Search results for: computer processing of large databases
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12483

Search results for: computer processing of large databases

5763 Implementation of the Science Curriculum of the Colleges of Education: Successes and Challenges

Authors: Cecilia Boakye, Joseph Ghartey Ampiah

Abstract:

In this study, we present a case study in which we explored how the 2007 science curriculum of the colleges of education in Ghana was implemented at W College of Education. Purposive sampling was used to select 13 participants, comprising 2 tutors and 6 teacher trainees from W College of Education and, 5 newly qualified Junior High School (JHS) science teachers who were products of W College. Interviews, observations and content analysis were used to collect data. Using the deductive and inductive analytic approaches, the findings showed that although upgraded laboratories have provided for teaching authentic science at W College of Education, they are rather used to accommodate large classes at the expense of practical activities. The teaching and learning methods used by the tutors do not mirror effectively the objectives of the 2007 science curriculum of the colleges of education. There are challenges such as: (a) lack/inadequate equipment and materials, (b) time constraint, and (c) an examination- oriented curriculum that influence the implementation of the curriculum. Some of the suggestions that were made are that: (a) equipment and materials should be supplied to the colleges to facilitate the proper implementation of the curriculum, and (b) class sizes should be reduced to provide enough room for practical activities.

Keywords: class size, teaching, curriculum implementation, examination-oriented curriculum, teaching and time-constraint

Procedia PDF Downloads 251
5762 Displacement Situation in Federally Administered Tribal Areas of Pakistan: Issues and Challenges

Authors: Sohail Ahmad, Inayat Kaleem

Abstract:

Federally Administered Tribal Area(FATA) of Pakistan is one of the most neglected regions in the world as far as development is concerned. It has been the hub of all sorts of illegal activities including militancy and export of terrorism. Therefore, it became inevitable for the government of Pakistan to take action against militants through military operations. Small and large scale military operations are being taken against the non-state actors in FATA with continuity. Over the years, hundreds of thousands have been displaced from the tribal areas of the country. Moreover, military operation Zarb-e-Azb has been launched in North Waziristan Agency in June 2014 to counter militancy across the Af-Pak border region. Though successful in curbing militancy, the operation has displaced around 0.5 million people from the area. Most of them opt to take shelter in the government installed shelter camps, some of them take refuge outside tent villages in the country while some of them prefer to cross into Afghanistan rather their own country Pakistan. This paper will evaluate how the influx of these internally displaced persons in the country is influencing the socio-economic situation of not only the displaced but of the hosting areas as well. Secondly, attention would be given to gauge the impact of such a huge number of displaced population on the law and order and security situation in the host areas.

Keywords: Af-Pak, federally administered tribal area, IDPs, internal displacement, Pakistan

Procedia PDF Downloads 298
5761 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth

Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong

Abstract:

PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.

Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth

Procedia PDF Downloads 128
5760 Challenges in Adopting 3R Concept in the Heritage Building Restoration

Authors: H. H. Goh, K. C. Goh, T. W. Seow, N. S. Said, S. E. P. Ang

Abstract:

Malaysia is rich with historic buildings, particularly in Penang and Malacca states. Restoration activities are increasingly important as these states are recognized under UNESCO World Heritage Sites. Restoration activities help to maintain the uniqueness and value of a heritage building. However, increasing in restoration activities has resulted in large quantities of waste. To cope with this problem, the 3R concept (reduce, reuse and recycle) is introduced. The 3R concept is one of the waste management hierarchies. This concept is still yet to apply in the building restoration industry compared to the construction industry. Therefore, this study aims to promote the 3R concept in the heritage building restoration industry. This study aims to examine the importance of 3R concept and to identify challenges in applying the 3R concept in the heritage building restoration industry. This study focused on contractors and consultants who are involved in heritage restoration projects in Penang. Literature review and interviews helps to reach the research objective. Data that obtained is analyzed by using content analysis. For the research, application of 3R concept is important to conserve natural resources and reduce pollution problems. However, limited space to organise waste is the obstruction during the implementation of this concept. In conclusion, the 3R concept plays an important role in promoting environmental conservation and helping in reducing the construction waste

