Search results for: two-dimensional electron gas
1917 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling
Authors: Shahriar Ghammamy, Maryam Gholipoor
Abstract:
Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction
Procedia PDF Downloads 4061916 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment
Authors: Iryna P. Dzieciuch, Michael D. Putman
Abstract:
Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin
Procedia PDF Downloads 1651915 Simulation of 140 Kv X– Ray Tube by MCNP4C Code
Authors: Amin Sahebnasagh, Karim Adinehvand, Bakhtiar Azadbakht
Abstract:
In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of x-ray tube that here is 0.05 cm. In this simulation, anode is from tungsten with 18.9 g/cm3 density and angle of anode is 180. we simulated x-ray tube for 140 kv. For increasing of speed data acquisition we use F5 tally. With determination the exact position of F5 tally in program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev and average energy is about 0.05 Mev.Keywords: x-spectrum, simulation, Monte Carlo, MCNP4C code
Procedia PDF Downloads 6501914 Utilization of Low-Cost Adsorbent Fly Ash for the Removal of Phenol from Water
Authors: Ihsanullah, Muataz Ali Atieh
Abstract:
In this study, a low-cost adsorbent carbon fly ash (CFA) was used for the removal of Phenol from the water. The adsorbent characteristics were observed by the Thermogravimetric Analysis (TGA), BET specific surface area analyzer, Zeta Potential and Field Emission Scanning Electron Microscopy (FE-SEM). The effect of pH, agitation speed, contact time, adsorbent dosage, and initial concentration of phenol were studied on the removal of phenol from the water. The optimum values of these variables for maximum removal of phenol were also determined. Both Freundlich and Langmuir isotherm models were successfully applied to describe the experimental data. Results showed that low-cost adsorbent phenol can be successfully applied for the removal of Phenol from the water.Keywords: phenol, fly ash, adsorption, carbon adsorbents
Procedia PDF Downloads 3291913 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag
Abstract:
MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂
Procedia PDF Downloads 1941912 Covalent Functionalization of Graphene Oxide with Aliphatic Polyisocyanate
Authors: E. Changizi, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian
Abstract:
In this study, the graphene oxide was functionalized with polyisocyanate (piGO). The functionalization was carried out at 45⁰C for 24 hrs under nitrogen atmosphere. The X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) were utilized in order to evaluate the GO functionalization. The GO and piGO stability were then investigated in polar and nonpolar solvents. Results obtained showed that polyisocyanate was successfully grafted on the surface of graphen oxide sheets through covalent bonds formation. The surface nature of the graphen oxide was changed into the hydrophobic after functionalization. Moreover, the graphen oxide sheets interlayer distance increased after modification.Keywords: graphen oxide, functionalization, polyisocyanate, XRD, TGA, FTIR
Procedia PDF Downloads 4481911 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid
Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty
Abstract:
Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction
Procedia PDF Downloads 3081910 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide
Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh
Abstract:
Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.Keywords: electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures
Procedia PDF Downloads 5151909 Efficient Hydrosilylation of Functionalized Alkenes via Heterogeneous Zinc Oxide Nanoparticle Catalysis
Authors: Ahlam Chennani, Nadia Anter, Abdelouahed Médaghri Alaoui, Abdellah Hannioui
Abstract:
Non-precious metals such as zinc, copper, iron, and nickel are promising hydrosilylation catalysts due to their abundance, affordability, and low toxicity. This study focuses on the preparation of zinc nanoparticles using a simple, scalable method. Advanced techniques such as X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize these catalysts, revealing their crystal structure and morphology. ZnO nanoparticles demonstrate high efficiency and selectivity in hydrosilylation reactions, producing silylated products. These results highlight the potential of ZnO nanocatalysts for advanced chemical transformations and practical applications in various industrial fields.Keywords: nanoparticles, hydrosilylation, catalysts, non-precious metal
