Search results for: digital learning objects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10162

Search results for: digital learning objects

3502 Examining the Teaching and Learning Needs of Science and Mathematics Educators in South Africa

Authors: M. Shaheed Hartley

Abstract:

There has been increasing pressure on education researchers and practitioners at higher education institutions to focus on the development of South Africa’s rural and peri-urban communities and improving their quality of life. Many tertiary institutions are obliged to review their outreach interventions in schools. To ensure that the support provided to schools is still relevant, a systemic evaluation of science educator needs is central to this process. These prioritised needs will serve as guide not only for the outreach projects of tertiary institutions, but also to service providers in general so that the process of addressing educators needs become coordinated, organised and delivered in a systemic manner. This paper describes one area of a broader needs assessment exercise to collect data regarding the needs of educators in a district of 45 secondary schools in the Western Cape Province of South Africa. This research focuses on the needs and challenges faced by science educators at these schools as articulated by the relevant stakeholders. The objectives of this investigation are two-fold: (1) to create a data base that will capture the needs and challenges identified by science educators of the selected secondary schools; and (2) to develop a needs profile for each of the participating secondary schools that will serve as a strategic asset to be shared with the various service providers as part of a community of practice whose core business is to support science educators and science education at large. The data was collected by a means of a needs assessment questionnaire (NAQ) which was developed in both actual and preferred versions. An open-ended questionnaire was also administered which allowed teachers to express their views. The categories of the questionnaire were predetermined by participating researchers, educators and education department officials. Group interviews were also held with the science teachers at each of the schools. An analysis of the data revealed important trends in terms of science educator needs and identified schools that can be clustered around priority needs, logistic reasoning and educator profiles. The needs database also provides opportunity for the community of practice to strategise and coordinate their interventions.

Keywords: needs assessment, science and mathematics education, evaluation, teaching and learning, South Africa

Procedia PDF Downloads 183
3501 Innovation Management: A Comparative Analysis among Organizations from United Arab Emirates, Saudi Arabia, Brazil and China

Authors: Asmaa Abazaid, Maram Al-Ostah, Nadeen Abu-Zahra, Ruba Bawab, Refaat Abdel-Razek

Abstract:

Innovation audit is defined as a tool that can be used to reflect on how the innovation is managed in an organization. The aim of this study is to audit innovation in the second top Engineering Firms in the world, and one of the Small Medium Enterprises (SMEs) companies that are working in United Arab Emirates (UAE). The obtained results are then compared with four international companies from China and Brazil. The Diamond model has been used for auditing innovation in the two companies in UAE to evaluate their innovation management and to identify each company’s strengths and weaknesses from an innovation perspective. The results of the comparison between the two companies (Jacobs and Hyper General Contracting) revealed that Jacobs has support for innovation, its innovation processes are well managed, the company is committed to the development of its employees worldwide and the innovation system is flexible. Jacobs was doing best in all innovation management dimensions: strategy, process, organization, linkages and learning, while Hyper General Contracting did not score as Jacobs in any of the innovation dimensions. Furthermore, the audit results of both companies were compared with international companies to examine how well the two construction companies in UAE manage innovation relative to SABIC (Saudi company), Poly Easy and Arnious (Brazilian companies), Huagong tools and Guizohou Yibai (Chinese companies). The results revealed that Jacobs is doing best in learning and organization dimensions, while PolyEasy and Jacobs are equal in the linkage dimension. Huagong Tools scored the highest score in process dimension among all the compared companies. However, the highest score of strategy dimension was given to PolyEasy. On the other hand, Hyper General Contracting scored the lowest in all of the innovation management dimensions. It needs to improve its management of all the innovation management dimensions with special attention to be given to strategy, process, and linkage as they got scores below 4 out of 7 comparing with other dimensions. Jacobs scored the highest in three innovation management dimensions related to the six companies. However, the strategy dimension is considered low, and special attention is needed in this dimension.