Keywords: 3R Concept, heritage building, restoration activities, building science

Procedia PDF Downloads 302
5759 Optical Image Analysis Through Semiconductor Defect Detection Simulation and Suggestion on How to Improve the Fine Particle Detection Capability of Semiconductor Equipment

Authors: Hyoseop Shin

Abstract:

As design rules become smaller, semiconductor processes are becoming a new problem because defects that were not previously a problem affect yields. Recently, semiconductor fine inspection technology has been required to develop high-precision, high-efficiency technology to manage defects, and the detection capability of semiconductor inspection equipment has been improved by studying defect detection through a comprehensive understanding of semiconductor inspection equipment, semiconductor processing, and defects. The optimal test parameters were applied to actual equipment by conditional comparison results aimed at detecting 30 nm particles in low-density semiconductors, thereby improving the detection capability of particle inspection equipment. The improvement of 30 nm particle detection has been studied based on the results of image analysis and evaluation through defect simulation. Factor analysis such as wavelength polarization incident angle of semiconductor equipment parameters and acquisition of scattering signals of actual equipment has been found to have found the optimal conditions of detection power and contributed to defect detection. As a result, it was confirmed that the detection power differed significantly in the experiment of 266 nm wavelength and P incident polarization conditions using P polarization, and 30 nm particles were detected, contributing to the yield improvement.

Keywords: electronic simulation system, a semiconductor defect, Reynolds' equation, semiconductor optical measuring equipment, facility engineering

Procedia PDF Downloads 14
5758 Scale Effects on the Wake Airflow of a Heavy Truck

Authors: Aude Pérard Lecomte, Georges Fokoua, Amine Mehel, Anne Tanière

Abstract:

Air quality in urban areas is deteriorated by pollution, mainly due to the constant increase of the traffic of different types of ground vehicles. In particular, particulate matter pollution with important concentrations in urban areas can cause serious health issues. Characterizing and understanding particle dynamics is therefore essential to establish recommendations to improve air quality in urban areas. To analyze the effects of turbulence on particulate pollutants dispersion, the first step is to focus on the single-phase flow structure and turbulence characteristics in the wake of a heavy truck model. To achieve this, Computational Fluid Dynamics (CFD) simulations were conducted with the aim of modeling the wake airflow of a full- and reduced-scale heavy truck. The Reynolds Average Navier-Stokes (RANS) approach with the Reynolds Stress Model (RSM)as the turbulence model closure was used. The simulations highlight the apparition of a large vortex coming from the under trailer. This vortex belongs to the recirculation region, located in the near-wake of the heavy truck. These vortical structures are expected to have a strong influence on particle dynamics that are emitted by the truck.

Keywords: CDF, heavy truck, recirculation region, reduced scale

Procedia PDF Downloads 202
5757 A Study on Thermodynamic Prototype for Vernacular Dwellings in Perspective of Bioclimatic Architecture

Authors: Zhenzhen Zhang

Abstract:

As major human activity places, buildings consume a large amount of energy, and residential buildings are very important part of it. An extensive research work had been conducted to research how to achieve low energy goals, vernacular dwellings and contemporary technologies are two prime parameters among them. On one hand, some researchers concentrated on vernacular dwellings which were climate-response design and could offer a better living condition without mechanic application. On the other hand, a series concepts appeared based on modern technologies, surplus energy house, bioclimatic architecture, etc. especially thermodynamic architecture which integrates the micro-climate, human activity, thermal comfort, and energy efficiency into design. How to blend the two parameters is the key research topic now, which would act as the key to how to integrate the ancient design wise and contemporary new technologies. By several cases study, this paper will represent the evolution of thermodynamic architecture and then try to develop one methodology about how to produce a typical thermodynamic prototype for one area by blending the ancient building wise and contemporary concepts to achieve both low energy consumption and surplus energy.

