Search results for: train schedule
455 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 419454 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving
Authors: Yasin Tadayonrad
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming
Procedia PDF Downloads 91453 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 211452 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains
Authors: Alina P. Colling, Robert G. Hekkenberg
Abstract:
Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning
Procedia PDF Downloads 223451 Implementing 3D Printing for 3D Digital Modeling in the Classroom
Authors: Saritdikhun Somasa
Abstract:
3D printing fabrication has empowered many artists in many fields. Artists who work in stop motion, 3D modeling, toy design, product design, sculpture, and fine arts become one-stop shop operations–where they can design, prototype, and distribute their designs for commercial or fine art purposes. The author has developed a digital sculpting course that fosters digital software, peripheral hardware, and 3D printing with traditional sculpting concept techniques to address the complexities of this multifaceted process, allowing the students to produce complex 3d-printed work. The author will detail the preparation and planning for pre- to post-process 3D printing elements, including software, materials, space, equipment, tools, and schedule consideration for small to medium figurine design statues in a semester-long class. In addition, the author provides insight into teaching challenges in the non-studio space that requires students to work intensively on post-printed models to assemble parts, finish, and refine the 3D printed surface. Even though this paper focuses on the 3D printing processes and techniques for small to medium design statue projects for the Digital Media program, the author hopes the paper will benefit other fields of study such as craft practices, product design, and fine-arts programs. Other schools that might implement 3D printing and fabrication in their programs will find helpful information in this paper, such as a teaching plan, choices of equipment and materials, adaptation for non-studio spaces, and putting together a complete and well-resolved project for students.Keywords: 3D digital modeling, 3D digital sculpting, 3D modeling, 3D printing, 3D digital fabrication
Procedia PDF Downloads 103450 Unpacking Chilean Preservice Teachers’ Beliefs on Practicum Experiences through Digital Stories
Authors: Claudio Díaz, Mabel Ortiz
Abstract:
An EFL teacher education programme in Chile takes five years to train a future teacher of English. Preservice teachers are prepared to learn an advanced level of English and teach the language from 5th to 12th grade in the Chilean educational system. In the context of their first EFL Methodology course in year four, preservice teachers have to create a five-minute digital story that starts from a critical incident they have experienced as teachers-to-be during their observations or interventions in the schools. A critical incident can be defined as a happening, a specific incident or event either observed by them or involving them. The happening sparks their thinking and may make them subsequently think differently about the particular event. When they create their digital stories, preservice teachers put technology, teaching practice and theory together to narrate a story that is complemented by still images, moving images, text, sound effects and music. The story should be told as a personal narrative, which explains the critical incident. This presentation will focus on the creation process of 50 Chilean preservice teachers’ digital stories highlighting the critical incidents they started their stories. It will also unpack preservice teachers’ beliefs and reflections when approaching their teaching practices in schools. These beliefs will be coded and categorized through content analysis to evidence preservice teachers’ most rooted conceptions about English teaching and learning in Chilean schools. The findings seem to indicate that preservice teachers’ beliefs are strongly mediated by contextual and affective factors.Keywords: beliefs, digital stories, preservice teachers, practicum
Procedia PDF Downloads 441449 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters
Authors: Satish Kumar Peddapelli
Abstract:
This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have become popular and considerable interest by researcher are given on them. A fast Space-Vector Pulse Width Modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analysed.Keywords: five-level inverter, space vector pulse wide modulation, diode clamped inverter, electrical engineering
Procedia PDF Downloads 388448 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition
Abstract:
The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network
Procedia PDF Downloads 94447 Mobile Collaboration Learning Technique on Students in Developing Nations
Authors: Amah Nnachi Lofty, Oyefeso Olufemi, Ibiam Udu Ama
Abstract:
