Search results for: RNG model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16806

Search results for: RNG model

10086 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions

Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini

Abstract:

This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.

Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing

Procedia PDF Downloads 146
10085 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation

Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam

Abstract:

Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.

Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model

Procedia PDF Downloads 111
10084 Detection of High Fructose Corn Syrup in Honey by Near Infrared Spectroscopy and Chemometrics

Authors: Mercedes Bertotto, Marcelo Bello, Hector Goicoechea, Veronica Fusca

Abstract:

The National Service of Agri-Food Health and Quality (SENASA), controls honey to detect contamination by synthetic or natural chemical substances and establishes and controls the traceability of the product. The utility of near-infrared spectroscopy for the detection of adulteration of honey with high fructose corn syrup (HFCS) was investigated. First of all, a mixture of different authentic artisanal Argentinian honey was prepared to cover as much heterogeneity as possible. Then, mixtures were prepared by adding different concentrations of high fructose corn syrup (HFCS) to samples of the honey pool. 237 samples were used, 108 of them were authentic honey and 129 samples corresponded to honey adulterated with HFCS between 1 and 10%. They were stored unrefrigerated from time of production until scanning and were not filtered after receipt in the laboratory. Immediately prior to spectral collection, honey was incubated at 40°C overnight to dissolve any crystalline material, manually stirred to achieve homogeneity and adjusted to a standard solids content (70° Brix) with distilled water. Adulterant solutions were also adjusted to 70° Brix. Samples were measured by NIR spectroscopy in the range of 650 to 7000 cm⁻¹. The technique of specular reflectance was used, with a lens aperture range of 150 mm. Pretreatment of the spectra was performed by Standard Normal Variate (SNV). The ant colony optimization genetic algorithm sample selection (ACOGASS) graphical interface was used, using MATLAB version 5.3, to select the variables with the greatest discriminating power. The data set was divided into a validation set and a calibration set, using the Kennard-Stone (KS) algorithm. A combined method of Potential Functions (PF) was chosen together with Partial Least Square Linear Discriminant Analysis (PLS-DA). Different estimators of the predictive capacity of the model were compared, which were obtained using a decreasing number of groups, which implies more demanding validation conditions. The optimal number of latent variables was selected as the number associated with the minimum error and the smallest number of unassigned samples. Once the optimal number of latent variables was defined, we proceeded to apply the model to the training samples. With the calibrated model for the training samples, we proceeded to study the validation samples. The calibrated model that combines the potential function methods and PLSDA can be considered reliable and stable since its performance in future samples is expected to be comparable to that achieved for the training samples. By use of Potential Functions (PF) and Partial Least Square Linear Discriminant Analysis (PLS-DA) classification, authentic honey and honey adulterated with HFCS could be identified with a correct classification rate of 97.9%. The results showed that NIR in combination with the PT and PLS-DS methods can be a simple, fast and low-cost technique for the detection of HFCS in honey with high sensitivity and power of discrimination.

Keywords: adulteration, multivariate analysis, potential functions, regression

Procedia PDF Downloads 125
10083 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)

Authors: Pukhtoon Yar

Abstract:

Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.

Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City

Procedia PDF Downloads 186
10082 Efficient Mercury Sorbent: Activated Carbon and Metal Organic Framework Hybrid

Authors: Yongseok Hong, Kurt Louis Solis

Abstract:

In the present study, a hybrid sorbent using the metal organic framework (MOF), UiO-66, and powdered activated carbon (pAC) is synthesized to remove cationic and anionic metals simultaneously. UiO-66 is an octahedron-shaped MOF with a Zr₆O₄(OH)₄ metal node and 1,4-benzene dicarboxylic acid (BDC) organic linker. Zr-based MOFs are attractive for trace element remediation in wastewaters, because Zr is relatively non-toxic as compared to other classes of MOF and, therefore, it will not cause secondary pollution. Most remediation studies with UiO-66 target anions such as fluoride, but trace element oxyanions such as arsenic, selenium, and antimony have also been investigated. There have also been studies involving mercury removal by UiO-66 derivatives, however these require post-synthetic modifications or have lower effective surface areas. Activated carbon is known for being a readily available, well-studied, effective adsorbent for metal contaminants. Solvothermal method was employed to prepare hybrid sorbent from UiO66 and activated carbon, which could be used to remove mercury and selenium simultaneously. The hybrid sorbent was characterized using FSEM-EDS, FT-IR, XRD, and TGA. The results showed that UiO66 and activated carbon are successfully composited. From BET studies, the hybrid sorbent has a SBET of 1051 m² g⁻¹. Adsorption studies were performed, where the hybrid showed maximum adsorption of 204.63 mg g⁻¹ and 168 mg g⁻¹ for Hg (II) and selenite, respectively, and follows the Langmuir model for both species. Kinetics studies have revealed that the Hg uptake of the hybrid is pseudo-2nd order and has rate constant of 5.6E-05 g mg⁻¹ min⁻¹ and the selenite uptake follows the simplified Elovich model with α = 2.99 mg g⁻¹ min⁻¹, β = 0.032 g mg⁻¹.