Keywords: vernacular dwelling, thermodynamic architecture, bioclimatic architecture, thermodynamic prototype, surplus energy

Procedia PDF Downloads 270
5756 Towards Reliable Mobile Cloud Computing

Authors: Khaled Darwish, Islam El Madahh, Hoda Mohamed, Hadia El Hennawy

Abstract:

Cloud computing has been one of the fastest growing parts in IT industry mainly in the context of the future of the web where computing, communication, and storage services are main services provided for Internet users. Mobile Cloud Computing (MCC) is gaining stream which can be used to extend cloud computing functions, services and results to the world of future mobile applications and enables delivery of a large variety of cloud application to billions of smartphones and wearable devices. This paper describes reliability for MCC by determining the ability of a system or component to function correctly under stated conditions for a specified period of time to be able to deal with the estimation and management of high levels of lifetime engineering uncertainty and risks of failure. The assessment procedures consists of determine Mean Time between Failures (MTBF), Mean Time to Failure (MTTF), and availability percentages for main components in both cloud computing and MCC structures applied on single node OpenStack installation to analyze its performance with different settings governing the behavior of participants. Additionally, we presented several factors have a significant impact on rates of change overall cloud system reliability should be taken into account in order to deliver highly available cloud computing services for mobile consumers.

Keywords: cloud computing, mobile cloud computing, reliability, availability, OpenStack

Procedia PDF Downloads 383
5755 Multidisciplinary Rehabilitation Algorithm after Mandibular Resection for Ameloblastoma

Authors: Joaquim de Almeida Dultra, Daiana Cristina Pereira Santana, Fátima Karoline Alves Araújo Dultra, Liliane Akemi Kawano Shibasaki, Mariana Machado Mendes de Carvalho, Ieda Margarida Crusoé Rocha Rebello

Abstract:

Defects originating from mandibular resections can cause significant functional impairment and facial disharmony, and they have complex rehabilitation. The aim of this report is to demonstrate the authors' experience facing challenging rehabilitation after mandibular resection in a patient with ameloblastoma. Clinical and surgical steps are described simultaneously, highlighting the adaptation of the final fixed prosthesis, reported in an unprecedented way in the literature. A 37-year-old male patient was seen after a sports accident, where a pathological fracture in the symphysis and left mandibular body was identified, where a large radiolucent lesion was found. The patient underwent resection, bone graft, distraction osteogenesis, rehabilitation with dental implants, prosthesis, and finally, orofacial harmonization, in an interval of six years. Rehabilitation should consider the patient's needs individually and should have as the main objective to provide similar aesthetics and function to that present before the disease. We also emphasize the importance of interdisciplinary work during the course of rehabilitation.

Keywords: ameloblastoma, mandibular reconstruction, distraction osteogenesis, dental implants. dental prosthesis, implant-supported, treatment outcome

Procedia PDF Downloads 91
5754 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive

Authors: Yichao Ma, Chengsiong Chin, Wailok Woo

Abstract:

Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.

Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance

Procedia PDF Downloads 411
5753 Superior Wear Performance of CoCrNi Matrix Composite Reinforced with Quasi-Continuously Networked Graphene Nanosheets and In-Situ Carbide

Authors: Wenting Ye

Abstract:

The biological materials evolved in nature generally exhibit interpenetrating network structures, which may offer useful inspiration for the architectural design of wear-resistant composites. Here, a strategy for designing self-lubricating medium entropy alloy (MEA) composites with high strength and excellent anti-wear performance was proposed through quasi-continuously networked in-situ carbides and graphene nanosheets. The discontinuous coating of graphene on the MEA powder surface inhibits continuous metallurgy bonding of the MEA powders during sintering, generating the typical quasi-continuously networked architecture. A good combination of mechanical properties with high fracture strength over 2 GPa and large compressive plasticity over 30% benefits from metallurgy bonding that prevents crack initiation and extension. The wear rate of an order of 10-6 m3N-1m-1 ascribing to an amorphous-crystalline nanocomposite surface, tribo-film induced by graphene, as well as the gradient worn subsurface during friction was achieved by the MEA composite, which is an order of magnitude lower than the unreinforced MEA matrix.

Keywords: in-situ carbide, tribological behavior, medium entropy alloy matrix composite, graphene

Procedia PDF Downloads 12
5752 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks

Authors: Ahmed Negm, George Aggidis, Xiandong Ma

Abstract:

With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.

Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management

Procedia PDF Downloads 66
5751 Extended Boolean Petri Nets Generating N-Ary Trees

Authors: Riddhi Jangid, Gajendra Pratap Singh

Abstract:

Petri nets, a mathematical tool, is used for modeling in different areas of computer sciences, biological networks, chemical systems and many other disciplines. A Petri net model of a given system is created by the graphical representation that describes the properties and behavior of the system. While looking for the behavior of any system, 1-safe Petri nets are of particular interest to many in the application part. Boolean Petri nets correspond to those class in 1- safe Petri nets that generate all the binary n-vectors in their reachability analysis. We study the class by changing different parameters like the token counts in the places and how the structure of the tree changes in the reachability analysis. We discuss here an extended class of Boolean Petri nets that generates n-ary trees in their reachability-based analysis.

Keywords: marking vector, n-vector, petri nets, reachability

Procedia PDF Downloads 67
5750 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes

Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy

Abstract:

This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.

Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques

Procedia PDF Downloads 309
5749 Design of Target Selection for Pedestrian Autonomous Emergency Braking System

Authors: Tao Song, Hao Cheng, Guangfeng Tian, Chuang Xu

Abstract:

An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion.

Keywords: automatic emergency braking system, pedestrian target selection, TTC, variable width funnel

Procedia PDF Downloads 145
5748 Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation

Authors: Pannaga Pavan Jutur

Abstract:

Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs.

Keywords: algae, biofuels, nutrient stress, omics

Procedia PDF Downloads 261
5747 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding

Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen

Abstract:

Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.

Keywords: boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control

Procedia PDF Downloads 351
5746 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy

Procedia PDF Downloads 240
5745 Cooperative Learning: A Case Study on Teamwork through Community Service Project

Authors: Priyadharshini Ahrumugam

Abstract:

Cooperative groups through much research have been recognized to churn remarkable achievements instead of solitary or individualistic efforts. Based on Johnson and Johnson’s model of cooperative learning, the five key components of cooperation are positive interdependence, face-to-face promotive interaction, individual accountability, social skills and group processing. In 2011, the Malaysian Ministry of Higher Education (MOHE) introduced the Holistic Student Development policy with the aim to develop morally sound individuals equipped with lifelong learning skills. The Community Service project was included in the improvement initiative. The purpose of this study is to assess the relationship of team-based learning in facilitating particularly students’ positive interdependence and face-to-face promotive interaction. The research methods involve in-depth interviews with the team leaders and selected team members, and a content analysis of the undergraduate students’ reflective journals. A significant positive relationship was found between students’ progressive outlook towards teamwork and the highlighted two components. The key findings show that students have gained in their individual learning and work results through teamwork and interaction with other students. The inclusion of Community Service as a MOHE subject resonates with cooperative learning methods that enhances supportive relationships and develops students’ social skills together with their professional skills.

Keywords: community service, cooperative learning, positive interdependence, teamwork

Procedia PDF Downloads 296
5744 Use of Soil Microorganisms for the Production of Electricity through Microbial Fuel Cells

Authors: Abhipsa Mohanty, Harit Jha

Abstract:

The world's energy demands are continuing to rise, resulting in a worldwide energy crisis and environmental pollution. Because of finite, declining supply and environmental damage, reliance on fossil fuels is unsustainable. As a result, experts are concentrating on alternative, renewable, and carbon-free energy sources. Energy sources that are both environmentally and economically sustainable are required. Microbial fuel cells (MFCs) have recently received a lot of attention due to their low operating temperatures and ability to use a variety of biodegradable substrates as fuel. There are single-chamber MFCs as well as traditional MFCs with anode and cathode compartments. Bioelectricity is produced when microorganisms actively catabolize substrate. MFCs can be used as a power source in small devices like biosensors. Understanding of its components, microbiological processes, limiting variables, and construction designs in MFC systems must be simplified, and large-scale systems must be developed for them to be cost-effective as well as increase electricity production. The purpose of this research was to review current microbiology knowledge in the field of electricity. The manufacturing process, the materials, and procedures utilized to construct the technology, as well as the applications of MFC technology, are all covered.

