Search results for: students with learning disabilities
4090 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 3894089 Music Therapy Intervention as a Means of Stimulating Communicative Abilities of Seniors with Neurocognitive Disorders – Theory versus Practice
Authors: Pavel Svoboda, Oldřich Müller
Abstract:
The paper contains a screening of the opinions of helping professional workers working in a home for seniors with individuals with neurocognitive disorders and compares them with the opinions of a younger generation of students who are just preparing for this work. The authors carried out a comparative questionnaire survey with both target groups, focusing on the analysis and comparison of possible differences in their knowledge in the field of care for elderly people with neurocognitive disorders. Specifically, they focused on knowledge and experience with approaches, methods and tools applicable within the framework of music therapy interventions, as they are understood in practice in comparison with the theoretical knowledge of secondary school students focused on social work. The questionnaire was mainly aimed at assessing the knowledge of the possibilities of effective memory stimulation of the elderly and their communication skills using the means of music. The conducted investigation was based on the research of studies dealing with so-called non-pharmacological approaches to the given clientele; for professional caregivers, it followed music therapy lessons, which the authors regularly implemented from the beginning of 2022. Its results will, among other things, serve as the basis for an upcoming study with a scoping design review.Keywords: neurocognitive disorders, seniors, music therapy intervention, melody, rhythm, text, memory stimulation, communication skills
Procedia PDF Downloads 774088 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization
Authors: Subhajit Das, Nirjhar Dhang
Abstract:
Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization
Procedia PDF Downloads 2174087 Teaching Tolerance in the Language Classroom through a Text
Authors: Natalia Kasatkina
Abstract:
In an ever-increasing globalization, one’s grasp of diversity and tolerance has never been more indispensable, and it is a vital duty for all those in the field of foreign language teaching to help children cultivate such values. The present study explores the role of DIVERSITY and TOLERANCE in the language classroom and elementary, middle, and high school students’ perceptions of these two concepts. It draws on several theoretical domains of language acquisition, cultural awareness, and school psychology. Relying on these frameworks, the major findings are synthesized, and a paradigm of teaching tolerance through language-teaching is formulated. Upon analysing how tolerant our children are with ‘others’ in and outside the classroom, we have concluded that intolerance and aggression towards the ‘other’ increase with age, and that a feeling of supremacy over migrants and a sense of fear towards them begin to manifest more apparently when the students are in high school. In addition, we have also found that children in elementary school do not exhibit such prejudiced thoughts and behavior, which leads us to the believe that tolerance as well as intolerance are learned. Therefore, it is within our reach to teach our children to be open-minded and accepting. We have used the novel ‘Uncle Tom’s Cabin’ by Harriet Beecher Stowe as a springboard for lessons which are not only targeted at shedding light on the role of language in the modern world, but also aim to stimulate an awareness of cultural diversity. We equally strive to conduct further cross-cultural research in order to solidify the theory behind this study, and thus devise a language-based curriculum which would encourage tolerance through the examination of various literary texts.Keywords: literary text, tolerance, EFL classroom, word-association test
Procedia PDF Downloads 2974086 [Keynote Talk]: Caught in the Tractorbeam of Larger Influences: The Filtration of Innovation in Education Technology Design
Authors: Justin D. Olmanson, Fitsum Abebe, Valerie Jones, Eric Kyle, Xianquan Liu, Katherine Robbins, Guieswende Rouamba
Abstract:
The history of education technology--and designing, adapting, and adopting technologies for use in educational spaces--is nuanced, complex, and dynamic. Yet, despite a range of continually emerging technologies, the design and development process often yields results that appear quite similar in terms of affordances and interactions. Through this study we (1) verify the extent to which designs have been constrained, (2) consider what might account for it, and (3) offer a way forward in terms of how we might identify and strategically sidestep these influences--thereby increasing the diversity of our designs with a given technology or within a particular learning domain. We begin our inquiry from the perspective that a host of co-influencing elements, fields, and meta narratives converge on the education technology design process to exert a tangible, often homogenizing effect on the resultant designs. We identify several elements that