Keywords: Brazil, China, innovation audit, innovation evaluation, innovation management, Saudi Arabia, United Arab Emirates

Procedia PDF Downloads 285
3500 Game “EZZRA” as an Innovative Solution

Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan

Abstract:

There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.

Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation

Procedia PDF Downloads 76
3499 Contextualization and Localization: Acceptability of the Developed Activity Sheets in Science 5 Integrating Climate Change Adaptation

Authors: Kim Alvin De Lara

Abstract:

The research aimed to assess the level of acceptability of the developed activity sheets in Science 5 integrating climate change adaptation of grade 5 science teachers in the District of Pililla school year 2016-2017. In this research, participants were able to recognize and understand the importance of environmental education in improving basic education and integrating them in lessons through localization and contextualization. The researcher conducted the study to develop a material to use by Science teachers in Grade 5. It served also as a self-learning resource for students. The respondents of the study were the thirteen Grade 5 teachers teaching Science 5 in the District of Pililla. Respondents were selected purposively and identified by the researcher. A descriptive method of research was utilized in the research. The main instrument was a checklist which includes items on the objectives, content, tasks, contextualization and localization of the developed activity sheets. The researcher developed a 2-week lesson in Science 5 for 4th Quarter based on the curriculum guide with integration of climate change adaptation. The findings revealed that majority of respondents are female, 31 years old and above, 10 years above in teaching science and have units in master’s degree. With regards to the level of acceptability, the study revealed developed activity sheets in science 5 is very much acceptable. In view of the findings, lessons in science 5 must be contextualized and localized to improve to make the curriculum responds, conforms, reflects, and be flexible to the needs of the learners, especially the 21st century learners who need to be holistically and skillfully developed. As revealed by the findings, it is more acceptable to localized and contextualized the learning materials for pupils. Policy formation and re-organization of the lessons and competencies in Science must be reviewed and re-evaluated. Lessons in science must also be integrated with climate change adaptation since nowadays, people are experiencing change in climate due to global warming and other factors. Through developed activity sheets, researcher strongly supports environmental education and believes this to serve as a way to instill environmental literacy to students.

Keywords: activity sheets, climate change adaptation, contextualization, localization

Procedia PDF Downloads 327
3498 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 144
3497 Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).

Keywords: process optimization, RGB models, thermal models, , UAV, workflow

Procedia PDF Downloads 138
3496 Progress and Challenges of Smart Cities in India: An Exploratory Study

Authors: Sushil K. Sharma, Jeff Zhang, Saeed Tabar

Abstract:

Worldwide, several governments are utilizing the Internet of Things (IoT) and other information and communication technologies (ICTs) to create smart city infrastructures to improve both the quality of government services and citizen welfare. Over 700 cities from around the world have already started implementing their smart city projects. Smart City utilizes the network of connected things, or the Internet of Things (IoT), that interconnects devices and various components across city infrastructure, making them work together seamlessly to enhance the quality, performance, and interactivity of urban services, optimize resources, and reduce costs. Without developing smart cities, the accelerating growth of cities, and their disproportionate consumption of physical and social resources are unsustainable. In 2016, the Indian Government released a list of 100 cities with the intention of kick-starting the process of developing them into 'smart cities’ as part of the Smart Cities Mission. This study reports the progress and challenges of Smart City projects in India. The data were collected through the city/state government websites, media reports, and focus group discussions/interviews. The preliminary results indicate that smart city projects are not only behind in their implementation and scope but also lacks the sincerity for its implementation.

Keywords: smart city, smart government, Internet of Things, digital government

Procedia PDF Downloads 183
3495 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues

Authors: Muhammad Muhammad Suleiman

Abstract:

Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.