Keywords: adsorption, flue gas wastewater, mercury, selenite, metal organic framework

Procedia PDF Downloads 175
10081 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 101
10080 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 512
10079 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 465
10078 Optimizing Residential Housing Renovation Strategies at Territorial Scale: A Data Driven Approach and Insights from the French Context

Authors: Rit M., Girard R., Villot J., Thorel M.

Abstract:

In a scenario of extensive residential housing renovation, stakeholders need models that support decision-making through a deep understanding of the existing building stock and accurate energy demand simulations. To address this need, we have modified an optimization model using open data that enables the study of renovation strategies at both territorial and national scales. This approach provides (1) a definition of a strategy to simplify decision trees from theoretical combinations, (2) input to decision makers on real-world renovation constraints, (3) more reliable identification of energy-saving measures (changes in technology or behaviour), and (4) discrepancies between currently planned and actually achieved strategies. The main contribution of the studies described in this document is the geographic scale: all residential buildings in the areas of interest were modeled and simulated using national data (geometries and attributes). These buildings were then renovated, when necessary, in accordance with the environmental objectives, taking into account the constraints applicable to each territory (number of renovations per year) or at the national level (renovation of thermal deficiencies (Energy Performance Certificates F&G)). This differs from traditional approaches that focus only on a few buildings or archetypes. This model can also be used to analyze the evolution of a building stock as a whole, as it can take into account both the construction of new buildings and their demolition or sale. Using specific case studies of French territories, this paper highlights a significant discrepancy between the strategies currently advocated by decision-makers and those proposed by our optimization model. This discrepancy is particularly evident in critical metrics such as the relationship between the number of renovations per year and achievable climate targets or the financial support currently available to households and the remaining costs. In addition, users are free to seek optimizations for their building stock across a range of different metrics (e.g., financial, energy, environmental, or life cycle analysis). These results are a clear call to re-evaluate existing renovation strategies and take a more nuanced and customized approach. As the climate crisis moves inexorably forward, harnessing the potential of advanced technologies and data-driven methodologies is imperative.

Keywords: residential housing renovation, MILP, energy demand simulations, data-driven methodology

Procedia PDF Downloads 68
10077 Technology Valuation of Unconventional Gas R&D Project Using Real Option Approach

Authors: Young Yoon, Jinsoo Kim

Abstract:

The adoption of information and communication technologies (ICT) in all industry is growing under industry 4.0. Many oil companies also are increasingly adopting ICT to improve the efficiency of existing operations, take more accurate and quicker decision making and reduce entire cost by optimization. It is true that ICT is playing an important role in the process of unconventional oil and gas development and companies must take advantage of ICT to gain competitive advantage. In this study, real option approach has been applied to Unconventional gas R&D project to evaluate ICT of them. Many unconventional gas reserves such as shale gas and coal-bed methane(CBM) has developed due to technological improvement and high energy price. There are many uncertainties in unconventional development on the three stage(Exploration, Development, Production). The traditional quantitative benefits-cost method, such as net present value(NPV) is not sufficient for capturing ICT value. We attempted to evaluate the ICT valuation by applying the compound option model; the model is applied to real CBM project case, showing how it consider uncertainties. Variables are treated as uncertain and a Monte Carlo simulation is performed to consider variables effect. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).

Keywords: information and communication technologies, R&D, real option, unconventional gas

Procedia PDF Downloads 229
10076 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 87
10075 Design of a Thrust Vectoring System for an Underwater ROV

Authors: Isaac Laryea

Abstract:

Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model.