Keywords: bio-electricity, exoelectrogenic bacteria, microbial fuel cells, soil microorganisms

Procedia PDF Downloads 79
5743 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: Redha Yeghnem, Laid Boulefrakh, Sid Ahmed Meftah, Abdelouahed Tounsi, El Abbas Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed finite element method (FEM). The anisotropic damage model is adopted to describe the damage extent of the RC shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method

Procedia PDF Downloads 346
5742 Treatment of Cyanide Effluents with Platinum Impregned on Mg-Al Layered Hydroxides

Authors: María R. Contreras, Diana Endara

Abstract:

Cyanide leaching is the most used technology for gold mining industry, which produces large amounts of effluents requiring treatment. In Ecuador the development of gold mining industry has increased, causing significant environmental impacts due to the highly use of cyanide, it is estimated that 10 gr of extracted gold generates 7000 liters of water contaminated with 300mg/L of free cyanide. The most common methods used nowadays are the treatment with peroxodisulfuric acid, ozonation, H₂O₂ and other reactants which are expensive and present disadvantages. Several methods have been developed to treat this contaminant such as heterogeneous catalysts. Layered double hydroxides (LDHs) have received much attention due to their wide applications like a catalysis support. Therefore, in this study, Mg-Al/ LDH was synthetized by coprecipitation method and then platinum was impregned on it, in order to enhance its catalytic activity. Two methods of impregnation were used, the first one, called incipient wet impregnation and the second one was developed by continuous agitation of LDH in contact with chloroplatinic acid solution for 24 h. The support impregnated was analyzed by X-ray diffraction, FTIR and SEM. Finally, the oxidation of cyanide ion was performed by preparing synthetic solutions of sodium cyanide (NaCN) with an initial concentration of 500 mg/L at pH 10,5 and air flow of 180 NL/h. After 8 hours of treatment, an 80% of oxidation of ion cyanide was achieved.

Keywords: catalysis, cyanide, LDHs, mining

Procedia PDF Downloads 128
5741 Meditation-Based Interventions in the Workplace

Authors: Louise Fitzgerald, John Allman

Abstract:

Introduction: Having previously engaged in a meditation-based programme (MBP) for staff in general practice, we explore the evidence and extent to which MBPs are employed in the workplace. Aim of the study: We aim to understand the current workplace MBP intervention literature, which will help inform the suitability of these interventions within the workplace domain. Objectives: Uptake of MBPs in the workplace has grown as organizations look to support employee health, wellbeing, and performance. We will discuss the current MBP literature, including the large variability across MBPs and the associated difficulties in evaluating their efficacy. Learning points: 1) MBPs have a positive impact on cognitive function including concentration and memory and as such job performance. MBPs appear to have a positive impact on objective and subjective job satisfaction, productivity, motivation and work engagement. Meditation in the workplace may have positive impacts on mental health issues - including stress reduction and depression. 2) From our review MBPs appear to be implementable in a wide range of professions and work contexts - regardless of individual factors. Given many companies are focusing on health and wellbeing of employees, this could be included in employee wellbeing programmes. 3) Despite the benefits of mindfulness and meditation interventions in psychosocial workplace health and work performance the long-term efficacy has yet to be fully determined.

Keywords: meditation-based programmes, mindfulness, meditation, well-being

Procedia PDF Downloads 127
5740 Measuring Audit Quality Using Text Analysis: An Empirical Study of Indian Companies

Authors: Leesa Mohanty, Ashok Banerjee

Abstract:

Better audit quality signifies the financial statements of the auditee firm reflect true and fair view of their actual state of affairs, which reduces information asymmetry between management and shareholders, as a result, helps protect interests of shareholders. This study examines the impact of joint audit on audit quality. It is motivated by the ongoing debate where The Institute of Chartered Accountants of India (ICAI), the regulatory body governing auditors, has advocated the finance ministry and the Reserve Bank of India (RBI) for the mandatory use of joint audit in private banks to enhance the quality of audit. Earlier, the Government of India had rejected the plea by ICAI for mandatory joint audits in large companies stating it is not a viable option for promoting domestic firms. We introduce a new measure of audit quality. Drawing from the domain of text analytics, we use relevant phrases in audit reports to gauge audit quality and demonstrate that joint audit improves audit quality. We also, for robustness, use prevalent proxy for audit quality (Big N Auditor, ratio of audit fees to total fees) and find negative effect of joint audit on audit quality. We, therefore highlight that different proxy for audit quality show opposite effect of joint audit.