Keywords: cloud computing, steganography, information hiding, cloud storage, security

Procedia PDF Downloads 192
3494 Identifying Missing Component in the Bechdel Test Using Principal Component Analysis Method

Authors: Raghav Lakhotia, Chandra Kanth Nagesh, Krishna Madgula

Abstract:

A lot has been said and discussed regarding the rationale and significance of the Bechdel Score. It became a digital sensation in 2013, when Swedish cinemas began to showcase the Bechdel test score of a film alongside its rating. The test has drawn criticism from experts and the film fraternity regarding its use to rate the female presence in a movie. The pundits believe that the score is too simplified and the underlying criteria of a film to pass the test must include 1) at least two women, 2) who have at least one dialogue, 3) about something other than a man, is egregious. In this research, we have considered a few more parameters which highlight how we represent females in film, like the number of female dialogues in a movie, dialogue genre, and part of speech tags in the dialogue. The parameters were missing in the existing criteria to calculate the Bechdel score. The research aims to analyze 342 movies scripts to test a hypothesis if these extra parameters, above with the current Bechdel criteria, are significant in calculating the female representation score. The result of the Principal Component Analysis method concludes that the female dialogue content is a key component and should be considered while measuring the representation of women in a work of fiction.

Keywords: Bechdel test, dialogue genre, parts of speech tags, principal component analysis

Procedia PDF Downloads 143
3493 A Comparative Study of the Maximum Power Point Tracking Methods for PV Systems Using Boost Converter

Authors: M. Doumi, A. Miloudi, A.G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir

Abstract:

The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. These algorithms are based on the Perturb-Observe, Conductance-Increment and the Fuzzy Logic methods. These techniques vary in many aspects as: simplicity, convergence speed, digital or analogical implementation, sensors required, cost, range of effectiveness, and in other aspects. This paper presents a comparative study of three widely-adopted MPPT algorithms; their performance is evaluated on the energy point of view, by using the simulation tool Simulink®, considering different solar irradiance variations. MPPT using fuzzy logic shows superior performance and more reliable control to the other methods for this application.

Keywords: photovoltaic system, MPPT, perturb and observe (P&O), incremental conductance (INC), Fuzzy Logic (FLC)

Procedia PDF Downloads 411
3492 Video Materials as a Persuasive Strategy in Tourism Discourse

Authors: Ganna Zakharova

Abstract:

The persuasive influence of tourism promotional materials is very much experienced nowadays. In order to attract the attention of viewers, marketers choose various techniques in their digital texts. Video is an essential element for attraction and seduction; it is a trigger element for tourists. This solution for web marketing engages and convinces potential tourists to book a tourism product. Embedding video materials into a website provides useful information, create different feelings in viewers, and help them finalize their decisions. The present article discusses video solutions for health tourism websites used to allure potential tourists. The paper reviews the influential elements of persuasive tourism marketing videos. The article highlights how these components as persuasive strategies of tourism promotional materials can influence the decisions of tourism websites’ users. The result section provides the real examples of the deployment of the mentioned technique to convince the audience by the website of 'Karpaty' resort (Ukraine). This technique is worth attention as it plays an important role in the promotion of tourism services. The data collection of this study will provide updated information in relation to the rhetoric of tourism.

Keywords: tourism discourse, persuasive video, influential videos in marketing, persuasive discourse, tourism promotion

Procedia PDF Downloads 118
3491 A Customize Battery Management Approach for Satellite

Authors: Muhammad Affan, Muhammad Ilyas Raza, Muhammad Harris Hashmi

Abstract:

This work is attributed to the battery management unit design of student Satellites under Pakistan National Student Satellite Program (PNSSP). The aim has been to design a customized, low-cost, efficient, reliable and less-complex battery management scheme for the Satellite. Nowadays, Lithium Ion (Li-ion) batteries have become the de-facto standard for remote applications, especially for satellites. Li-ion cells are selected for secondary storage. The design also addresses Li-ion safety requirements by monitoring, balancing and protecting cells for safe and prolonged operation. Accurate voltage measurement of individual cells was the main challenge because all the actions triggered were based on the digital voltage measurement. For this purpose, a resistive-divider network is used to maintain simplicity and cost-effectiveness. To cater the problem of insufficient i/o pins on microcontroller, fast multiplexers and de-multiplexers were used. The discrepancy inherited in the given design is the dissipation of heat due to the dissipative resistors. However, it is still considered to be the optimum adoption, considering the simple and cost-effective nature of the passive balancing technique. Furthermore, it is a completely unique solution, customized to meet specific requirements. However, there is still an option for a more advanced and expensive design.