influence design in often implicit or unquestioned ways (e.g. curriculum, learning theory, economics, learning context, pedagogy), we describe our methodology for identifying the elemental positionality embedded in a design, we direct our analysis to a particular subset of technologies in the field of literacy, and unpack our findings. Our early analysis suggests that the majority of education technologies designed for use/used in US public schools are heavily influenced by a handful of mainstream theories and meta narratives. These findings have implications for how we approach the education technology design process--which we use to suggest alternative methods for designing/ developing with emerging technologies. Our analytical process and re conceptualized design process hold the potential to diversify the ways emerging and established technologies get incorporated into our designs.Keywords: curriculum, design, innovation, meta narratives
Procedia PDF Downloads 5144085 Post Apartheid Language Positionality and Policy: Student Teachers' Narratives from Teaching Practicum
Authors: Thelma Mort
Abstract:
This empirical, qualitative research uses interviews of four intermediate phase English language student teachers at one university in South Africa and is an exploration of student teacher learning on their teaching practicum in their penultimate year of the initial teacher education course. The country’s post-apartheid language in education policy provides a context to this study in that children move from mother tongue language of instruction in foundation phase to English as a language of instruction in Intermediate phase. There is another layer of context informing this study which is the school context; the student teachers’ reflections are from their teaching practicum in resource constrained schools, which make up more than 75% of schools in South Africa. The findings were that in these schools, deep biases existed to local languages, that language was being used as a proxy for social class, and that conditions necessary for language acquisition were absent. The student teachers’ attitudes were in contrast to those found in the schools, namely that they had various pragmatic approaches to overcoming obstacles and that they saw language as enabling interdisciplinary work. This study describes language issues, tensions created by policy in South African schools and also supplies a regional account of learning to teach in resource constrained schools in Cape Town, where such language tensions are more inflated. The central findings in this research illuminate attitudes to language and language education in these teaching practicum schools and the complexity of learning to be a language teacher in these contexts. This study is one of the few local empirical studies regarding language teaching in the classroom and language teacher education; as such it offers some background to the country’s poor performance in both international and national literacy assessments.Keywords: language teaching, narrative, post apartheid, South Africa, student teacher
Procedia PDF Downloads 1524084 Participation of Juvenile with Driven of Tobacco Control in Education Institute: Case Study of Suan Sunandha Rajabhat University
Authors: Sakapas Saengchai
Abstract:
This paper studied the participation of juvenile with driven of tobacco control in education institute: case study of Suan Sunandha Rajabhat University is qualitative research has objective to study participation of juvenile with driven of tobacco control in University, as guidance of development participation of juvenile with driven of tobacco control in education institute the university is also free-cigarette university. There are qualitative researches on collection data of participation observation, in-depth interview of group conversation and agent of student in each faculty and college and exchange opinion of student. Result of study found that participation in tobacco control has 3 parts; 1) Participation in campaign of tobacco control, 2) Academic training and activity of free-cigarette of university and 3) As model of juvenile in tobacco control. For guidelines on youth involvement in driven tobacco control is universities should promote tobacco control activities. Reduce smoking campaign continues include a specific area for smokers has living room as sign clearly, staying in the faculty / college and developing network of model students who are non-smoking. This is a key role in the coordination of university students driving to the free cigarette university. Including the strengthening of community in the area and outside the area as good social and quality of country.Keywords: participation, juvenile, tobacco control, institute
Procedia PDF Downloads 2754083 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 1024082 Digital Curriculum Preservation Planning, Actions, and Challenges
Authors: Misook Ahn
Abstract:
This study examined the Digital Curriculum Repository (DCR) project initiated at Defense Language Institute Foreign Language Center (DLIFLC). The purpose of the DCR is to build a centralized curriculum infrastructure, preserve all curriculum materials, and provide academic service to users (faculty, students, or other agencies). The DCR collection includes core language curriculum materials developed by each language school—foreign language textbooks, language survival kits, and audio files currently in or not in use at the schools. All core curriculum materials with audio and video files have been coded, collected, and preserved at the DCR. The DCR website was designed with MS SharePoint for easy accessibility by the DLIFLC’s faculty and students. All metadata for the collected curriculum materials have been input by language, code, year, book type, level, user, version, and current status (in use/not in use). The study documents digital curriculum preservation planning, actions, and challenges, including collecting, coding, collaborating, designing DCR SharePoint, and policymaking. DCR Survey data is also collected and analyzed for this research. Based on the finding, the study concludes that the mandatory policy for the DCR system and collaboration with school leadership are critical elements of a successful repository system. The sample collected items, metadata, and DCR SharePoint site are presented in the evaluation section.Keywords: MS share point, digital preservation, repository, policy
Procedia PDF Downloads 1654081 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents
Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty
Abstract:
A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.Keywords: abstractive summarization, deep learning, natural language Processing, patent document
Procedia PDF Downloads 1274080 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 304079 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback
Authors: Jacopo Baboni Schilingi
Abstract:
We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication
Procedia PDF Downloads 1604078 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers
Authors: Oumaima Lahmar
Abstract:
This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.Keywords: finance literature, textual analysis, topic modeling, perplexity
Procedia PDF Downloads 1764077 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 1454076 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences
Procedia PDF Downloads 1354075 Effective Health Promotion Interventions Help Young Children to Maximize Their Future Well-Being by Early Childhood Development
Authors: Nadeesha Sewwandi, Dilini Shashikala, R. Kanapathy, S. Viyasan, R. M. S. Kumara, Duminda Guruge
Abstract:
Early childhood development is important to the emotional, social, and physical development of young children and it has a direct effect on their overall development and on the adult they become. Play is so important to optimal child developments including skill development, social development, imagination, creativity and it fulfills a baby’s inborn need to learn. So, health promotion approach empowers people about the development of early childhood. Play area is a new concept and this study focus how this play areas helps to the development of early childhood of children in rural villages in Sri Lanka. This study was conducted with a children society in a rural village called Welankulama in Sri Lanka. Survey was conducted with children society about emotional, social and physical development of young children (Under age eight) in this village using questionnaires. It described most children under eight years age have poor level of emotional, social and physical development in this village. Then children society wanted to find determinants for this problem and among them they prioritized determinants like parental interactions, learning environment and social interaction and address them using an innovative concept called play area. In this village there is a common place as play area under a big tamarind tree. It consists of a playhouse, innovative playing toys, mobile library, etc. Twice a week children, parents, grandparents gather to this nice place. Collective feeding takes place in this area once a week and it was conducted by several mothers groups in this village. Mostly grandparents taught about handicrafts and this is a very nice place to share their experiences with all. Healthy competitions were conducted in this place through playing to motivate the children. Happy calendar (mood of the children) was marked by children before and after coming to the play area. In terms of results qualitative changes got significant place in this study. By learning about colors and counting through playing the thinking and reasoning skills got developed among children. Children were widening their imagination by means of storytelling. We observed there were good developments of fine and gross motor skills of two differently abled children in this village. Children learn to empathize with other people, sharing, collaboration, team work and following of rules. And also children gain knowledge about fairness, through role playing, obtained insight on the right ways of displaying emotions such as stress, fear, anger, frustration, and develops knowledge of how they can manage their feelings. The reading and writing ability of the children got improved by 83% because of the mobile library. The weight of children got increased by 81% in the village. Happiness was increased by 76% among children in the society. Playing is very important for learning during early childhood period of a person. Health promotion interventions play a major role to the development of early childhood and it help children to adjust to the school setting and even to enhance children’s learning readiness, learning behaviors and problem solving skills.Keywords: early childhood development, health promotion approach, play and learning, working with children