Procedia PDF Downloads 341908 Manufacture and Characterization of Poly (Tri Methylene Terephthalate) Nanofibers by Electrospinning
Authors: Omid Saligheh
Abstract:
Poly (tri methylene terephthalate) (PTT) nanofibers were prepared by electrospinning, being directly deposited in the form of a random fibers web. The effect of changing processing parameters such as solution concentration and electrospinning voltage on the morphology of the electrospun PTT nanofibers was investigated with scanning electron microscopy (SEM). The electrospun fibers diameter increased with rising concentration and decreased by increasing the electrospinning voltage, thermal and mechanical properties of electrospun fibers were characterized by DSC and tensile testing, respectively.Keywords: poly tri methylene terephthalate, electrospinning, morphology, thermal behavior, mechanical properties
Procedia PDF Downloads 901907 Use of Nanoclay in Various Modified Polyolefins
Authors: Michael Tupý, Alice Tesaříková-Svobodová, Dagmar Měřínská, Vít Petránek
Abstract:
Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and Surlyn (modif-PE) nano composite samples were prepared with montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of modified Na+ montmorillonite (MMT) was fixed to 5 % (w/w). For the compounding of polymer matrix and chosen nano fillers twin-screw kneader was used. The level of MMT intercalation or exfoliation in the nano composite systems was studied by transmission electron microscopy (TEM) observations. The properties of samples were evaluated by dynamical mechanical analysis (E* modulus at 30 °C) and by the measurement of tensile properties (stress and strain at break).Keywords: polyethylene, polypropylene, polyethylene(vinyl acetate), clay, nanocomposite, montmorillonite
Procedia PDF Downloads 5391906 Preparation of MgO Nanoparticles by Green Methods
Authors: Maryam Sabbaghan, Pegah Sofalgar
Abstract:
Over the past few decades, a significant amount of research activities in the chemical community has been directed towards green synthesis. This area of chemistry has received extensive attention because of environmentally benign processes as well as economically viable. In this article, the MgO nanoparticles were prepared by different methods in the present of ionic liquids. A wide range of Magnesium oxide particle sizes within the nanometer scale is obtained by these methods. The structure of these MgO particles was studied by using X-ray diffraction (XRD), Infrared spectroscopy (IR), and scanning electron microscopy (SEM). It was found that the formation of nanoparticle could involve the role of performed 'nucleus' and used template to control the growth rate of nucleuses. The crystallite size of the MgO products was in a range from 31 to 77 nm.Keywords: MgO, ionic liquid, nanoparticles, green chemistry
Procedia PDF Downloads 2951905 Structural and Morphological Study of Europium Doped ZnO
Authors: Abdelhak Nouri
Abstract:
Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm.Keywords: deterioration lattice, doping, nanostructures, Eu:ZnO
Procedia PDF Downloads 1831904 Hybrid Materials Obtained via Sol-Gel Way, by the Action of Teraethylorthosilicate with 1, 3, 4-Thiadiazole 2,5-Bifunctional Compounds
Authors: Afifa Hafidh, Fathi Touati, Ahmed Hichem Hamzaoui, Sayda Somrani
Abstract:
The objective of the present study has been to synthesize and to characterize silica hybrid materials using sol-gel technic and to investigate their properties. Silica materials were successfully fabricated using various bi-functional 1,3,4-thiadiazoles and tetraethoxysilane (TEOS) as co-precursors via a facile one-pot sol-gel pathway. TEOS was introduced at room temperature with 1,3,4-thiadiazole 2,5-difunctiunal adducts, in ethanol as solvent and using HCl acid as catalyst. The sol-gel process lead to the formation of monolithic, coloured and transparent gels. TEOS was used as a principal network forming agent. The incorporation of 1,3,4-thiadiazole molecules was realized by attachment of these later onto a silica matrix. This allowed covalent linkage between organic and inorganic phases and lead to the formation of Si-N and Si-S bonds. The prepared hybrid materials were characterized by Fourier transform infrared, NMR ²⁹Si and ¹³C, scanning electron microscopy and nitrogen absorption-desorption measurements. The optic and magnetic properties of hybrids are studied respectively by ultra violet-visible spectroscopy and electron paramagnetic resonance. It was shown in this work, that heterocyclic moieties were successfully attached in the hybrid skeleton. The formation of the Si-network composed of cyclic units (Q3 structures) connected by oxygen bridges (Q4 structures) was