 3. The results revealed that both studied essential oils (Callendula officinalis, Hippophae rhamnoides) exerted strong toxic effect on S. granarius, but C. officinalis triggered higher mortality. The efficacy (94.62 ± 2.63%) was reached after a 48 hours exposure to H. rhamnoides oil at 2ml/kg while the application of 2ml/kg of C. officinalis oil for 24 hours produced 98.94 ± 1.00% mortality rate. Mortality was 100% at 5 ml/kg of H. rhamnoides after 24 hours duration of its application, while with C. officinalis the same value could be reached after a 12 hour-exposure to the oil. Both essential oils applied were eliminated the progeny.Keywords: Sitophilus granarius, stored product, protection, alternative solutions
Procedia PDF Downloads 174329 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles
Authors: K. Verma, v. S. Moholkar
Abstract:
In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation
Procedia PDF Downloads 72328 Exploratory Study on Mediating Role of Commitment-to-Change in Relations between Employee Voice, Employee Involvement and Organizational Change Readiness
Authors: Rohini Sharma, Chandan Kumar Sahoo, Rama Krishna Gupta Potnuru
Abstract:
Strong competitive forces and requirements to achieve efficiency are forcing the organizations to realize the necessity and inevitability of change. What's more, the trend does not appear to be abating. Researchers have estimated that about two thirds of change project fails. Empirical evidences further shows that organizations invest significantly in the planned change but people side is accounted for in a token or instrumental way, which is identified as one of the important reason, why change endeavours fail. However, whatever be the reason for change, organizational change readiness must be gauged prior to the institutionalization of organizational change. Hence, in this study the influence of employee voice and employee involvement on organizational change readiness via commitment-to-change is examined, as it is an area yet to be extensively studied. Also, though a recent study has investigated the interrelationship between leadership, organizational change readiness and commitment to change, our study further examined these constructs in relation with employee voice and employee involvement that plays a consequential role for organizational change readiness. Further, integrated conceptual model weaving varied concepts relating to organizational readiness with focus on commitment to change as mediator was found to be an area, which required more theorizing and empirical validation, and this study rooted in an Indian public sector organization is a step in this direction. Data for the study were collected through a survey among employees of Rourkela Steel Plant (RSP), a unit of Steel Authority of India Limited (SAIL); the first integrated Steel Plant in the public sector in India, for which stratified random sampling method was adopted. The schedule was distributed to around 700 employees, out of which 516 complete responses were obtained. The pre-validated scales were used for the study. All the variables in the study were measured on a five-point Likert scale ranging from “strongly disagree (1)” to “strongly agree (5)”. Structural equation modeling (SEM) using AMOS 22 was used to examine the hypothesized model, which offers a simultaneous test of an entire system of variables in a model. The study results shows that inter-relationship between employee voice and commitment-to-change, employee involvement and commitment-to-change and commitment-to-change and organizational change readiness were significant. To test the mediation hypotheses, Baron and Kenny’s technique was used. Examination of direct and mediated effect of mediators confirmed that commitment-to-change partially mediated the relation between employee involvement and organizational change readiness. Furthermore, study results also affirmed that commitment-to-change does not mediate the relation between employee involvement and organizational change readiness. The empirical exploration therefore establishes that it is important to harness employee’s valuable suggestions regarding change for building organizational change readiness. Regarding employee involvement, it was found that sharing information and involving people in decision-making, leads to a creation of participative climate, which educes employee commitment during change and commitment-to-change further, fosters organizational change readiness.Keywords: commitment-to-change, change management, employee voice, employee involvement, organizational change readiness
Procedia PDF Downloads 331327 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution
Abstract:
Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design
Procedia PDF Downloads 173326 Insights into Particle Dispersion, Agglomeration and Deposition in Turbulent Channel Flow
Authors: Mohammad Afkhami, Ali Hassanpour, Michael Fairweather
Abstract:
The work described in this paper was undertaken to gain insight into fundamental aspects of turbulent gas-particle flows with relevance to processes employed in a wide range of applications, such as oil and gas flow assurance in pipes, powder dispersion from dry powder inhalers, and particle resuspension in nuclear waste ponds, to name but a few. In particular, the influence of particle interaction and fluid phase behavior in turbulent flow on particle dispersion in a horizontal channel is investigated. The mathematical modeling technique used is based on the large eddy simulation (LES) methodology embodied in the commercial CFD code FLUENT, with flow solutions provided by this approach coupled to a second commercial code, EDEM, based on the discrete element method (DEM) which is used for the prediction of particle motion and interaction. The results generated by LES for the fluid phase have been validated against direct numerical simulations (DNS) for three different channel flows with shear Reynolds numbers, Reτ = 150, 300 and 590. Overall, the LES shows good agreement, with mean velocities and normal and shear stresses matching those of the DNS in both magnitude and position. The research work has focused on the prediction of those conditions favoring particle aggregation and deposition within turbulent flows. Simulations have been carried out to investigate the effects of particle size, density and concentration on particle agglomeration. Furthermore, particles with different surface properties have been simulated in three channel flows with different levels of flow turbulence, achieved by increasing the Reynolds number of the flow. The simulations mimic the conditions of two-phase, fluid-solid flows frequently encountered in domestic, commercial and industrial applications, for example, air conditioning and refrigeration units, heat exchangers, oil and gas suction and pressure lines. The particle size, density, surface energy and volume fractions selected are 45.6, 102 and 150 µm, 250, 1000 and 2159 kg m-3, 50, 500, and 5000 mJ m-2 and 7.84 × 10-6, 2.8 × 10-5, and 1 × 10-4, respectively; such particle properties are associated with particles found in soil, as well as metals and oxides prevalent in turbulent bounded fluid-solid flows due to erosion and corrosion of inner pipe walls. It has been found that the turbulence structure of the flow dominates the motion of the particles, creating particle-particle interactions, with most of these interactions taking place at locations close to the channel walls and in regions of high turbulence where their agglomeration is aided both by the high levels of turbulence and the high concentration of particles. A positive relationship between particle surface energy, concentration, size and density, and agglomeration was observed. Moreover, the results derived for the three Reynolds numbers considered show that the rate of agglomeration is strongly influenced for high surface energy particles by, and increases with, the intensity of the flow turbulence. In contrast, for lower surface energy particles, the rate of agglomeration diminishes with an increase in flow turbulence intensity.Keywords: agglomeration, channel flow, DEM, LES, turbulence
Procedia PDF Downloads 321325 Hydroxyapatite Nanorods as Novel Fillers for Improving the Properties of PBSu
Authors: M. Nerantzaki, I. Koliakou, D. Bikiaris
Abstract:
This study evaluates the hypothesis that the incorporation of fibrous hydroxyapatite nanoparticles (nHA) with high crystallinity and high aspect ratio, synthesized by hydrothermal method, into Poly(butylene succinate) (PBSu), improves the bioactivity of the aliphatic polyester and affects new bone growth inhibiting resorption and enhancing bone formation. Hydroxyapatite nanorods were synthesized using a simple hydrothermal procedure. First, the HPO42- -containing solution was added drop-wise into the Ca2+-containing solution, while the molar ratio of Ca/P was adjusted at 1.67. The HA precursor was then treated hydrothermally at 200°C for 72 h. The resulting powder was characterized using XRD, FT-IR, TEM, and EDXA. Afterwards, PBSu nanocomposites containing 2.5wt% (nHA) were prepared by in situ polymerization technique for the first time and were examined as potential scaffolds for bone engineering applications. For comparison purposes composites containing either 2.5wt% micro-Bioglass (mBG) or 2.5wt% mBG-nHA were prepared and studied, too. The composite scaffolds were characterized using SEM, FTIR, and XRD. Mechanical testing (Instron 3344) and Contact Angle measurements were also carried out. Enzymatic degradation was studied in an aqueous solution containing a mixture of R. Oryzae and P. Cepacia lipases at 37°C and pH=7.2. In vitro biomineralization test was performed by immersing all samples in simulated body fluid (SBF) for 21 days. Biocompatibility was assessed using rat Adipose Stem Cells (rASCs), genetically modified by nucleofection with DNA encoding SB100x transposase and pT2-Venus-neo transposon expression plasmids in order to attain fluorescence images. Cell proliferation and viability of cells on the scaffolds were evaluated using fluoresce microscopy and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay. Finally, osteogenic differentiation was assessed by staining rASCs with alizarine red using cetylpyridinium chloride (CPC) method. TEM image of the fibrous HAp nanoparticles, synthesized in the present study clearly showed the fibrous morphology of the synthesized powder. The addition of nHA decreased significantly the contact angle of the samples, indicating that the materials become more hydrophilic and hence they absorb more water and subsequently degrade more rapidly. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. Metabolic activity of rASCs on all PBSu composites was high and increased from day 1 of culture to day 14. On day 28 metabolic activity of rASCs cultured on samples enriched with bioceramics was significantly decreased due to possible differentiation of rASCs to osteoblasts. Staining rASCs with alizarin red after 28 days in culture confirmed our initial hypothesis as the presence of calcium was detected, suggesting osteogenic differentiation of rACS on PBSu/nHAp/mBG 2.5% and PBSu/mBG 2.5% composite scaffolds.Keywords: biomaterials, hydroxyapatite nanorods, poly(butylene succinate), scaffolds