Procedia PDF Downloads 1414074 The Cultural Adaptation of a Social and Emotional Learning Program for an Intervention in Saudi Arabia’s Preschools
Authors: Malak Alqaydhi
Abstract:
A problem in the Saudi Arabia education system is that there is a lack of curriculum- based Social, emotional learning (SEL) teaching practices with the pedagogical concept of SEL yet to be practiced in the Kingdom of Saudi Arabia (KSA). Furthermore, voices of teachers and parents have not been captured regarding the use of SEL, particularly in preschools. The importance of this research is to help determine, with the input of teachers and mothers of preschoolers, the efficacy of a culturally adapted SEL program. The purpose of this research is to determine the most appropriate SEL intervention method to appropriately apply in the cultural context of the Saudi preschool classroom setting. The study will use a mixed method exploratory sequential research design, applying qualitative and quantitative approaches including semi-structured interviews with teachers and parents of preschoolers and an experimental research approach. The research will proceed in four phases beginning with a series of interviews with Saudi preschool teachers and mothers, whose voices and perceptions will help guide the second phase of selection and adaptation of a suitable SEL preschool program. The third phase will be the implementation of the intervention by the researcher in the preschool classroom environment, which will be facilitated by the researcher’s cultural proficiency and practical experience in Saudi Arabia. The fourth and final phase will be an evaluation to assess the effectiveness of the trialled SEL among the preschool student participants. The significance of this research stems from its contribution to knowledge about SEL in culturally appropriate Saudi preschools and the opportunity to support initiatives for Saudi early childhood educators to consider implementing SEL programs. The findings from the study may be useful to inform the Saudi Ministry of Education and its curriculum designers about SEL programs, which could be beneficial to trial more widely in the Saudi preschool curriculum.Keywords: social emotional learning, preschool children, saudi Arabia, child behavior
Procedia PDF Downloads 1624073 Enhancing Code Security with AI-Powered Vulnerability Detection
Authors: Zzibu Mark Brian
Abstract:
As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.Keywords: AI, machine language, cord security, machine leaning
Procedia PDF Downloads 444072 Examining the Changes in Complexity, Accuracy, and Fluency in Japanese L2 Writing Over an Academic Semester
Authors: Robert Long
Abstract:
The results of a one-year study on the evolution of complexity, accuracy, and fluency (CAF) in the compositions of Japanese L2 university students throughout a semester are presented in this study. One goal was to determine if any improvement in writing abilities over this academic term had occurred, while another was to examine methods of editing. Participants had 30 minutes to write each essay with an additional 10 minutes allotted for editing. As for editing, participants were divided into two groups, one of which utilized an online grammar checker, while the other half self-edited their initial manuscripts. From the three different institutions, there was a total of 159 students. Research questions focused on determining if the CAF had evolved over the previous year, identifying potential variations in editing techniques, and describing the connections between the CAF dimensions. According to the findings, there was some improvement in accuracy (fewer errors) in all three of the measures), whereas there was a marked decline in complexity and fluency. As for the second research aim relating to the interaction among the three dimensions (CAF) and of possible increases in fluency being offset by decreases in grammatical accuracy, results showed (there is a logical high correlation with clauses and word counts, and mean length of T-unit (MLT) and (coordinate phrase of T-unit (CP/T) as well as MLT and clause per T-unit (C/T); furthermore, word counts and error/100 ratio correlated highly with error-free clause totals (EFCT). Issues of syntactical complexity had a negative correlation with EFCT, indicating that more syntactical complexity relates to decreased accuracy. Concerning a difference in error correction between those who self-edited and those who used an online grammar correction tool, results indicated that the variable of errors-free clause ratios (EFCR) had the greatest difference regarding