Keywords: PID control, thrust vectoring, parallel manipulators, ROV, underwater, attitude control

Procedia PDF Downloads 70
10074 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution

Authors: Yasser Mahmoudi, Nader Karimi

Abstract:

The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).

Keywords: porous media, local thermal non-equilibrium, forced convection, heat transfer, exact solution, internal heat generation

Procedia PDF Downloads 460
10073 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model

Procedia PDF Downloads 457
10072 Identifying the Determinants of Compliance with Maritime Environmental Legislation in the North and Baltic Sea Area: A Model Developed from Exploratory Qualitative Data Collection

Authors: Thea Freese, Michael Gille, Andrew Hursthouse, John Struthers

Abstract:

Ship operators on the North and Baltic Sea have been experiencing increased political interest in marine environmental protection and cleaner vessel operations. Stricter legislation on SO2 and NOx emissions, ballast water management and other measures of protection are currently being phased in or will come into force in the coming years. These measures benefit the health of the marine environment, while increasing company’s operational costs. In times of excess shipping capacity and linked consolidation in the industry non-compliance with environmental rules is one way companies might hope to stay competitive with both intra- and inter-modal trade. Around 5-15% of industry participants are believed to neglect laws on vessel-source pollution willingly or unwillingly. Exploratory in-depth interviews conducted with 12 experts from various stakeholder groups informed the researchers about variables influencing compliance levels, including awareness and apprehension, willingness to comply, ability to comply and effectiveness of controls. Semi-structured expert interviews were evaluated using qualitative content analysis. A model of determinants of compliance was developed and is presented here. While most vessel operators endeavour to achieve full compliance with environmental rules, a lack of availability of technical solutions, expediency of implementation and operation and economic feasibility might prove a hindrance. Ineffective control systems on the other hand foster willing non-compliance. With respect to motivations, lacking time, lacking financials and the absence of commercial advantages decrease compliance levels. These and other variables were inductively developed from qualitative data and integrated into a model on environmental compliance. The outcomes presented here form part of a wider research project on economic effects of maritime environmental legislation. Research on determinants of compliance might inform policy-makers about actual behavioural effects of shipping companies and might further the development of a comprehensive legal system for environmental protection.

Keywords: compliance, marine environmental protection, exploratory qualitative research study, clean vessel operations, North and Baltic Sea area

Procedia PDF Downloads 383
10071 Using Genetic Algorithm to Organize Sustainable Urban Landscape in Historical Part of City

Authors: Shahab Mirzaean Mahabadi, Elham Ebrahimi

Abstract:

The urban development process in the historical urban context has predominately witnessed two main approaches: the first is the Preservation and conservation of the urban fabric and its value, and the second approach is urban renewal and redevelopment. The latter is generally supported by political and economic aspirations. These two approaches conflict evidently. The authors go through the history of urban planning in order to review the historical development of the mentioned approaches. In this article, various values which are inherent in the historical fabric of a city are illustrated by emphasizing on cultural identity and activity. In the following, it is tried to find an optimized plan which maximizes economic development and minimizes change in historical-cultural sites simultaneously. In the proposed model, regarding the decision maker’s intention, and the variety of functions, the selected zone is divided into a number of components. For each component, different alternatives can be assigned, namely, renovation, refurbishment, destruction, and change in function. The decision Variable in this model is to choose an alternative for each component. A set of decisions made upon all components results in a plan. A plan developed in this way can be evaluated based on the decision maker’s point of view. That is, interactions between selected alternatives can make a foundation for the assessment of urban context to design a historical-cultural landscape. A genetic algorithm (GA) approach is used to search for optimal future land use within the historical-culture landscape for a sustainable high-growth city.