Procedia PDF Downloads 310324 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide
Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu
Abstract:
This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide
Procedia PDF Downloads 242323 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 94322 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality
Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti
Abstract:
One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training
Procedia PDF Downloads 107321 Assessment of the Living Conditions of Female Inmates in Correctional Service Centres in South West Nigeria
Authors: Ayoola Adekunle Dada, Tolulope Omolola Fateropa
Abstract:
There is no gain saying the fact that the Nigerian correctional services lack rehabilitation reformation. Owing to this, some so many inmates, including the female, become more emotionally bruised and hardened instead of coming out of the prison reformed. Although female inmates constitute only a small percentage worldwide, the challenges resulting from women falling under the provision of the penal system have prompted ficial and humanitarian bodies to consider female inmateas as vulnerable persons who need particular social work measures that meet their specific needs. Female inmates’condition may become worseinprisondue to the absence of the standard living condition. A survey of 100 female inmates will be used to determine the assessment of the living condition of the female inmates within the contexts in which they occur. Employing field methods from Medical Sociology and Law, the study seeks to make use of the collaboration of both disciplines for a comprehensive understanding of the scenario. Its specific objectives encompassed: (1) To examine access and use of health facilities among the female inmates;(2) To examine the effect of officers/warders attitude towards female inmates;(3)To investigate the perception of the female inmates towards the housing facilities in the centre and; (4) To investigate the feeding habit of the female inmates. Due to the exploratory nature of the study, the researchers will make use of mixed-method, such qualitative methods as interviews will be undertaken to complement survey research (quantitative). By adopting the above-explained inter-method triangulation, the study will not only ensure that the advantages of both methods are exploited but will also fulfil the basic purposes of research. The sampling for this study will be purposive. The study aims at sampling two correctional centres (Ado Ekiti and Akure) in order to generate representative data for the female inmates in South West Nigeria. In all, the total number of respondents will be 100. A cross-section of female inmates will be selected as respondents using a multi-stage sampling technique. 100 questionnaires will be administered. A semi structured (in-depth) interviews will be conducted among workers in the two selected correctional centres, respectively, to gain further insight on the living conditions of female inmates, which the survey may not readily elicit. These participants will be selected purposively in respect to their status in the organisation. Ethical issues in research on human subjects will be given due consideration. Such issues rest on principles of beneficence, non-maleficence, autonomy/justice and confidentiality. In the final analysis, qualitative data will be analyzed using manual content analysis. Both the descriptive and inferential statistics will be used for analytical purposes. Frequency, simple percentage, pie chart, bar chart, curve and cross-tabulations will form part of the descriptive analysis.Keywords: assessment, health facilities, inmates, perception, living conditions
Procedia PDF Downloads 101320 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements
Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga
Abstract:
Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform
Procedia PDF Downloads 387319 Unlocking New Room of Production in Brown Field; Integration of Geological Data Conditioned 3D Reservoir Modelling of Lower Senonian Matulla Formation, RAS Budran Field, East Central Gulf of Suez, Egypt
Authors: Nader Mohamed
Abstract:
The Late Cretaceous deposits are well developed through-out Egypt. This is due to a transgression phase associated with the subsidence caused by the neo-Tethyan rift event that took place across the northern margin of Africa, resulting in a period of dominantly marine deposits in the Gulf of Suez. The Late Cretaceous Nezzazat Group represents the Cenomanian, Turonian and clastic sediments of the Lower Senonian. The Nezzazat Group has been divided into four formations namely, from base to top, the Raha Formation, the Abu Qada Formation, the Wata Formation and the Matulla Formation. The Cenomanian Raha and the Lower Senonian Matulla formations are the most important clastic sequence in the Nezzazat Group because they provide the highest net reservoir thickness and the highest net/gross ratio. This study emphasis on Matulla formation located in the eastern part of the Gulf of Suez. The three stratigraphic surface sections (Wadi Sudr, Wadi Matulla and Gabal Nezzazat) which represent the exposed Coniacian-Santonian sediments in Sinai are used