New and more powerful communications technologies continue to emerge at a rapid pace and their uses in education are widespread and the impact remarkable in the developing societies. This study investigates Mobile Collaboration Learning Technique (MCLT) on learners’ outcome among students in tertiary institutions of developing nations (a case of Nigeria students). It examines the significance of retention achievement scores of students taught using mobile collaboration and conventional method. The sample consisted of 120 students using Stratified random sampling method. Three research questions and hypotheses were formulated, and tested at a 0.05 level of significance. A student achievement test (SAT) was made of 40 items of multiple-choice objective type, developed and validated for data collection by professionals. The SAT was administered to students as pre-test and post-test. The data were analyzed using t-test statistic to test the hypotheses. The result indicated that students taught using MCLT performed significantly better than their counterparts using the conventional method of instruction. Also, there was no significant difference in the post-test performance scores of male and female students taught using MCLT. Based on the findings, the following recommendations was made that: Mobile collaboration system be encouraged in the institutions to boost knowledge sharing among learners, workshop and trainings should be organized to train teachers on the use of this technique and that schools and government should formulate policies and procedures towards responsible use of MCLT.Keywords: education, communication, learning, mobile collaboration, technology
Procedia PDF Downloads 221446 Investigation and Analysis of Residential Building Energy End-Use Profile in Hot and Humid Area with Reference to Zhuhai City in China
Authors: Qingqing Feng, S. Thomas Ng, Frank Xu
Abstract:
Energy consumption in domestic sector has been increasing rapidly in China all along these years. Confronted with environmental challenges, the international society has made a concerted effort by setting the Paris Agreement, the Sustainable Development Goals, and the New Urban Agenda. Thus it’s very important for China to put forward reasonable countermeasures to boost building energy conservation which necessitates looking into the actuality of residential energy end-use profile and its influence factors. In this study, questionnaire surveys have been conducted in Zhuhai city in China, a typical city in hot summer warm winter climate zone. The data solicited mainly include the occupancy schedule, building’s information, residents’ information, household energy uses, the type, quantity and use patterns of appliances and occupants’ satisfaction. Over 200 valid samples have been collected through face-to-face interviews. Descriptive analysis, clustering analysis, correlation analysis and sensitivity analysis were then conducted on the dataset to understand the energy end-use profile. The findings identify: 1) several typical clusters of occupancy patterns and appliances utilization patterns; 2) the top three sensitive factors influencing energy consumption; 3) the correlations between satisfaction and energy consumption. For China with many different climates zones, it’s difficult to find a silver bullet on energy conservation. The aim of this paper is to provide a theoretical basis for multi-stakeholders including policy makers, residents, and academic communities to formulate reasonable energy saving blueprints for hot and humid urban residential buildings in China.Keywords: residential building, energy end-use profile, questionnaire survey, sustainability
Procedia PDF Downloads 126445 Significance of Transient Data and Its Applications in Turbine Generators
Authors: Chandra Gupt Porwal, Preeti C. Porwal
Abstract:
Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points
Procedia PDF Downloads 69444 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality
Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye
Abstract:
When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.Keywords: word embeddings, k-mer embedding, dimensionality reduction
Procedia PDF Downloads 137443 Saudi Arabian Aviation Construction Projects: Risks and Their Assessments
Authors: Ahmad Baghdadi, Mohammed Kishk
Abstract:
Construction projects are unique and involve different level of complexity. Airports projects, among other construction projects, are considered to be very complex as they face a number of challenges which make them inevitably exposed to risks. However, in Saudi Arabia, the sector of aviation is considered an important sector owing to the fact that it is the first destination for Muslims on an annual basis. As a result the Saudi government has allocated a huge amount of their general budget to this sector through the General Authority of Civil Aviation (GACA). However, it has been found that the projects are still delivered with a significant number of time and cost overruns. These consequences are typically generated from the risks involved in the projects. Thus, there is a need to identify the number of risks thought to cause such overruns in project times and costs, as well as to assess their significances in terms of their likelihoods of occurrence and their impacts. Accordingly, this paper aims to identify risks associated with aviation construction projects in Saudi Arabia, as well as to assess their likelihoods of occurrence and impacts on such projects. In total, forty four risks have been identified through a critical literature review of common risks in similar projects, as well as thirteen semi-structured interviews with expert project managers involved in GACA’s projects. However, the assessment of the identified risks in term of their likelihoods of occurrence and impacts was obtained through the analysis of forty five questionnaires. Respondents of questionnaires include clients, contractors and consultants. The results show the risks of design changes by the client, labour issue, and setting a tight schedule by the client have the highest likelihoods of occurrence in GACA projects, while the risks of earthquakes, design constructability, and corruption have the greatest impacts.Keywords: aviation construction projects, GACA, risks, risk assessment, Saudi Arabia