proved by ²⁹Si NMR spectroscopy. The Brunauer-Elmet-Teller nitrogen adsorption-desorption method shows that all the prepared xerogels have isotherms type IV and are mesoporous solids. The specific surface area and pore volume of these materials are important. The obtained results show that all materials are paramagnetic semiconductors. The data obtained by Nuclear magnetic resonance ²⁹Si and Fourier transform infrared spectroscopy, show that Si-OH and Si-NH groups existing in silica hybrids can participate in adsorption interactions. The obtained materials containing reactive centers could exhibit adsorption properties of metal ions due to the presence of OH and NH functionality in the mesoporous frame work. Our design of a simple method to prepare hybrid materials may give interest of the development of mesoporous hybrid systems and their use within the domain of environment in the future.Keywords: hybrid materials, sol-gel process, 1, 3, 4-thiadaizole, TEOS
Procedia PDF Downloads 1871903 Multilevel Two-Phase Structuring in the Nitrogen Supersaturated AISI316 Stainless Steel
Authors: Tatsuhiko Aizawa, Yohei Suzuki, Tomomi Shiratori
Abstract:
The austenitic stainless steel type AISI316 has been widely utilized as structural members and mold die substrates. The low temperature plasma nitriding has been utilized to harden these AISI316 members, parts, and dies without loss of intrinsic corrosion resistance to AISI316 stainless steels. Formation of CrN precipitates by normal plasma nitriding processes resulted in severe deterioration of corrosion toughness. Most previous studies on this low temperature nitriding of AISI316 only described the lattice expansion of original AISI316 lattices by the occupation of nitrogen interstitial solutes into octahedral vacancy sites, the significant hardening by nitrogen solid solution, and the enhancement of corrosion toughness. In addition to those engineering items, this low temperature nitriding process was characterized by the nitrogen supersaturation and nitrogen diffusion processes. The nitrogen supersaturated zones expanded by the nitrogen solute occupation to octahedral vacancy sites, and the un-nitrided surroundings to these zones were plastically strained to compensate for the mismatch strains across these nitrided and nitrided zones. The microstructure of nitrided AISI316 was refined by this plastic straining. The nitrogen diffusion process was enhanced to transport nitrogen solute atoms through the refined zone boundaries. This synergetic collaboration among the nitrogen supersaturation, the lattice expansion, the plastic straining, and the grain refinement yielded a thick nitrogen supersaturated layer. This synergetic relation was also characterized by the multilevel two-phase structuring. In XRD (X-Ray Diffraction) analysis, the nitrided AISI316 layer had - and -phases with the peak shifts from original lattices. After EBSD (Electron Back Scattering Diffraction) analysis, -grains and -grains homogeneously distributed in the nitrided layer. The scanning transmission electron microscopy (STEM) revealed that g-phase zone is N-poor cluster and a-phase zone is N-rich cluster. This proves that nitrogen supersaturated AISI316 stainless steels have multi-level two-phase structure in a very fine granular system.Keywords: AISI316 stainless steels, chemical affinity to nitrogen solutes, multi-level two-phase structuring, nitrogen supersaturation
Procedia PDF Downloads 1031902 Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell
Authors: Chabungbam Niranjit Khuman, Makarand Madhao Ghangrekar, Arunabha Mitra
Abstract:
The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications.Keywords: hydroponic, microbial fuel cell, rhizospheric oxygen release, wetland macrophytes
Procedia PDF Downloads 1371901 Theoretical and Experimental Investigation of Fe and Ni-TCNQ on Graphene
Authors: A. Shahsavar, Z. Jakub
Abstract:
Due to the outstanding properties of the 2D metal-organic frameworks (MOF), intensive computational and experimental studies have been done. However, the lack of fundamental studies of MOFs on the graphene backbone is observed. This work studies Fe and Ni as metal and tetracyanoquinodimethane (TCNQ) with a high electron affinity as an organic linker functionalized on graphene. Here we present DFT calculations results to unveil the electronic and magnetic properties of iron and nickel-TCNQ physisorbed on graphene. Adsorption and Fermi energies, structural, and magnetic properties will be reported. Our experimental observations prove Fe- and NiTCNQ@Gr/Ir(111) are thermally highly stable up to 500 and 250°C, respectively, making them promising materials for single-atom catalysts or high-density storage media.Keywords: DFT, graphene, MTCNQ, self-assembly