for correlating Matulla sediments of Ras Budran field. Cutting description, petrographic examination, log behaviors, biostratigraphy with outcrops are used to identify the reservoir characteristics, lithology, facies environment logs and subdivide the Matulla formation into three units. The lower unit is believed to be the main reservoir where it consists mainly of sands with shale and sandy carbonates, while the other units are mainly carbonate with some streaks of shale and sand. Reservoir modeling is an effective technique that assists in reservoir management as decisions concerning development and depletion of hydrocarbon reserves, So It was essential to model the Matulla reservoir as accurately as possible in order to better evaluate, calculate the reserves and to determine the most effective way of recovering as much of the petroleum economically as possible. All available data on Matulla formation are used to build the reservoir structure model, lithofacies, porosity, permeability and water saturation models which are the main parameters that describe the reservoirs and provide information on effective evaluation of the need to develop the oil potentiality of the reservoir. This study has shown the effectiveness of; 1) the integration of geological data to evaluate and subdivide Matulla formation into three units. 2) Lithology and facies environment interpretation which helped in defining the nature of deposition of Matulla formation. 3) The 3D reservoir modeling technology as a tool for adequate understanding of the spatial distribution of property and in addition evaluating the unlocked new reservoir areas of Matulla formation which have to be drilled to investigate and exploit the un-drained oil. 4) This study led to adding a new room of production and additional reserves to Ras Budran field. Keywords: geology, oil and gas, geoscience, sequence stratigraphy
Procedia PDF Downloads 108318 Health and Performance Fitness Assessment of Adolescents in Middle Income Schools in Lagos State
Authors: Onabajo Paul
Abstract:
The testing and assessment of physical fitness of school-aged adolescents in Nigeria has been going on for several decades. Originally, these tests strictly focused on identifying health and physical fitness status and comparing the results of adolescents with others. There is a considerable interest in health and performance fitness of adolescents in which results attained are compared with criteria representing positive health rather than simply on score comparisons with others. Despite the fact that physical education program is being studied in secondary schools and physical activities are encouraged, it is observed that regular assessment of students’ fitness level and health status seems to be scarce or not being done in these schools. The purpose of the study was to assess the heath and performance fitness of adolescents in middle-income schools in Lagos State. A total number of 150 students were selected using the simple random sampling technique. Participants were measured on hand grip strength, sit-up, pacer 20 meter shuttle run, standing long jump, weight and height. The data collected were analyzed with descriptive statistics of means, standard deviations, and range and compared with fitness norms. It was concluded that majority 111(74.0%) of the adolescents achieved the healthy fitness zone, 33(22.0%) were very lean, and 6(4.0%) needed improvement according to the normative standard of Body Mass Index test. For muscular strength, majority 78(52.0%) were weak, 66(44.0%) were normal, and 6(4.0%) were strong according to the normative standard of hand-grip strength test. For aerobic capacity fitness, majority 93(62.0%) needed improvement and were at health risk, 36(24.0%) achieved healthy fitness zone, and 21(14.0%) needed improvement according to the normative standard of PACER test. Majority 48(32.0%) of the participants had good hip flexibility, 38(25.3%) had fair status, 27(18.0%) needed improvement, 24(16.0%) had very good hip flexibility status, and 13(8.7%) of the participants had excellent status. Majority 61(40.7%) had average muscular endurance status, 30(20.0%) had poor status, 29(18.3%) had good status, 28(18.7%) had fair muscular endurance status, and 2(1.3%) of the participants had excellent status according to the normative standard of sit-up test. Majority 52(34.7%) had low jump ability fitness, 47(31.3%) had marginal fitness, 31(20.7%) had good fitness, and 20(13.3%) had high performance fitness according to the normative standard of standing long jump test. Based on the findings, it was concluded that majority of the adolescents had better Body Mass Index status, and performed well in both hip flexibility and muscular endurance tests. Whereas majority of the adolescents performed poorly in aerobic capacity test, muscular strength and jump ability test. It was recommended that to enhance wellness, adolescents should be involved in physical activities and recreation lasting 30 minutes three times a week. Schools should engage in fitness program for students on regular basis at both senior and junior classes so as to develop good cardio-respiratory, muscular fitness and improve overall health of the students.Keywords: adolescents, health-related fitness, performance-related fitness, physical fitness
Procedia PDF Downloads 357317 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays
Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner
Abstract:
Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation
Procedia PDF Downloads 295316 Subcutan Isosulfan Blue Administration May Interfere with Pulse Oximetry
Authors: Esra Yuksel, Dilek Duman, Levent Yeniay, Sezgin Ulukaya
Abstract:
Sentinel lymph node biopsy (SLNB) is a minimal invasive technique with lower morbidity in axillary staging of breast cancer. Isosulfan blue stain is frequently used in SLNB and regarded as safe. The present case report aimed to report severe decrement in SpO2 following isosulfan blue administration, as well as skin and urine signs and inconsistency with clinical picture in a 67-year-old ,77 kg, ASA II female case that underwent SLNB under general anesthesia. Ten minutes after subcutaneous administration of 10 ml 1% isosulfan blue by the surgeons into the patient, who were hemodynamically stable, SpO2 first reduced to 87% from 99%, and then to 75% in minutes despite 100% oxygen support. Meanwhile, blood pressure and EtCO2 monitoring was unremarkable. After specifying that anesthesia device worked normally, airway pressure did not increase and the endotracheal tube has been placed accurately, the blood sample was taken from the patient for arterial gas analysis. A severe increase was thought in MetHb concentration since SpO2 persisted to be 75% although the concentration of inspired oxygen was 100%, and solution of 2500 mg ascorbic acid in 500 ml 5% Dextrose was given to the patient via intravenous route until the results of arterial blood gas were obtained. However, arterial blood gas results were as follows: pH: 7.54, PaCO2: 23.3 mmHg, PaO2: 281 mmHg, SaO2: %99, and MetHb: %2.7. Biochemical analysis revealed a blood MetHb concentration of 2%.However, since arterial blood gas parameters were good, hemodynamics of the patient was stable and methemoglobin concentration was not so high, the patient was extubated after surgery when she was relaxed, cooperated and had adequate respiration. Despite the absence of respiratory or neurological distress, SpO2 value was increased only up to 85% within 2 hours with 5 L/min oxygen support via face mask in the surgery room as the patient was extubated. At that time, the skin of particularly the upper part of her body has turned into blue, more remarkable on the face. The color of plasma of the blood taken from the patient for biochemical analysis was blue. The color of urine coming throughout the urinary catheter placed in intensive care unit was also blue. Twelve hours after 5 L/min. oxygen inhalation via a mask, the SpO2 reached to 90%. During monitoring in intensive care unit on the postoperative 1st day, facial color and urine color of the patient was still blue, SpO2 was 92%, and arterial blood gas levels were as follows: pH: 7.44, PaO2: 76.1 mmHg, PaCO2: 38.2 mmHg, SaO2: 99%, and MetHb 1%. During monitoring in clinic on the postoperative 2nd day, SpO2 was 95% without oxygen support and her facial and urine color turned into normal. The patient was discharged on the 3rd day without any problem.In conclusion, SLNB is a less invasive alternative to axillary dissection. However, false pulse oximeter reading due to pigment interference is a rare complication of this procedure. Arterial blood gas analysis should be used to confirm any fall in SpO2 reading during monitoring.Keywords: isosulfan blue, pulse oximetry, SLNB, methemoglobinemia
Procedia PDF Downloads 317315 Decision-Making, Expectations and Life Project in Dependent Adults Due to Disability
Authors: Julia Córdoba
Abstract:
People are not completely autonomous, as we live in society; therefore, people could be defined as relationally dependent. The lack, decrease or loss of physical, psychological and/or social interdependence due to a disability situation is known as dependence. This is related to the need for help from another person in order to carry out activities of daily living. This population group lives with major social limitations that significantly reduce their participation and autonomy. They have high levels of stigma and invisibility from private environments (family and close networks), as well as from the public order (environment, community). The importance of this study lies in the fact that the lack of support and adjustments leads to what authors call the circle of exclusion. This circle describes how not accessing services - due to the difficulties caused by the disability situation impacts biological, social and psychological levels. This situation produces higher levels of exclusion and vulnerability. This study will focus on the process of autonomy and dependence of adults with disability from the model of disability proposed by the International Classification of Functioning, Health and Disability (ICF). The objectives are: i) to write down the relationship between autonomy and dependence based on socio-health variables and ii) to determine the relationship between the situation of autonomy and dependence and the expectations and interests of the participants. We propose a study that will use a survey technique through a previously validated virtual questionnaire. The data obtained will be analyzed using quantitative and qualitative methods for the details of the profiles obtained. No less than 200 questionnaires will be administered to people between 18 and 64 years of age who self-identify as having some degree of dependency due to disability. For the analysis of the results, the two main variables of autonomy and dependence will be considered. Socio-demographic variables such as age, gender identity, area of residence and family composition will be used. In