Keywords: audit fees, audit quality, Big N. Auditor, joint audit

Procedia PDF Downloads 332
5739 Emotional Awareness and Working Memory as Predictive Factors for the Habitual Use of Cognitive Reappraisal among Adolescents

Authors: Yuri Kitahara

Abstract:

Background: Cognitive reappraisal refers to an emotion regulation strategy in which one changes the interpretation of emotion-eliciting events. Numerous studies show that cognitive reappraisal is associated with mental health and better social functioning. However the examination of the predictive factors of adaptive emotion regulation remains as an issue. The present study examined the factors contributing to the habitual use of cognitive reappraisal, with a focus on emotional awareness and working memory. Methods: Data was collected from 30 junior high school students, using a Japanese version of the Emotion Regulation Questionnaire (ERQ), the Levels of Emotional Awareness Scale for Children (LEAS-C), and N-back task. Results: A positive correlation between emotional awareness and cognitive reappraisal was observed in the high-working-memory group (r = .54, p < .05), whereas no significant relationship was found in the low-working-memory group. In addition, the results of the analysis of variance (ANOVA) showed a significant interaction between emotional awareness and working memory capacity (F(1, 26) = 7.74, p < .05). Subsequent analysis of simple main effects confirmed that high working memory capacity significantly increases the use of cognitive reappraisal for high-emotional-awareness subjects, and significantly decreases the use of cognitive reappraisal for low-emotional-awareness subjects. Discussion: These results indicate that under the condition when one has an adequate ability for simultaneous processing of information, explicit understanding of emotion would contribute to adaptive cognitive emotion regulation. The findings are discussed along with neuroscientific claims.

Keywords: cognitive reappraisal, emotional awareness, emotion regulation, working memory

Procedia PDF Downloads 213
5738 Robustness Analysis of the Carbon and Nitrogen Co-Metabolism Model of Mucor mucedo

Authors: Nahid Banihashemi

Abstract:

An emerging important area of the life sciences is systems biology, which involves understanding the integrated behavior of large numbers of components interacting via non-linear reaction terms. A centrally important problem in this area is an understanding of the co-metabolism of protein and carbohydrate, as it has been clearly demonstrated that the ratio of these metabolites in diet is a major determinant of obesity and related chronic disease. In this regard, we have considered a systems biology model for the co-metabolism of carbon and nitrogen in colonies of the fungus Mucor mucedo. Oscillations are an important diagnostic of underlying dynamical processes of this model. The maintenance of specific patterns of oscillation and its relation to the robustness of this system are the important issues which have been targeted in this paper. In this regard, parametric sensitivity approach as a theoretical approach has been considered for the analysis of the robustness of this model. As a result, the parameters of the model which produce the largest sensitivities have been identified. Furthermore, the largest changes that can be made in each parameter of the model without losing the oscillations in biomass production have been computed. The results are obtained from the implementation of parametric sensitivity analysis in Matlab.

Keywords: system biology, parametric sensitivity analysis, robustness, carbon and nitrogen co-metabolism, Mucor mucedo

Procedia PDF Downloads 313
5737 Investigation on Phase Change Device for Satellite Thermal Control

Authors: Meng-Hao Chen, Jeng-Der Huang, Chia-Ray Chen

Abstract:

With the new space mission need of high power dissipation, low thermal inertia and cyclical operation unit, such as high power amplifier (HPA) for synthetic aperture radar (SAR) satellite, the development of phase change material (PCM) technology seems to be a proper solution. Generally, the expected benefit of PCM solution is to eliminate temperature variation and maintain the stability of electronic units by using the latent heat during phase change process. It can also result in advantages of decreased radiator area and heater power. However, the PCMs have a drawback of low thermal conductivity that leads to large temperature gradient between the heat source and PCM. This paper thus presents both experimental and simplified numerical investigations on configuration design of PCM’s container. A comparison was carried out between the container with and without internal pin-fins structure. The results showed the benefit of pin-fins that act as the heat transfer enhancer to improve the temperature uniformity during phase transition. Furthermore, thermal testing and measurements were presented for four PCM candidates (i.e. n-octadecane, n-eicosane, glycerin and gallium). The solidification and supercooling behaviors on different PCMs were compared with available literature data and discussed in this study