Procedia PDF Downloads 1381900 Utilization of Nanoclay to Reinforce Flax Fabric-Geopolymer Composites
Authors: H. S. Assaedi, F. U. A. Shaikh, I. M. Low
Abstract:
Geopolymer composites reinforced with flax fabrics and nano-clay are fabricated and studied for physical and mechanical properties using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Nanoclay platelets at a weight of 1.0%, 2.0%, and 3.0% were added to geopolymer pastes. Nanoclay at 2.0 wt.% was found to improve density and decrease porosity while improving flexural strength and post-peak toughness. A microstructural analysis indicated that nanoclay behaves as filler and as an activator supporting geopolymeric reaction while producing a higher content geopolymer gel improving the microstructure of binders. The process enhances adhesion between the geopolymer matrix and flax fibres.Keywords: flax fibres, geopolymer, mechanical properties, nanoclay
Procedia PDF Downloads 2501899 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA
Authors: Marek Dosbaba
Abstract:
Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data
Procedia PDF Downloads 1161898 Synthesis and Antimicrobial Activity of Tolyloxy Derived Oxadiazoles
Authors: Shivkanya Fuloria, Neeraj Kumar Fuloria, Sokinder Kumar
Abstract:
m-Cresol and oxadiazoles are the potent antimicrobial moieties. 2-(m-Tolyloxy)acetohydrazide (1) on cyclization with aromatic acids yielded 2-(aryl)-5-(m-tolyloxymethyl)-1,3,4-oxadiazole (1A-E). The structures of newer oxadiazoles were confirmed by elemental and spectral analysis. The newer compounds were evaluated for their antimicrobial potential. The compound 1E containing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the tolyloxy derived oxadiazoles enhanced their antimicrobial potential.Keywords: antibacterial, cresol, hydrazide, oxadiazoles
Procedia PDF Downloads 4611897 Structural and Luminescent Properties of EU Doped SrY₂O₄ Phosphors
Authors: Ruby Priya, O. P. Pandey
Abstract:
Herein, we report the structural and luminescent properties of undoped and Eu doped SrY₂O₄ phosphors. The phosphors are synthesized via the combustion synthesis route using glycine as a fuel. The structural, morphological, and optical characterizations are done via X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescent (PL) techniques. The pure phase SrY₂O₄ is obtained at 1100℃, below which impure phases such as Y₂O₃ and SrO were dominant. All the phosphors are excited under UV excitation and exhibited intense emission around 611 nm, which is the typical transition of Eu ions. The phase formation of the synthesized phosphors is studied via analyzing XRD patterns. The as-synthesized phosphors find tremendous applications in optoelectronic devices, light-emitting diodes, and sensors.Keywords: combustion, europium, glycine, luminescence
Procedia PDF Downloads 1621896 Electromechanical Behaviour of Chitosan Based Electroactive Polymer
Authors: M. Sarikanat, E. Akar, I. Şen, Y. Seki, O. C. Yılmaz, B. O. Gürses, L. Cetin, O. Özdemir, K. Sever
Abstract:
Chitosan is a natural, nontoxic, polyelectrolyte, cheap polymer. In this study, chitosan based electroactive polymer (CBEAP) was fabricated. Electroactive properties of this polymer were investigated at different voltages. It exhibited excellent tip displacement at low voltages (1, 3, 5, 7 V). Tip displacement was increased as the applied voltage increased. Best tip displacement was investigated as 28 mm at 5V. Characterization of CBEAP was investigated by scanning electron microscope, X-ray diffraction and tensile testing. CBEAP exhibited desired electroactive properties at low voltages. It is suitable for using in artificial muscle and various robotic applications.Keywords: chitosan, electroactive polymer, electroactive properties
Procedia PDF Downloads 5181895 Tuneability Sub-10-nm WO3 Nano-Flakes and Their Electrical Properties
Authors: S. Zhuiykov, E. Kats
Abstract:
Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nano scale using energy dispersive X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nano-structures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550ºC possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.Keywords: electrical properties, layered semiconductors, nano-flake, sol-gel, exfoliation WO3
Procedia PDF Downloads 2481894 Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure
Authors: Tokuei Sako
Abstract:
Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields.Keywords: pulsed laser field, nanowire, wave packet, quantum dots, conductivity