relation to the biological dimension of the situation, the diagnosis, if any, and the type of disability will be asked. For the description of these profiles of autonomy and dependence, the following variables will be used: self-perception, decision-making, interests, expectations and life project, care of their health condition, support and social network, and labor and educational inclusion. The relationship between the target population and the variables collected provides several guidelines that could form the basis for the analysis of other research of interest in terms of self-perception, autonomy and dependence. The areas and situations where people state that they have greater possibilities to decide and have a say will be obtained. It will identify social (networks and support, educational background), demographic (age, gender identity and residence) and health-related variables (diagnosis and type of disability, quality of care) that may have a greater relationship with situations of dependency or autonomy. It will be studied whether the level of autonomy and/or dependence has an impact on the type of expectations and interests of the people surveyed.Keywords: life project, disability, inclusion, autonomy
Procedia PDF Downloads 70314 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 134313 Diversity of Rhopalocera in Different Vegetation Types of PC Hills, Philippines
Authors: Sean E. Gregory P. Igano, Ranz Brendan D. Gabor, Baron Arthur M. Cabalona, Numeriano Amer E. Gutierrez
Abstract:
Distribution patterns and abundance of butterflies respond in the long term to variations in habitat quality. Studying butterfly populations would give evidence on how vegetation types influence their diversity. In this research, the Rhopalocera diversity of PC Hills was assessed to provide information on diversity trends in varying vegetation types. PC Hills, located in Palo, Leyte, Philippines, is a relatively undisturbed area having forests and rivers. Despite being situated nearby inhabited villages; the area is observed to have a possible rich butterfly population. To assess the Rhopalocera species richness and diversity, transect sampling technique was applied to monitor and document butterflies. Transects were placed in locations that can be mapped, described and relocated easily. Three transects measuring three hundred meters each with a 5-meter diameter were established based on the different vegetation types present. The three main vegetation types identified were the agroecosystem (transect 1), dipterocarp forest (transect 2), and riparian (transect 3). Sample collections were done only from 9:00 A.M to 3:00 P.M. under warm and bright weather, with no more than moderate winds and when it was not raining. When weather conditions did not permit collection, it was moved to another day. A GPS receiver was used to record the location of the selected sample sites and the coordinates of where each sample was collected. Morphological analysis was done for the first phase of the study to identify the voucher specimen to the lowest taxonomic level possible using books about butterfly identification guides and species lists as references. For the second phase, DNA barcoding will be used to further identify the voucher specimen into the species taxonomic level. After eight (8) sampling sessions, seven hundred forty-two (742) individuals were seen, and twenty-two (22) Rhopalocera genera were identified through morphological identification. Nymphalidae family of genus Ypthima and the Pieridae family of genera Eurema and Leptosia were the most dominant species observed. Twenty (20) of the thirty-one (31) voucher specimen were already identified to their species taxonomic level using DNA Barcoding. Shannon-Weiner index showed that the highest diversity level was observed in the third transect (H’ = 2.947), followed by the second transect (H’ = 2.6317) and the lowest being in the first transect (H’ = 1.767). This indicates that butterflies are likely to inhabit dipterocarp and riparian vegetation types than agroecosystem, which influences their species composition and diversity. Moreover, the appearance of a river in the riparian vegetation supported its diversity value since butterflies have the tendency to fly into areas near rivers. Species identification of other voucher specimen will be done in order to compute the overall species richness in PC Hills. Further butterfly sampling sessions of PC Hills is recommended for a more reliable diversity trend and to discover more butterfly species. Expanding the research by assessing the Rhopalocera diversity in other locations should be considered along with studying factors that affect butterfly species composition other than vegetation types.Keywords: distribution patterns, DNA barcoding, morphological analysis, Rhopalocera
Procedia PDF Downloads 156312 Disability in the Course of a Chronic Disease: The Example of People Living with Multiple Sclerosis in Poland
Authors: Milena Trojanowska
Abstract:
Disability is a phenomenon for which meanings and definitions have evolved over the decades. This became the trigger to start a project to answer the question of what disability constitutes in the course of an incurable chronic disease. The chosen research group are people living with multiple sclerosis.The contextual phase of the research was participant observation at the Polish Multiple Sclerosis Society, the largest NGO in Poland supporting people living with MS and their relatives. The research techniques used in the project are (in order of implementation): group interviews with people living with MS and their relatives, narrative interviews, asynchronous technique, participant observation during events organised for people living with MS and their relatives.The researcher is currently conducting follow-up interviews, as inaccuracies in the respondents' narratives were identified during the data analysis. Interviews and supplementary research techniques were used over the four years of the research, and the researcher also benefited from experience gained from 12 years of working with NGOs (diaries, notes). The research was carried out in Poland with the participation of people living in this country only.The research has been based on grounded theory methodology in a constructivist perspectivedeveloped by Kathy Charmaz. The goal was to follow the idea that research must be reliable, original, and useful. The aim was to construct an interpretive theory that assumes temporality and the processualityof social life. TheAtlas.ti software was used to collect research material and analyse it. It is a program from the CAQDAS(Computer-Assisted Qualitative Data Analysis Software) group.Several key factors influencing the construction of a disability identity by people living with multiple sclerosis was identified:-course of interaction with significant relatives,- the expectation of identification with disability (expressed by close relatives),- economic profitability (pension, allowances),- institutional advantages (e.g. parking card),- independence and autonomy (not equated with physical condition, but access to adapted infrastructure and resources to support daily functioning),- the way a person with MS construes the meaning of disability,- physical and mental state,- medical diagnosis of illness.In addition, it has been shown that making an assumption about the experience of disability in the course of MS is a form of cognitive reductionism leading to further phenomenon such as: the expectation of the person with MS to construct a social identity as a person with a disability (e.g. giving up work), the occurrence of institutional inequalities. It can also be a determinant of the choice of a life strategy that limits social and individual functioning, even if this necessity is not influenced by the person's physical or psychological condition.The results of the research are important for the development of knowledge about the phenomenon of disability. It indicates the contextuality and complexity of the disability phenomenon, which in the light of the research is a set of different phenomenon of heterogeneous nature and multifaceted causality. This knowledge can also be useful for institutions and organisations in the non-governmental sector supporting people with disabilities and people living with multiple sclerosis.Keywords: disability, multiple sclerosis, grounded theory, poland
Procedia PDF Downloads 112311 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence
Authors: Oluwagbemi Victor Aladeokin
Abstract:
In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area
Procedia PDF Downloads 150310 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration
Authors: Matthew Yeager, Christopher Willy, John Bischoff
Abstract:
The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design
Procedia PDF Downloads 190309 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning
Authors: John Zanetich
Abstract:
Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.Keywords: tacit knowledge, knowledge management, college programs, experiential learning
Procedia PDF Downloads 266308 The Incidence of Inferior Alveolar Nerve Dysfunction Following Bilateral Sagittal Split Osteotomies: A Single Centre Retrospective Audit in the United Kingdom
Authors: Krupali Mukeshkumar, Jinesh Shah
Abstract:
Background: Bilateral Sagittal Split Osteotomy (BSSO), used for the correction of mandibular deformities, is a common oral and maxillofacial surgical procedure. Inferior alveolar nerve dysfunction is commonly reported post-operatively by patients as paresthesia or anesthesia. The current literature lacks a consensus on the incidence of inferior alveolar nerve dysfunction as patients are not routinely assessed pre and post-operatively with an objective assessment. The range of incidence varies from 9% to 85% of patients, with some authors arguing that 100% of patients experience nerve dysfunction immediately post-surgery. Systematic reviews have shown a difference between incidence rates at different follow-up periods using objective and subjective methods. Aim: To identify the incidence of inferior alveolar nerve dysfunction following BSSO. Gold standard: Nerve dysfunction incidence rates similar or lower than current literature of 83% day one post-operatively and 18.4% at one year follow up. Setting: A retrospective cross-sectional audit of patients treated between 2017-2019 at the Royal Stoke University Hospital, Maxillofacial and Orthodontic departments. Sample: All patients who underwent a BSSO (with or without le fort one osteotomy) between 2017–2019 were identified from the database. Patients with pre-existing neurosensory disturbance, those who had a genioplasty at the same time and those with no follow-up were excluded. The sample consisted of 121 patients, 37 males and 84 females between the ages of 17-50 years at the time of surgery. Methods: Clinical records of 121 cases were reviewed to assess the age, sex, type of mandibular osteotomy, status of the nerve during the surgical procedure, type of bony split and incidence of nerve dysfunction at follow-up appointments. The surgical procedure was carried out by three Maxillo-facial surgeons and follow-up appointments were carried out in the Orthodontic and Oral and Maxillo-facial departments. Results: 120 patients were treated to correct the mandibular facial deformity and 1 patient was treated for sleep apnoea. Seventeen patients had a mandibular setback and 104 patients had mandibular advancement. 