Keywords: urban sustainability, green city, regeneration, genetic algorithm

Procedia PDF Downloads 69
10070 Using Monte Carlo Model for Simulation of Rented Housing in Mashhad, Iran

Authors: Mohammad Rahim Rahnama

Abstract:

The study employs Monte Carlo method for simulation of rented housing in Mashhad second largest city in Iran. A total number of 334 rental residential units in Mashhad, including both apartments and houses (villa), were randomly selected from advertisements placed in Khorasan Newspapers during the months of July and August of 2015. In order to simulate the monthly rent price, the rent index was calculated through combining the mortgage and the rent price. In the next step, the relation between the variables of the floor area and that of the number of bedrooms for each unit, in both apartments and houses(villa), was calculated through multivariate regression using SPSS and was coded in XML. The initial model was called using simulation button in SPSS and was simulated using triangular and binominal algorithms. The findings revealed that the average simulated rental index was 548.5$ per month. Calculating the sensitivity of rental index to a number of bedrooms we found that firstly, 97% of units have three bedrooms, and secondly as the number of bedrooms increases from one to three, for the rent price of less than 200$, the percentage of units having one bedroom decreases from 10% to 0. Contrariwise, for units with the rent price of more than 571.4$, the percentage of bedrooms increases from 37% to 48%. In the light of these findings, it becomes clear that planning to build rental residential units, overseeing the rent prices, and granting subsidies to rental residential units, for apartments with two bedrooms, present a felicitous policy for regulating residential units in Mashhad.

Keywords: Mashhad, Monte Carlo, simulation, rent price, residential unit

Procedia PDF Downloads 276
10069 Anonymous Gel-Fluid Transition of Solid Supported Lipids

Authors: Asma Poursoroush

Abstract:

Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate.

Keywords: membrane, substrate, molecular dynamics, simulation

Procedia PDF Downloads 195
10068 Optimal Allocation of Oil Rents and Public Investment In Low-Income Developing Countries: A Computable General Equilibrium Analysis

Authors: Paule Olivia Akotto

Abstract:

The recent literature suggests spending between 50%-85% of oil rents. However, there are not yet clear guidelines for allocating this windfall in the public investment system, while most of the resource-rich countries fail to improve their intergenerational mobility. We study a design of the optimal spending system in Senegal, a low-income developing country featuring newly discovered oil fields and low intergenerational mobility. We build a dynamic general equilibrium model in which rural and urban (Dakar and other urban centers henceforth OUC) households face different health, education, and employment opportunities based on their location, affecting their intergenerational mobility. The model captures the relationship between oil rents, public investment, and multidimensional inequality of opportunity. The government invests oil rents in three broad sectors: health and education, road and industries, and agriculture. Through endogenous productivity externality and human capital accumulation, our model generates the predominant position of Dakar and OUC households in terms of access to health, education, and employment in line with Senegal data. Rural households are worse off in all dimensions. We compute the optimal spending policy under two sets of simulation scenarios. Under the current Senegal public investment strategy, which weighs more health and education investments, we find that the reform maximizing the decline in inequality of opportunity between households, frontloads investment during the first eight years of the oil exploitation and spends the perpetual value of oil wealth thereafter. We will then identify the marginal winners and losers associated with this policy and its redistributive implications. Under our second set of scenarios, we will test whether the Senegalese economy can reach better equality of opportunity outcomes under this frontloading reform, by allowing the sectoral shares of investment to vary. The trade-off will be between cutting human capital investment in favor of agricultural and productive infrastructure or increasing the former. We will characterize the optimal policy by specifying where the higher weight should be. We expect that the optimal policy of the second set strictly dominates in terms of equality of opportunity, the optimal policy computed under the current investment strategy. Finally, we will quantify this optimal policy's aggregate and distributional effects on poverty, well-being, and gender earning gaps.

Keywords: developing countries, general equilibrium, inequality of opportunity, oil rents

Procedia PDF Downloads 237
10067 Enhanced Model for Risk-Based Assessment of Employee Security with Bring Your Own Device Using Cyber Hygiene

Authors: Saidu I. R., Shittu S. S.

Abstract:

As the trend of personal devices accessing corporate data continues to rise through Bring Your Own Device (BYOD) practices, organizations recognize the potential cost reduction and productivity gains. However, the associated security risks pose a significant threat to these benefits. Often, organizations adopt BYOD environments without fully considering the vulnerabilities introduced by human factors in this context. This study presents an enhanced assessment model that evaluates the security posture of employees in BYOD environments using cyber hygiene principles. The framework assesses users' adherence to best practices and guidelines for maintaining a secure computing environment, employing scales and the Euclidean distance formula. By utilizing this algorithm, the study measures the distance between users' security practices and the organization's optimal security policies. To facilitate user evaluation, a simple and intuitive interface for automated assessment is developed. To validate the effectiveness of the proposed framework, design science research methods are employed, and empirical assessments are conducted using five artifacts to analyze user suitability in BYOD environments. By addressing the human factor vulnerabilities through the assessment of cyber hygiene practices, this study aims to enhance the overall security of BYOD environments and enable organizations to leverage the advantages of this evolving trend while mitigating potential risks.