Keywords: satellite, battery module, passive balancing, dissipative

Procedia PDF Downloads 139
3490 Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets

Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J. W. Chen, P. H. Liu, D. H. Chen

Abstract:

The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi.

Keywords: 3D printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin

Procedia PDF Downloads 561
3489 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining

Procedia PDF Downloads 173
3488 Influence of Spelling Errors on English Language Performance among Learners with Dysgraphia in Public Primary Schools in Embu County, Kenya

Authors: Madrine King'endo

Abstract:

This study dealt with the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools in West Embu, Embu County, Kenya. The study purposed to investigate the influence of spelling errors on the English language performance among the class three pupils with dysgraphia in public primary schools. The objectives of the study were to identify the spelling errors that learners with dysgraphia make when writing English words and classify the spelling errors they make. Further, the study will establish how the spelling errors affect the performance of the language among the study participants, and suggest the remediation strategies that teachers could use to address the errors. The study could provide the stakeholders with relevant information in writing skills that could help in developing a responsive curriculum to accommodate the teaching and learning needs of learners with dysgraphia, and probably ensure training of teachers in teacher training colleges is tailored within the writing needs of the pupils with dysgraphia. The study was carried out in Embu county because the researcher did not find any study in related literature review concerning the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools done in the area. Moreover, besides being relatively populated enough for a sample population of the study, the area was fairly cosmopolitan to allow a generalization of the study findings. The study assumed the sampled schools will had class three pupils with dysgraphia who exhibited written spelling errors. The study was guided by two spelling approaches: the connectionist stimulation of spelling process and orthographic autonomy hypothesis with a view to explain how participants with learning disabilities spell written words. Data were collected through interviews, pupils’ exercise books, and progress records, and a spelling test made by the researcher based on the spelling scope set for class three pupils by the ministry of education in the primary education syllabus. The study relied on random sampling techniques in identifying general and specific participants. Since the study used children in schools as participants, voluntary consent was sought from themselves, their teachers and the school head teachers who were their caretakers in a school setting.

Keywords: dysgraphia, writing, language, performance

Procedia PDF Downloads 154
3487 A Witty Relief Ailment Based on the Integration of IoT and Cloud

Authors: Sai Shruthi Sridhar, A. Madhumidha, Kreethika Guru, Priyanka Sekar, Ananthi Malayappan

Abstract:

Numerous changes in technology and its recent development are structuring long withstanding effect to our world, one among them is the emergence of “Internet of Things” (IoT). Similar to Technology world, one industry stands out in everyday life–healthcare. Attention to “quality of health care” is an increasingly important issue in a global economy and for every individual. As per WHO (World Health Organization) it is estimated to be less than 50% adhere to the medication provided and only about 20% get their medicine on time. Medication adherence is one of the top problems in healthcare which is fixable by use of technology. In recent past, there were minor provisions for elderly and specially-skilled to get motivated and to adhere medicines prescribed. This paper proposes a novel solution that uses IOT based RFID Medication Reminder Solution to provide personal health care services. This employs real time tracking which offer quick counter measures. The proposed solution builds on the recent digital advances in sensor technologies, smart phones and cloud services. This novel solution is easily adoptable and can benefit millions of people with a direct impact on the nation’s health care expenditure with innovative scenarios and pervasive connectivity.

Keywords: cloud services, IoT, RFID, sensors

Procedia PDF Downloads 347
3486 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System

Authors: Dong Seop Lee, Byung Sik Kim

Abstract:

In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.