Procedia PDF Downloads 543442 The Study of Power as a Pertinent Motive among Tribal College Students of Assam
Authors: K. P. Gogoi
Abstract:
The current research study investigates the motivational pattern viz Power motivation among the tribal college students of Assam. The sample consisted of 240 college students (120 tribal and 120 non-tribal) ranging from 18-24 years, 60 males and 60 females for both tribal’s and non-tribal’s. Attempts were made to include all the prominent tribes of Assam viz. Thematic Apperception Test, Power motive Scale and a semi structured interview schedule were used to gather information about their family types, parental deprivation, parental relations, social and political belongingness. Mean, Standard Deviation, and t-test were the statistical measures adopted in this 2x2 factorial design study. In addition to this discriminant analysis has been worked out to strengthen the predictive validity of the obtained data. TAT scores reveal significant difference between the tribal’s and non-tribal on power motivation. However results obtained on gender difference indicates similar scores among both the cultures. Cross validation of the TAT results was done by using the power motive scale by T. S. Dapola which confirms the results on need for power through TAT scores. Power motivation has been studied in three directions i.e. coercion, inducement and restraint. An interesting finding is that on coercion tribal’s score high showing significant difference whereas in inducement or seduction the non-tribal’s scored high showing significant difference. On the other hand on restraint no difference exists between both cultures. Discriminant analysis has been worked out between the variables n-power, coercion, inducement and restraint. Results indicated that inducement or seduction (.502) is the dependent measure which has the most discriminating power between these two cultures.Keywords: power motivation, tribal, social, political, predictive validity, cross validation, coercion, inducement, restraint
Procedia PDF Downloads 486441 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting
Authors: Nader Khalafian, Mohsen Ghaderi
Abstract:
Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.Keywords: reverse faulting, surface deformation, numerical, neural network
Procedia PDF Downloads 421440 Developing Reading Methods of Industrial Education Students at King Mongkut’s Institute of Technology Ladkrabang
Authors: Rattana Sangchan, Pattaraporn Thampradit
Abstract:
Teaching students to use a variety of reading methods in developing reading is essential for Thai university students. However, there haven’t been a lot of studies concerned about developing reading methods that are used by Thai students in the industrial education field. Therefore, this study was carried out not only to investigate the developing reading methods of Industrial Education students at King Mongkut’s Institute of Technology Ladkrabang, but also to determine if the developing reading strategies differ among the students’ reading abilities and differ gender: male and female. The research instrument used in collecting the data consisted of fourteen statements which include either metacognitive strategies, cognitive strategies or social / affective strategies. Results of this study revealed that students could develop their reading methods in moderate level (mean=3.13). Furthermore, high reading ability students had different levels of using reading methods to develop their reading from those of mid reading ability students. In addition, high reading ability students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than mid reading ability students. Interestingly, male students could develop their reading methods in great levels while female students could develop their reading methods only in moderate level. Last but not least, male students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than female students. Thus, the results of this study could indicate that most students need to apply much more reading strategies to develop their reading. At the same time, suggestions on how to motivate and train their students to apply much more appropriate effective reading strategies to better comprehend their reading were also provided.Keywords: developing reading methods, industrial education, reading abilities, reading method classification
Procedia PDF Downloads 285439 Breastfeeding Experiences of Nutritionist who are Mothers in Quito- Ecuador
Authors: Maria Jose Mendoza Gordillo
Abstract:
Introduction: Research regarding breastfeeding is devoted to how essential breastfeeding is to guarantee wellbeing for the mother and the baby from a medical standpoint relegating the cultural, material and social barriers for breastfeeding. Consequently, worldwide breastfeeding rates are low, and Ecuador is not the exception, especially among working mothers. Worldwide, health care providers have low rates of breastfeeding due to several barriers to lactation, such as the work schedule, a lack of private places for pumping while at work, and negative emotions. Goals and Methods: This study aimed to explore how do Ecuadorian women embrace their identities as nutritionists and mothers within their breastfeeding experience. The primary data come from 20 synchronous semi-structured interviews, which follow a topic guide. The interviews were recorded and transcribed verbatim. The data analysis followed the Phronetic Iterative