Procedia PDF Downloads 5131893 Intermetallic Phases in the Fusion Weld of CP Ti to Stainless Steel
Authors: Juzar Vohra, Ravish Malhotra, Tim Pasang, Mana Azizi, Yuan Tao, Masami Mizutani
Abstract:
In this paper, dissimilar welding of titanium to stainless steels is reported. Laser Beam Welding (LBW) and Gas Tungsten Arc Welding (GTAW) were employed to join CPTi to SS304. The welds were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). FeTi, Ti2Cr and Fe2Ti dendrites are formed along with beta phase titanium matrix. The hardness values of these phases are high which makes them brittle and leading to cracking along the weld pool. However, it is believed that cracking, hence, fracturing of this weld joint is largely due to the difference in thermal properties of the two alloys.Keywords: dissimilar metals, fusion welding, intermetallics, brittle
Procedia PDF Downloads 4991892 Influence of Titanium Oxide on Crystallization, Microstructure and Mechanical Behavior of Barium Fluormica Glass-Ceramics
Authors: Amit Mallik, Anil K. Barik, Biswajit Pal
Abstract:
The galloping advancement of research work on glass-ceramics stems from their wide applications in electronic industry and also to some extent in application oriented medical dentistry. TiO2, even in low concentration has been found to strongly influence the physical and mechanical properties of the glasses. Glass-ceramics is a polycrystalline ceramic material produced through controlled crystallization of glasses. Crystallization is accomplished by subjecting the suitable parent glasses to a regulated heat treatment involving the nucleation and growth of crystal phases in the glass. Mica glass-ceramics is a new kind of glass-ceramics based on the system SiO2•MgO•K2O•F. The predominant crystalline phase is synthetic fluormica, named fluorophlogopite. Mica containing glass-ceramics flaunt an exceptional feature of machinability apart from their unique thermal and chemical properties. Machinability arises from the randomly oriented mica crystals with a 'house of cards' microstructures allowing cracks to propagate readily along the mica plane but hindering crack propagation across the layers. In the present study, we have systematically investigated the crystallization, microstructure and mechanical behavior of barium fluorophlogopite mica-containing glass-ceramics of composition BaO•4MgO•Al2O3•6SiO2•2MgF2 nucleated by addition of 2, 4, 6 and 8 wt% TiO2. The glass samples were prepared by the melting technique. After annealing, different batches of glass samples for nucleation were fired at 730°C (2wt% TiO2), 720°C (4 wt% TiO2), 710°C (6 wt% TiO2) and 700°C (8 wt% TiO2) batches respectively for 2 h and ultimately heated to corresponding crystallization temperatures. The glass batches were analyzed by differential thermal analysis (DTA) and x-ray diffraction (XRD), scanning electron microscopy (SEM) and micro hardness indenter. From the DTA study, it is found that the fluorophlogopite mica crystallization exotherm appeared in the temperature range 886–903°C. Glass transition temperature (Tg) and crystallization peak temperature (Tp) increased with increasing TiO2 content up to 4 wt% beyond this weight% the glass transition temperature (Tg) and crystallization peak temperature (Tp) start to decrease with increasing TiO2 content up to 8 wt%. Scanning electron microscopy confirms the development of an interconnected ‘house of cards’ microstructure promoted by TiO2 as a nucleating agent. The increase in TiO2 content decreases the vicker’s hardness values in glass-ceramics.Keywords: crystallization, fluormica glass, ‘house of cards’ microstructure, hardness
Procedia PDF Downloads 2431891 Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry
Authors: M. A. Deyab
Abstract:
The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition.Keywords: corrosion, surfactant, oil sands slurry, erosion-corrosion
Procedia PDF Downloads 1731890 Mechanical Study Material on Low Environmental Impact
Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche
Abstract:
Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).Keywords: FAD, porthland, flexural strength, compressive strength, DRX
Procedia PDF Downloads 3561889 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source
Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka
Abstract:
After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.Keywords: neutron source, neutron resonance, nuclear debris, time of flight
Procedia PDF Downloads 2411888 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation
Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson
Abstract:
Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM
Procedia PDF Downloads 145