Keywords: disaster information management, unstructured data, optical character recognition, machine learning

Procedia PDF Downloads 129
3485 Subtitling in the Classroom: Combining Language Mediation, ICT and Audiovisual Material

Authors: Rossella Resi

Abstract:

This paper describes a project carried out in an Italian school with English learning pupils combining three didactic tools which are attested to be relevant for the success of young learner’s language curriculum: the use of technology, the intralingual and interlingual mediation (according to CEFR) and the cultural dimension. Aim of this project was to test a technological hands-on translation activity like subtitling in a formal teaching context and to exploit its potential as motivational tool for developing listening and writing, translation and cross-cultural skills among language learners. The activities proposed involved the use of professional subtitling software called Aegisub and culture-specific films. The workshop was optional so motivation was entirely based on the pleasure of engaging in the use of a realistic subtitling program and on the challenge of meeting the constraints that a real life/work situation might involve. Twelve pupils in the age between 16 and 18 have attended the afternoon workshop. The workshop was organized in three parts: (i) An introduction where the learners were opened up to the concept and constraints of subtitling and provided with few basic rules on spotting and segmentation. During this session learners had also the time to familiarize with the main software features. (ii) The second part involved three subtitling activities in plenum or in groups. In the first activity the learners experienced the technical dimensions of subtitling. They were provided with a short video segment together with its transcription to be segmented and time-spotted. The second activity involved also oral comprehension. Learners had to understand and transcribe a video segment before subtitling it. The third activity embedded a translation activity of a provided transcription including segmentation and spotting of subtitles. (iii) The workshop ended with a small final project. At this point learners were able to master a short subtitling assignment (transcription, translation, segmenting and spotting) on their own with a similar video interview. The results of these assignments were above expectations since the learners were highly motivated by the authentic and original nature of the assignment. The subtitled videos were evaluated and watched in the regular classroom together with other students who did not take part to the workshop.

Keywords: ICT, L2, language learning, language mediation, subtitling

Procedia PDF Downloads 416
3484 Comparison between Approaches Used in Two Walk About Projects

Authors: Derek O Reilly, Piotr Milczarski, Shane Dowdall, Artur Hłobaż, Krzysztof Podlaski, Hiram Bollaert

Abstract:

Learning through creation of contextual games is a very promising way/tool for interdisciplinary and international group projects. During 2013 and 2014 we took part and organized two intensive students projects in different conditions. The projects enrolled 68 students and 12 mentors from 5 countries. In the paper we want to share our experience how to strengthen the chances to succeed in short (12-15 days long) student projects. In our case almost all teams prepared working prototype and the results were highly appreciated by external experts.

Keywords: contextual games, mobile games, GGULIVRR, walkabout, Erasmus intensive programme

Procedia PDF Downloads 502
3483 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 196
3482 Experience Marketing and Behavioral Intentions: An Exploratory Study Applied to Middle-Aged and Senior Pickleball Participated in Taiwan

Authors: Yi Yau, Chia-Huei Hsiao

Abstract:

The elderly society is already a problem of globalization, and Taiwan will enter a super-aged society in 2025. Therefore, how to improve the health of the elderly and reduce the government's social burden is an important issue at present. Exercise is the best medical care, and it is also a healthy activity for people to live a healthy life. Facing the super-aged society in the future, it is necessary to attract them to participate in sports voluntarily through sports promotion so that they can live healthy and independent lives and continue to participate in society to enhance the well-being of the elderly. Experiential marketing and sports participation are closely related. In the past, it was mainly aimed at consumer behavior at the commercial level. At present, there are not many study objects focusing on participant behavior and middle-aged and elderly people. Therefore, this study takes the news emerged sport-Pickleball that has been loved by silver-haired people in recent years as the research sport. It uses questionnaire surveys and intentional sampling methods. The purpose of the group is to understand the middle-aged and elderly people’s experience and behavior patterns of Pickleball, explore the relationship between experiential marketing and participants' intentional behaviors, and predict which aspects of experiential marketing will affect their intentional behaviors. The findings showed that experience marketing is highly positively correlated with behavioral intentions, and experience marketing has a positive predictive power for behavioral intentions. Among them, "ACT" and "SENSE" are predictive variables that effectively predict behavioral intentions. This study proves the feasibility of pickleball for middle-aged and senior sports. It is recommended that in the future curriculum planning, try to simplify the exercise steps, increase the chances of contact with the sphere, and enhance the sensory experience to enhance the sense of success during exercise, and then generate exercise motivation, and ultimately change the exercise mode or habits and promote health.