Keywords: security, BYOD, vulnerability, risk, cyber hygiene

Procedia PDF Downloads 76
10066 Trust: The Enabler of Knowledge-Sharing Culture in an Informal Setting

Authors: Emmanuel Ukpe, S. M. F. D. Syed Mustapha

Abstract:

Trust in an organization has been perceived as one of the key factors behind knowledge sharing, mainly in an unstructured work environment. In an informal working environment, to instill trust among individuals is a challenge and even more in the virtual environment. The study has contributed in developing the framework for building trust in an unstructured organization in performing knowledge sharing in a virtual environment. The artifact called KAPE (Knowledge Acquisition, Processing, and Exchange) was developed for knowledge sharing for the informal organization where the framework was incorporated. It applies to Cassava farmers to facilitate knowledge sharing using web-based platform. A survey was conducted; data were collected from 382 farmers from 21 farm communities. Multiple regression technique, Cronbach’s Alpha reliability test; Tukey’s Honestly significant difference (HSD) analysis; one way Analysis of Variance (ANOVA), and all trust acceptable measures (TAM) were used to test the hypothesis and to determine noteworthy relationships. The results show a significant difference when there is a trust in knowledge sharing between farmers, the ones who have high in trust acceptable factors found in the model (M = 3.66 SD = .93) and the ones who have low on trust acceptable factors (M = 2.08 SD = .28), (t (48) = 5.69, p = .00). Furthermore, when applying Cognitive Expectancy Theory, the farmers with cognitive-consonance show higher level of trust and satisfaction with knowledge and information from KAPE, as compared with a low level of cognitive-dissonance. These results imply that the adopted trust model KAPE positively improved knowledge sharing activities in an informal environment amongst rural farmers.

Keywords: trust, knowledge, sharing, knowledge acquisition, processing and exchange, KAPE

Procedia PDF Downloads 120
10065 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant

Abstract:

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Keywords: complex terrain, cross-ventilation, wind driven ventilation, wind resource, computational fluid dynamics, CFD

Procedia PDF Downloads 395
10064 Measuring Social Dimension of Sustainable Development in New Zealand Cities

Authors: Taimaz Larimian

Abstract:

During recent years, sustainable development has increasingly influenced urban policy, housing and planning in cities all over the world. Debates about sustainability no longer consider it solely as an environmental concern, but also incorporate social and economic dimensions. However, while a social dimension of sustainability is extensively accepted, the exact definition of the concept is still vague and unclear. This study is addressing this lack of specificity through a detailed exploration of social sustainability as the least studied pillar of sustainable development and sheds light on the debate over the definition of social sustainability through developing a measurement model of the constitutive dimensions of the concept. With this aim, a conceptual framework is developed based on the existing literature, determining seven main dimensions of the social sustainability concept namely: social interaction, safety and security, social equity, social participation, neighborhood satisfaction, housing satisfaction and sense of place. The validity and reliability of the model is then tested using exploratory and confirmatory factor analysis. In order to do so, five case study neighborhoods from Dunedin city with a range of urban forms and characters are investigated, to define social sustainability concept and its consisting dimensions from people’s perspective. The findings of this study present a clear definition of social sustainability at neighborhood scale and highlight all different dimensions of the concept in the context of New Zealand cities. According to the results, among the investigated dimensions, neighborhood satisfaction and safety and security had the most influence on people’s feeling of social sustainability in their neighborhood.