Approach. Results: Women shifted the preconceived idea of the ideal breastfeeding that came from the medicalized discourse of breastfeeding, and that was constructed in their training as nutritionists. Although these women believe that breast milk and breastfeeding is the best way to feed a baby, the internalized ideal of breastfeeding shifted through the experience of motherhood. When these women developed their identity as mothers, they understood that the ideal breastfeeding is different from the medicalized discourse. Although they have that clash between the ideal and the external reality, they continued breastfeeding their babies and those experiences made them improve their professional practice. Conclusions: The narratives that women shared illustrate how complex it was to manage the different roles and identities that they wanted to fulfill to keep their identity of a good mother who breastfeeds her baby and, at the same time, a good healthcare provider identity. The process of breastfeeding for this group of women who are mothers and healthcare professionals appears to be a unique relational and identity negotiation process.Keywords: breastfeeding, identity, nutritionist, qualitative
Procedia PDF Downloads 179438 Factors Responsible for Delays in the Execution of Adequately Funded Construction Projects
Authors: Edoghogho Ogbeifun, Charles Mbohwa, J. H. C. Pretorius
Abstract:
Several research report on the factors responsible for the delays in the completion of construction projects has identified the issue of funding as a critical factor; insufficient funding, low cash-flow or lack of funds. Indeed, adequate funding plays pivotal role in the effective execution of construction projects. In the last twenty years (or so), there has been increase in the funds available for infrastructure development in tertiary institution in Nigeria, especially, through the Tertiary Education Trust Fund. This funding body ensures that there is enough fund for each approved project, which is released in three stages during the life of the construction project. However, a random tour of many of the institutions reveals striking evidence of projects not delivered on schedule, to quality and sometime out rightly abandoned. This suggests, therefore, that there are other latent factors, responsible for project delays, that should be investigated. Thus, this research, a pilot scheme, is aimed at unearthing the possible reasons for the delays being experienced in the execution of construction projects for infrastructure upgrade in public tertiary institutions in Nigeria, funded by Tertiary Education Trust Fund. The multiple site case study of qualitative research was adopted. The respondents were the Directors of Physical Planning and the Directors of Works of four Nigerian Public Universities. The findings reveal that delays can be situated within three entities, namely, the funding body, the institutions and others. Therefore, the emerging factors have been classified as external factors (haven to do with the funding body), internal factors (these concern the operations within the institutions) and general factors. The outcome of this pilot exercise provides useful information to guide the Directors as they interact with the funding body as well as challenges themselves to address the loopholes in their internal operations.Keywords: delays, external factors, funding, general factors, Internal factors
Procedia PDF Downloads 144437 Understanding Cyber Kill Chains: Optimal Allocation of Monitoring Resources Using Cooperative Game Theory
Authors: Roy. H. A. Lindelauf
Abstract:
Cyberattacks are complex processes consisting of multiple interwoven tasks conducted by a set of agents. Interdictions and defenses against such attacks often rely on cyber kill chain (CKC) models. A CKC is a framework that tries to capture the actions taken by a cyber attacker. There exists a growing body of literature on CKCs. Most of this work either a) describes the CKC with respect to one or more specific cyberattacks or b) discusses the tools and technologies used by the attacker at each stage of the CKC. Defenders, facing scarce resources, have to decide where to allocate their resources given the CKC and partial knowledge on the tools and techniques attackers use. In this presentation CKCs are analyzed through the lens of covert projects, i.e., interrelated tasks that have to be conducted by agents (human and/or computer) with the aim of going undetected. Various aspects of covert project models have been studied abundantly in the operations research and game theory domain, think of resource-limited interdiction actions that maximally delay completion times of a weapons project for instance. This presentation has investigated both cooperative and non-cooperative game theoretic covert project models and elucidated their relation to CKC modelling. To view a CKC as a covert project each step in the CKC is broken down into tasks and there are players of which each one is capable of executing a subset of the tasks. Additionally, task inter-dependencies are represented by a schedule. Using multi-glove cooperative games it is shown how a defender can optimize the allocation of his scarce resources (what, where and how to monitor) against an attacker scheduling a CKC. This study presents and compares several cooperative game theoretic solution concepts as metrics for assigning resources to the monitoring of agents.Keywords: cyber defense, cyber kill chain, game theory, information warfare techniques
Procedia PDF Downloads 140436 Exploring the Energy Model of Cumulative Grief