Keywords: newly emerged sports, middle age and elderly, health promotion, ACT, SENSE

Procedia PDF Downloads 156
3481 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 325
3480 Banking and Accounting Analysis Researches Effect on Environment

Authors: Michael Saad Thabet Azrek

Abstract:

The advanced facts era is becoming a vital element within the improvement of financial offerings enterprise, in particular, the banking enterprise. It has introduced new approaches to delivering banking to the patron, including Internet Banking. Banks started to observe digital banking (e-banking) as a means to update a number of their conventional branch features using the net as a brand-new distribution channel. A few purchasers have, as a minimum, a couple of accounts across banks and get the right of entry to these accounts using e-banking offerings. To study the contemporary net really worth role, clients ought to log in to each of their debts and get the info and paintings on consolidation. This not simplest takes enough time, but it's also a repetitive hobby at a specific frequency. To cope with this point, an account aggregation idea is introduced as an answer. E-banking account aggregation, as one of the e-banking types, appeared to construct a more potent dating with clients. Account Aggregation provider usually refers to a provider that permits clients to manage their financial institution debts maintained in distinct establishments through a not unusual net banking operating a platform, with an excessive situation to protection and privateness. This paper gives an outline of an e-banking account aggregation method as a new provider in the e-banking field.

Keywords: compatibility, complexity, mobile banking, observation, risk banking technology, internet banks, modernization of banks, banks, account aggregation, security, enterprise development

Procedia PDF Downloads 36
3479 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
3478 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159
3477 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland

Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood

Abstract:

The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.

Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health

Procedia PDF Downloads 143
3476 Thematic Analysis of Ramayana Narrative Scroll Paintings: A Need for Knowledge Preservation

Authors: Shatarupa Thakurta Roy

Abstract:

Along the limelight of mainstream academic practices in Indian art, exist a significant lot of habitual art practices that are mutually susceptible in their contemporary forms. Narrative folk paintings of regional India has successfully dispersed to its audience social messages through pulsating pictures and orations. The paper consists of images from narrative scroll paintings on ‘Ramayana’ theme from various neighboring states as well as districts in India, describing their subtle differences in style of execution, method, and use of material. Despite sharing commonness in the choice of subject matter, habitual and ceremonial Indian folk art in its formative phase thrived within isolated locations to yield in remarkable variety in the art styles. The differences in style took place district wise, cast wise and even gender wise. An open flow is only evident in the contemporary expressions as a result of substantial changes in social structures, mode of communicative devices, cross-cultural exposures and multimedia interactivities. To decipher the complex nature of popular cultural taste of contemporary India it is important to categorically identify its root in vernacular symbolism. The realization of modernity through European primitivism was rather elevated as a perplexed identity in Indian cultural margin in the light of nationalist and postcolonial ideology. To trace the guiding factor that has still managed to obtain ‘Indianness’ in today’s Indian art, researchers need evidences from the past that are yet to be listed in most instances. They are commonly created on ephemeral foundations. The artworks are also found in endangered state and hence, not counted much friendly for frequent handling. The museums are in dearth of proper technological guidelines to preserve them. Even though restoration activities are emerging in the country, the existing withered and damaged artworks are in threat to perish. An immediacy of digital achieving is therefore envisioned as an alternative to save this cultural legacy. The method of this study is, two folded. It primarily justifies the richness of the evidences by conducting categorical aesthetic analysis. The study is supported by comments on the stylistic variants, thematic aspects, and iconographic identities alongside its anthropological and anthropomorphic significance. Further, it explores the possible ways of cultural preservation to ensure cultural sustainability that includes technological intervention in the form of digital transformation as an altered paradigm for better accessibility to the available recourses. The study duly emphasizes on visual description in order to culturally interpret and judge the rare visual evidences following Feldman’s four-stepped method of formal analysis combined with thematic explanation. A habitual design that emerges and thrives within complex social circumstances may experience change placing its principle philosophy at risk by shuffling and altering with time. A tradition that respires in the modern setup struggles to maintain timeless values that operate its creative flow. Thus, the paper hypothesizes the survival and further growth of this practice within the dynamics of time and concludes in realization of the urgency to transform the implicitness of its knowledge into explicit records.