accuracy, with fewer errors noted with writers using an online grammar checker. As for possible differences between the first and second (edited) drafts regarding CAF, results indicated there were positive changes in accuracy, the most significant change seen in complexity (CP/T and MLT), while there were relatively insignificant changes in fluency. Results also indicated significant differences among the three institutions, with Fujian University of Technology having the most fluency and accuracy. These findings suggest that to raise students' awareness of their overall writing development, teachers should support them in developing more complex syntactic structures, improving their fluency, and making more effective use of online grammar checkers.Keywords: complexity, accuracy, fluency, writing
Procedia PDF Downloads 464071 Higher Order Thinking Skills Workshop: Faculty Professional Development and Its Effect on Their Teaching Strategies
Authors: Amani Hamdan
Abstract:
A post-workshop of higher-order thinking skills (HOTS), for faculty from diverse academic disciplines, was conducted and the researcher surveyed the participants’ intentions and plans to include HOTS as a goal, as learning and teaching task in their practices. Follow-up interviews with a random sample of participants were used to determine if they fulfilled their intentions three 3 months after the workshop. The degree of planned and enacted HOTS then was analyzed against the post-workshop HOT ability and knowledge. This is one topic that has not been adequately explored in faculty professional development literature where measuring the effect of learning on their ability to use what they learned. This qualitative method study explored a group of male and female faculty members (n=85) enrolled in HOTS 2 day workshop. The results showed that 89% of faculty members although were mostly enthused to apply what they learned after a 3 months period they were caught up with routine presentations and lecturing.Keywords: higher education, faculty development, Saudi Arabia, higher order thinking skills
Procedia PDF Downloads 4634070 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 924069 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.Keywords: neural networks, pattern learning, security, wireless sensor networks
Procedia PDF Downloads 4084068 Techniques to Characterize Subpopulations among Hearing Impaired Patients and Its Impact for Hearing Aid Fitting
Authors: Vijaya K. Narne, Gerard Loquet, Tobias Piechowiak, Dorte Hammershoi, Jesper H. Schmidt
Abstract:
BEAR, which stands for better hearing rehabilitation is a large-scale project in Denmark designed and executed by three national universities, three hospitals, and the hearing aid industry with the aim to improve hearing aid fitting. A total of 1963 hearing impaired people were included and were segmented into subgroups based on hearing-loss, demographics, audiological and questionnaires data (i.e., the speech, spatial and qualities of hearing scale [SSQ-12] and the International Outcome Inventory for Hearing-Aids [IOI-HA]). With the aim to provide a better hearing-aid fit to individual patients, we applied modern machine learning techniques with traditional audiograms rule-based systems. Results show that age, speech discrimination scores, and audiogram configurations were evolved as important parameters in characterizing sub-population from the data-set. The attempt to characterize sub-population reveal a clearer picture about the individual hearing difficulties encountered and the benefits derived from more individualized hearing aids.Keywords: hearing loss, audiological data, machine learning, hearing aids
Procedia PDF Downloads 1574067 Effect of Dimensional Reinforcement Probability on Discrimination of Visual Compound Stimuli by Pigeons
Authors: O. V. Vyazovska
Abstract:
Behavioral efficiency is one of the main principles to be successful in nature. Accuracy of visual discrimination is determined by the attention, learning experience, and memory. In the experimental condition, pigeons’ responses to visual stimuli presented on the screen of the monitor are behaviorally manifested by pecking or not pecking the stimulus, by the number of pecking, reaction time, etc. The higher the probability of rewarding is, the more likely pigeons will respond to the stimulus. We trained 8 pigeons (Columba livia) on a stagewise go/no-go visual discrimination task.16 visual stimuli were created from all possible combinations of four binary dimensions: brightness (dark/bright), size (large/small), line orientation (vertical/horizontal), and shape (circle/square). In the first stage, we presented S+ and 4 S-stimuli: the first that differed in all 4-dimensional values from S+, the second with brightness dimension sharing with S+, the third sharing brightness and orientation with S+, the fourth sharing brightness, orientation and size. Then all 16 stimuli were added. Pigeons rejected correctly 6-8 of 11 new added S-stimuli at the beginning of the second stage. The results revealed that pigeons’ behavior at the beginning of the second stage was controlled by probabilities of rewarding for 4 dimensions learned in the