Keywords: social sustainability, factor analysis, neighborhood level, New Zealand cities

Procedia PDF Downloads 300
10063 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 267
10062 Modern Agriculture and Industrialization Nexus in the Nigerian Context

Authors: Ese Urhie, Olabisi Popoola, Obindah Gershon, Olabanji Ewetan

Abstract:

Modern agriculture involves the use of improved tools and equipment (instead of crude and ineffective tools) like tractors, hand operated planters, hand operated fertilizer drills and combined harvesters - which increase agricultural productivity. Farmers in Nigeria still have huge potentials to enhance their productivity. The study argues that the increase in agricultural output due to increased productivity, orchestrated by modern agriculture will promote forward linkages and opportunities in the processing sub-sector; both the manufacturing of machines and the processing of raw materials. Depending on existing incentives, foreign investment could be attracted to augment local investment in the sector. The availability of raw materials in large quantity – which prices are competitive – will attract investment in other industries. In addition, potentials for backward linkages will also be created. In a nutshell, adopting the unbalanced growth theory in favour of the agricultural sector could engender industrialization in a country with untapped potentials. The paper highlights the numerous potentials of modern agriculture that are yet to be tapped in Nigeria and also provides a theoretical analysis of how the realization of such potentials could promote industrialization in the country. The study adopts the Lewis’ theory of structural–change model and Hirschman’s theory of unbalanced growth in the design of the analytical framework. The framework will be useful in empirical studies that will guide policy formulation.

Keywords: modern agriculture, industrialization, structural change model, unbalanced growth

Procedia PDF Downloads 304
10061 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 227
10060 Principal Creative Leadership for Teacher Learning and School Culture

Authors: Yashi Ye

Abstract:

Principles play vital roles in shaping the school culture and promoting teachers' professional learning by exerting their leadership. In the changing time of the 21st century, the creative leadership of school leaders is increasingly important in cultivating the professional learning communities of teachers for eventually improving student performance in every continent. This study examines under what conditions and how principal creative leadership contributes to teachers’ professional learning and school culture. Data collected from 632 teachers in 30 primary and middle schools in the cities of Chengdu and Chongqing in mainland China are analyzed using structural equation modeling and bootstrapping tests. A moderated mediation model of principle creative leadership effects is used to analyze professional teacher learning and school culture in which the mediator will be school culture and the moderator will be power distance orientation. The results indicate that principal creative leadership has significant direct and indirect effects on teachers' professional learning. A positive correlation between principal creative leadership, professional teacher learning, and school culture is observed. Further model testing found that teacher power distance orientation moderated the significant effect of principal creative leadership on school culture. When teachers perceived higher power distance in teacher-principal relations, the effects of principal creative leadership were stronger than for those who perceived low power distance. The results indicate the “culture change” in the young generation of teachers in China, and further implications to understanding the cultural context in the field of educational leadership are discussed.

Keywords: power distance orientation, principal creative leadership, school culture, teacher professional learning

Procedia PDF Downloads 142
10059 Climate Change Adaptation in Agriculture: A General Equilibrium Analysis of Land Re-Allocation in Nepal

Authors: Sudarshan Chalise, Athula Naranpanawa

Abstract:

This paper attempts to investigate the viability of cropland re-allocation as an adaptation strategy to minimise the economy-wide costs of climate change on agriculture. Nepal makes an interesting case study as it is one of the most vulnerable agricultural economies within South Asia. This paper develops a comparative static multi-household Computable General Equilibrium (CGE) model for Nepal with a nested set of Constant Elasticity of Transformation (CET) functional forms to model the allocation of land within different agricultural sectors. Land transformation elasticities in these CET functions are allowed to reflect the ease of switching from one crop to another based on their agronomic characteristics. The results suggest that, in the long run, farmers in Nepal tend to allocate land to crops that are comparatively less impacted by climate change, such as paddy, thereby minimizing the economy-wide impacts of climate change. Furthermore, the results reveal that land re-allocation tends to reduce the income disparity among different household groups by significantly moderating the income losses of rural marginal farmers. Therefore, it is suggested that policy makers in Nepal should prioritise schemes such as providing climate-smart paddy varieties (i.e., those that are resistant to heat, drought and floods) to farmers, subsidising fertilizers, improving agronomic practices, and educating farmers to switch from crops that are highly impacted by climate change to those that are not, such as paddy.

Keywords: climate change, general equilibrium, land re-allocation, nepalese agriculture

Procedia PDF Downloads 332
10058 Determination of Direct Solar Radiation Using Atmospheric Physics Models

Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote

Abstract:

This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.

Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition

Procedia PDF Downloads 409
10057 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study

Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier

Abstract:

Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.

Keywords: eating disorders, risk factors, physical activity, machine learning

Procedia PDF Downloads 83