Keywords: aesthetic, identity, implicitness, paradigm

Procedia PDF Downloads 369
3475 Towards an Understanding of Social Capital in an Online Community of Filipino Music Artists

Authors: Jerome V. Cleofas

Abstract:

Cyberspace has become a more viable arena for budding artists to share musical acts through digital forms. The increasing relevance of online communities has attracted scholars from various fields demonstrating its influence on social capital. This paper extends this understanding of social capital among Filipino music artists belonging to the SoundCloud Philippines Facebook Group. The study makes use of various qualitative data obtained from key-informant interviews and participant observation of online and physical encounters, analyzed using the case study approach. Soundcloud Philippines has over seven-hundred members and is composed of Filipino singers, instrumentalists, composers, arrangers, producers, multimedia artists, and event managers. Group interactions are a mix of online encounters based on Facebook and SoundCloud and physical encounters through meet-ups and events. Benefits reaped from the community are informational, technical, instrumental, promotional, motivational, and social support. Under the guidance of online group administrators, collaborative activities such as music productions, concerts and events transpire. Most conflicts and problems arising are resolved peacefully. Social capital in SoundCloud Philippines is mobilized through recognition, respect and reciprocity.

Keywords: Facebook, music artists, online communities, social capital

Procedia PDF Downloads 319
3474 Framework for Explicit Social Justice Nursing Education and Practice: A Constructivist Grounded Theory Research

Authors: Victor Abu

Abstract:

Background: Social justice ideals are considered as the foundation of nursing practice. These ideals are not always clearly integrated into nursing professional standards or curricula. This hinders concerted global nursing agendas for becoming aware of social injustice or engaging in action for social justice to improve the health of individuals and groups. Aim and objectives: The aim was to create an educational framework for empowering nursing students for social justice awareness and action. This purpose was attained by understanding the meaning of social justice, the effect of social injustice, the visibility of social justice learning, and ways of integrating social justice in nursing education and practice. Methods: Critical interpretive methodologies and constructivist grounded theory research designs guided the processes of recruiting nursing students (n = 11) and nurse educators (n = 11) at a London nursing university to participate in interviews and focus groups, which were analysed by coding systems. Findings: Firstly, social justice was described as ethical practices that enable individuals and groups to have good access to health resources. Secondly, social injustice was understood as unfair practices that caused minimal access to resources, social deprivation, and poor health. Thirdly, social justice learning was considered to be invisible in nursing education due to a lack of explicit modules, educator knowledge, and organisational support. Lastly, explicit modules, educating educators, and attracting leaders’ support were suggested as approaches for the visible integration of social justice in nursing education and practice. Discussion: This research proposes approaches for nursing awareness and action for the development of critical active nurse-learner, critical conscious nurse-educator, and servant nurse leader. The framework on Awareness for Social Justice Action (ASJA) created in this research is an approach for empowering nursing students for social justice practices. Conclusion: This research contributes to and advocates for greater nursing scholarship to raise the spotlight on social justice in the profession.

Keywords: social justice, nursing practice, nursing education, nursing curriculum, social justice awareness, social justice action, constructivist grounded theory

Procedia PDF Downloads 58
3473 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction

Authors: A. Yazdanmehr, H. Jahed

Abstract:

Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.

Keywords: large strain, compression-tension, loading-unloading, Mg alloys

Procedia PDF Downloads 238