Keywords: phase change material (PCM), thermal control, solidification, supercooling

Procedia PDF Downloads 369
5736 Tuberculosis in Patients with HIV-Infection in Russia: Cohort Study over the Period of 2015-2016 Years

Authors: Marina Nosik, Irina Rymanova, Konstantin Ryzhov, Joan Yarovaya, Alexander Sobkin

Abstract:

Tuberculosis (TB) associated with HIV is one of the top causes of death worldwide. However, early detection and treatment of TB in HIV-infected individuals significantly reduces the risk of developing severe forms of TB and mortality. The goal of the study was to analyze the peculiarities of TB associated with HIV infection. Over the period of 2015-2016 a retrospective cohort study was conducted among 377 patients with TB/HIV co-infection who attended the Moscow Tuberculosis Clinic. The majority of the patients was male (64,5%). The median age was: men 37,9 (24÷62) and women 35,4 (22÷72) years. The most prevalent age group was 30-39 years both for men and women (73,3% and 54,7%, respectively). The ratio of patients in age group 50-59 and senior was 3,9%. Socioeconomic status of patients was rather low: only 2.3% of patients had a university degree; 76,1% was unemployed (of whom 21,7% were disabled). Most patients had disseminated pulmonary tuberculosis in the phase of infiltration/ decay (41,5%). The infiltrative TB was detected in 18,9% of patients; 20,1% patients had tuberculosis of intrathoracic lymph nodes. The occurrence of MDR-TB was 16,8% and XDR-TB – 17,9%. The number of HIV-positive patients with newly diagnosed TB was n=261(69,2%). The active TB-form (MbT+) among new TB/HIV cases was 44,7 %. The severe clinical forms of TB and a high TB incidence rate among HIV-infected individuals alongside with a large number of cases of newly diagnosed tuberculosis, indicate the need for more intense interaction with TB services for timely diagnosis of TB which will optimize treatment outcomes.

Keywords: HIV, tuberculosis (TB), TB associated with HIV, multidrug-resistant TB (MDR-TB)

Procedia PDF Downloads 223
5735 Exploring Deep Neural Network Compression: An Overview

Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart

Abstract:

The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.

Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition

Procedia PDF Downloads 30
5734 Preliminary Studies of MWCNT/PVDF Polymer Composites

Authors: Esther Lorrayne M. Pereira, Adriana Souza M. Batista, Fabíola A. S. Ribeiro, Adelina P. Santos, Clascídia A. Furtado, Luiz O. Faria

Abstract:

The combination of multi–walled carbon nanotubes (MWCNTs) with polymers offers an attractive route to reinforce the macromolecular compounds as well as the introduction of new properties based on morphological modifications or electronic interactions between the two constituents. As they are only a few nanometers in dimension, it offers ultra-large interfacial area per volume between the nano-element and polymer matrix. Nevertheless, the use of MWCNTs as a rough material in different applications has been largely limited by their poor processability, insolubility, and infusibility. Studies concerning the nanofiller reinforced polymer composites are justified in an attempt to overcome these limitations. This work presents one preliminary study of MWCNTs dispersion into the PVDF homopolymer. For preparation, the composite components were diluted in n,n-dimethylacetamide (DMAc) with mechanical agitation assistance. After complete dilution, followed by slow evaporation of the solvent at 60°C, the samples were dried. Films of about 80 μm were obtained. FTIR and UV-Vis spectroscopic techniques were used to characterize the nanocomposites. The appearance of absorption bands in the FTIR spectra of nanofilled samples, when compared to the spectrum of pristine PVDF samples, are discussed and compared with the UV-Vis measurements.

Keywords: composites materials, FTIR, MWNTs, PVDF, UV-vis

Procedia PDF Downloads 431