68 patients reported inferior alveolar nerve dysfunction at one week following their surgery. Seventy-six patients had temporary paresthesia present between 2 weeks and 12 months post-surgery. 13 patients had persistent nerve dysfunction at 12 months, of which 1 had a bad bony split during the BSSO. The incidence of nerve dysfunction postoperatively was 6.6% after 1 day, 56.1% at 1 week, 62.8% at 2 weeks, 59.5% between 3-6 weeks, 43.0% between 8-16 weeks and 10.7% at 1 year. Conclusions: The results of this audit show a similar incidence rate to the research gold standard at the one-year follow-up. Future Recommendations: No changes to surgical procedure or technique are indicated, but a need for improved documentation and a standardized approach for assessment of post-operative nerve dysfunction would be beneficial.Keywords: bilateral sagittal split osteotomy, inferior alveolar nerve, mandible, nerve dysfunction
Procedia PDF Downloads 241307 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging
Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi
Abstract:
Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA
Procedia PDF Downloads 281306 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 163305 Challenging Role of Talent Management, Career Development and Compensation Management toward Employee Retention and Organizational Performance with Mediating Effect of Employee Motivation in Service Sector of Pakistan
Authors: Muhammad Younas, Sidra Sawati, M. Razzaq Athar
Abstract:
Organizational development history reveals that it has ever been a challenge to identify and fathom the role of talent management, career development and compensation management towards employees’ retention and organizational performance. Organizations strive hard to measure the impact of all those factors which affect employee retention and organizational performance. Researchers have worked in great deal in order to know the relationship of independent variables i.e. Talent Management, Career Development and Compensation Management on dependent variables i.e. Employee Retention and Organizational Performance. Employees adorned with latest skills with long lasting loyalty play a significant role towards successful achievement of short term as well as long term goals of the organizations. Retention of valuable and resourceful employees for a longer time is equally essential for meeting the set goals. The organizations which spend reasonable chunk of their resources for taking such measures that help to retain their employees through talent management and satisfactory career development always enjoy a competitive edge over their competitors. Human resource is regarded as one of the most precious and difficult resource to management. It has its own needs and requirement. It becomes an easy prey to monotony when lacks career development. Wants and aspirations of this resource are seldom met completely but can be managed through career development and compensation management. In this era of competition, organizations have to take viable steps to management their resources especially human resource. Top management and Managers keep on working for an amenable solution in order to address the challenges relating career development and compensation management as their ultimate goal is to ensure the organizational performance on optimum level. The current study was conducted to examine the impact of Talent Management, Career Development and Compensation Management towards Employees Retention and Organizational Performance with mediating effect of Employees Motivation in Service Sector of Pakistan. The current study is based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) theories. It explains that by increasing internal resources we can manage employee talent, career development through compensation management and employee motivation more effectively. It will result in effective execution of HRM practices for employee retention enabling an organization to achieve and sustain competitive advantage through optimal performance. Data collection was made through a structured questionnaire which was based upon adopted instruments after testing reliability and validity. A total 300 employees of 30 firms in service sector of Pakistan were sampled through non-probability sampling technique. Regression analysis revealed that talent management, career development and compensation management have significant positive impact on employee retention and perceived organizational performance. The results further showed that employee motivation have a significant mediating effect on employee retention and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are also discussed.Keywords: career development, compensation management, employee retention, organizational performance, talent management
Procedia PDF Downloads 322304 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin
Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec
Abstract:
Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles
Procedia PDF Downloads 130