first stage. More or fewer mistakes with dimension discrimination at the beginning of the second stage depended on the number S- stimuli sharing the dimension with S+ in the first stage. A significant inverse correlation between the number of S- stimuli sharing dimension values with S+ in the first stage and the dimensional learning rate at the beginning of the second stage was found. Pigeons were more confident in discrimination of shape and size dimensions. They made mistakes at the beginning of the second stage, which were not associated with these dimensions. Thus, the received results help elucidate the principles of dimensional stimulus control during learning compound multidimensional visual stimuli.Keywords: visual go/no go discrimination, selective attention, dimensional stimulus control, pigeon
Procedia PDF Downloads 1464066 Impact of Mid-Day Meal on Nutritional Status of Primary School Children in Haryana, India
Authors: Vinti Davar
Abstract:
India is one among the many countries where child malnutrition is severe and also a major underlying cause of child mortality. The Mid Day Meal (MDM) program was launched to improve the nutritional status of children, attendance, and retention in schools. It was based on one meal provided to the children, who are attending elementary school (primary school). The objective of present study was to evaluate the impact of mid-day meal on the nutritional status of primary school children in Haryana, India. The present work was carried out on 1200 children between 6-11years of age, studying in primary schools in Haryana, India. Out of these 960 students as, the experimental group was selected from schools where mid-day meal is supplied by the government, and 240 students as control group where mid-day meal is not supplied. The mean height, weight, and BMI of children of both the groups were found to be significantly low as compared to NCHS standards. Stunting was found in 56.40% MDMB (Mid-day meal beneficiaries) and 62.50 % NMDMC (non- mid-day meal children).The weight of almost all subjects were low according to age indicating thinness. Anemia was more prevalent in MDMB as compared to NMDMC may be because school meals did not include vegetables. The consumption of energy, proteins, fat, calcium, iron, vitamins was significantly low (P ≤ .01) in both groups especially in girls of NMDM. The consumption of various food groups except vegetables was better in MDMB compared to NMDMC. It is concluded that with certain improvements, mid-meal can be beneficial in meeting everyday requirements of school going children.Keywords: foods, meals, nutritional status, school going children
Procedia PDF Downloads 3104065 Effects of Cognitive Reframe on Depression among Secondary School Adolescents: The Moderating Role of Self-Esteem
Authors: Olayinka M. Ayannuga
Abstract:
This study explored the effect of cognitive reframe in reducing depression among Senior Secondary School Adolescents. It adopted a pre-test, post-test, control quasi-experimental research design with a 2x2 factorial matrix. Participants included 120 depressed adolescents randomly drawn from public Senior Secondary School Two (SSS.II) students in Lagos State, Nigeria. Sixty participants were randomly selected and assigned to the treatment and control groups. Participants in the Cognitive Reframe (CR) group were trained for 8 weeks, while those in the Control group were given a placebo. Two instruments were used for data collection namely: Self – Esteem Scale (SES: Rosenberg 1965: α = 0.85), and The Self Rating Depression Scale (SDS: Zung, 1972; α 0 = 0.87) were administered at pretest level. However, only the Self-Rating Depression Scale (SDS) was re-administered at post-test to measure the effect of the intervention. The results revealed that there was a significant effect of cognitive reframe training programmes on secondary school adolescents’ depression, also there were significant effects of self-esteem on secondary school adolescents’ depression. The study showed that the technique is capable of reducing depression among adolescents. It was recommended, amongst others, that Counselling psychologists, Curriculum planners and Teachers could explore incorporating the contents of cognitive reframe into the secondary school curriculum for students’ capacity building to reduce depression tendencies.Keywords: adolescents, cognitive reframe, depression, self – esteem
Procedia PDF Downloads 2884064 Communication Styles of Business Students: A Comparison of Four National Cultures
Authors: Tiina Brandt, Isaac Wanasika
Abstract:
Culturally diverse global companies need to understand cultural differences between leaders and employees from different backgrounds. Communication is culturally contingent and has a significant impact on effective execution of leadership goals. The awareness of cultural variations related to communication and interactions will help leaders modify their own behavior, and consequently improve the execution of goals and avoid unnecessary faux pas. Our focus is on young adults that have experienced cultural integration, culturally diverse surroundings in schools and universities, and cultural travels. Our central research problem is to understand the impact of different national cultures on communication. We focus on four countries with distinct national cultures and spatial distribution. The countries are Finland, Indonesia, Russia and USA. Our sample is based on business students (n = 225) from various backgrounds in the four countries. Their responses of communication and leadership styles were analyzed using ANOVA and post-hoc test. Results indicate that culture impacts on communication behavior. Even young culturally-exposed adults with cultural awareness and experience demonstrate cultural differences in their behavior. Apparently, culture is a deeply seated trait that cannot be completely neutralized by environmental variables. Our study offers valuable input for leadership training programs and for expatriates when recognizing specific differences on leaders’ behavior due to culture.Keywords: communication, culture, interaction, leadership
Procedia PDF Downloads 1174063 The Influence of Leadership Styles on Organizational Performance and Innovation: Empirical Study in Information Technology Sector in Spain
Authors: Richard Mababu Mukiur
Abstract:
Leadership is an important drive that plays a key role in the success and development of organizations, particularly in the current context of digital transformation, highly competitivity and globalization. Leaders are persons that hold a dominant and privileged position within an organization, field, or sector of activities and are able to manage, motivate and exercise a high degree of influence over other in order to achieve the institutional goals. They achieve commitment and engagement of others to embrace change, and to make good decisions. Leadership studies in higher education institutions have examined how effective leaders hold their organizations, and also to find approaches which fit best in the organizations context for its better management, transformation and improvement. Moreover, recent studies have highlighted the impact of leadership styles on organizational performance and innovation capacities, since some styles give better results than others. Effective leadership is part of learning process that take place through day-to-day tasks, responsibilities, and experiences that influence the organizational performance, innovation and engagement of employees. The adoption of appropriate leadership styles can improve organization results and encourage learning process, team skills and performance, and employees' motivation and engagement. In the case of case of Information Technology sector, leadership styles are particularly crucial since this sector is leading relevant changes and transformations in the knowledge society. In this context, the main objective of this study is to analyze managers leadership styles with their relation to organizational performance and innovation that may be mediated by learning organization process and demographic variables. Therefore, it was hypothesized that the transformational and transactional leadership will be the main style adopted in Information Technology sector and will influence organizational performance and innovation capacity. A sample of 540 participants from Information technology sector has been determined in order to achieve the objective of this study. The Multifactor Leadership Questionnaire was administered as the principal instrument, Scale of innovation and Learning Organization Questionnaire. Correlations and multiple regression analysis have been used as the main techniques of data analysis. The findings indicate that leadership styles have a relevant impact on organizational performance and innovation capacity. The transformational and transactional leadership are predominant styles in Information technology sector. The effective leadership style tend to be characterized by the capacity of generating and sharing knowledge that improve organization performance and innovation capacity. Managers are adopting and adapting their leadership styles that respond to the new organizational, social and cultural challenges and realities of contemporary society. Managers who encourage innovation, foster learning process, share experience are useful to the organization since they contribute to its development and transformation. Learning process capacity and demographic variables (age, gender, and job tenure) mediate the relationship between leadership styles, innovation capacity and organizational performance. The transformational and transactional leadership tend to enhance the organizational performance due to their significant impact on team-building, employees' engagement and satisfaction. Some practical implications and future lines of research have been proposed.Keywords: leadership styles, tranformational leadership, organisational performance, organisational innovation
Procedia PDF Downloads 2244062 Creativity and Intelligence: Psychoeducational Connections
Authors: Cristina Costa-Lobo, Carla B. Vestena, Filomena E. Ponte
Abstract:
Creativity and intelligence are concepts that have aroused very expressive interest in the field of educational sciences and the field of psychological science since the middle of the last century since they have a great impact on the potential and well-being of individuals. However, due to progress in cognitive and positive psychology, there has been a growing interest in the psychoeducational domain of intelligence and creativity in the last decade. In this theoretical work, are analyzed comparatively the theoretical models that relate the intelligence and the creativity, are analyzed several psychoeducational intervention programs that have been implemented with a view to the promotion of creativity and signal possibilities, realities and ironies around the psychological evaluation of intelligence and creativity. In order to reach a broad perspective on creativity, the evidence is presented that points the need to evaluate different psychological domains. The psychoeducational intervention programs addressed have, with a common characteristic, the full stimulation of the creative potential of the participants, assumed as a highly valued capacity at the present time. The results point to the systematize that all interventions in the ambit of creativity have two guiding principles: all individuals can be creative, and creativity is a capacity that can be stimulated. This work refers to the importance of stimulus creativity in educational contexts, to the usefulness and pertinence of the creation, the implementation, and monitoring of flexible curricula, adapted to the educational needs of students, promoting a collaborative work among teachers, parents, students, psychologists, managers and educational administrators.Keywords: creativity, intelligence, psychoeducational intervention programs, psychological evaluation, educational contexts
Procedia PDF Downloads 4104061 Teaching Timber: The Role of the Architectural Student and Studio Course within an Interdisciplinary Research Project
Authors: Catherine Sunter, Marius Nygaard, Lars Hamran, Børre Skodvin, Ute Groba
Abstract:
Globally, the construction and operation of buildings contribute up to 30% of annual green house gas emissions. In addition, the building sector is responsible for approximately a third of global waste. In this context, the utilization of renewable resources in buildings, especially materials that store carbon, will play a significant role in the growing city. These are two reasons for introducing wood as a building material with a growing relevance. A third is the potential economic value in countries with a forest industry that is not currently used to capacity. In 2013, a four-year interdisciplinary research project titled “Wood Be Better” was created, with the principle goal to produce and publicise knowledge that would facilitate increased use of wood in buildings in urban areas. The research team consisted of architects, engineers, wood technologists and mycologists, both from research institutions and industrial organisations. Five structured work packages were included in the initial research proposal. Work package 2 was titled “Design-based research” and proposed using architecture master courses as laboratories for systematic architectural exploration. The aim was twofold: to provide students with an interdisciplinary team of experts from consultancies and producers, as well as teachers and researchers, that could offer the latest information on wood technologies; whilst at the same time having the studio course test the effects of the use of wood on the functional, technical and tectonic quality within different architectural projects on an urban scale, providing results that could be fed back into the research material. The aim of this article is to examine the successes and failures of this pedagogical approach in an architecture school, as well as the opportunities for greater integration between academic research projects, industry experts and studio courses in the future. This will be done through a set of qualitative interviews with researchers, teaching staff and students of the studio courses held each semester since spring 2013. These will investigate the value of the various experts of the course; the different themes of each course; the response to the urban scale, architectural form and construction detail; the effect of working with the goals of a research project; and the value of the studio projects to the research. In addition, six sample projects will be presented as case studies. These will show how the projects related to the research and could be collected and further analysed, innovative solutions that were developed during the course, different architectural expressions that were enabled by timber, and how projects were used as an interdisciplinary testing ground for integrated architectural and engineering solutions between the participating institutions. The conclusion will reflect on the original intentions of the studio courses, the opportunities and challenges faced by students, researchers and teachers, the educational implications, and on the transparent and inclusive discourse between the architectural researcher, the architecture student and the interdisciplinary experts.Keywords: architecture, interdisciplinary, research, studio, students, wood
Procedia PDF Downloads 313