Authors: Masica Jordan Alston, Angela N. Bullock, Angela S. Henderson, Stephanie Strianse, Sade Dunn, Joseph Hackett, Alaysia Black Hackett, Marcus Mason
Abstract:
The Energy Model of Cumulative Grief was created in 2018. The Energy Model of Cumulative Grief utilizes historic models of grief stage theories. The innovative model is additionally unique due to its focus on cultural responsiveness. The Energy Model of Cumulative Grief helps to train practitioners who work with clients dealing with grief and loss. This paper assists in introducing the world to this innovative model and exploring how this model positively impacted a convenience sample of 140 practitioners and individuals experiencing grief and loss. Respondents participated in Webinars provided by the National Grief and Loss Center of America (NGLCA). Participants in this cross-sectional research design study completed one of three Grief and Loss Surveys created by the Grief and Loss Centers of America. Data analysis for this study was conducted via SPSS and Survey Hero to examine survey results for respondents. Results indicate that the Energy Model of Cumulative Grief was an effective resource for participants in addressing grief and loss. The majority of participants found the Webinars to be helpful and a conduit to providing them with higher levels of hope. The findings suggest that using The Energy Model of Cumulative Grief is effective in providing culturally responsive grief and loss resources to practitioners and clients. There are far reaching implications with the use of technology to provide hope to those suffering from grief and loss worldwide through The Energy Model of Cumulative Grief.Keywords: grief, loss, grief energy, grieving brain
Procedia PDF Downloads 84435 Informational Support, Anxiety and Satisfaction with Care among Family Caregivers of Patients Admitted in Critical Care Units of B.P. Koirala Institute of Health Sciences, Nepal
Authors: Rosy Chaudhary, Pushpa Parajuli
Abstract:
Background and Objectives: Informational support to family members has a significant potential for reducing this distress related to hospitalization of their patient into the critical care unit, enabling them to cope better and support the patient. The objective of the study is to assess family members’ perception of informational support, anxiety, satisfaction with care and to reveal the association with selected socio-demographic variables and to investigate the correlation between informational support, anxiety and satisfaction with care. Materials and Methods: A descriptive cross-sectional study was conducted in 39 family caregivers of patients admitted in critical care unit of BPKIHS(B.P. Koirala Institute of Health Sciences). Consecutive sampling technique was used wherein data was collected over duration of one month using interview schedule. Descriptive and inferential statistics were used. Results: The mean age of the respondents was 34.97 ± 10.64 and two third (66.70%) were male. Mean score for informational support was 25.72(SD = 5.66; theoretical range of 10 - 40). Mean anxiety was 10.41 (SD = 5.02; theoretical range of 7 - 21). Mean score for satisfaction with care was 40.77 (SD = 6.77; theoretical range of 14 - 64). A moderate positive correlation was found between informational support and satisfaction with care (r = 0.551, p < .001) and a moderate negative correlation was found between anxiety and satisfaction with care (r = -0.590; p = 0.000). No relationship was noted between informational support and anxiety. Conclusion: The informational support and satisfaction of the family caregivers with the care provided to their patients was satisfactory. More than three fourth of the family caregivers had anxiety; the factors associated being educational status of the caregivers, the family income and duration of visiting hours. There was positive correlation between informational support and satisfaction with care provided justifying the need for comprehensive information to the family caregivers by the health personnel. There was negative correlation between anxiety and satisfaction with care.Keywords: anxiety, caregivers, critical care unit, informational support, family
Procedia PDF Downloads 352434 The Visually Impaired Jogger: Enhancing Interaction and Fitness through the Fun Run
Authors: Zasha Romero, Joe Paschall
Abstract:
This poster will detail the importance of physical activity for the Visually Impaired students and how to promote inclusion in fitness through way of social gatherings and jogging. Furthermore, it will demonstrate how a Health & Kinesiology University Club cooperated in the journey of visually impaired students from participating in physical activity to completing their first 10K fun run. Purpose: The poster will detail how a university’s Health & Kinesiology Club developed a program to promote participation in fitness activities for visually impaired individuals. Also, it will detail their journey from participation in physical activity to completing a 10K fun run. Methods: In an effort to promote inclusion of all into physical activity, a university’s Health & Kinesiology Club developed a non-profit program to challenge visually impaired students to train and complete a 10 kilometer fun run in a South Texas town. The idea was to promote physical fitness through way of social interaction. In order to maintain runners interested, Club students developed training plans and strategies to be able to navigate in a race that was attended by over 18,000 runners. The idea was to promote interaction and life-long fitness amongst participants. Implications: This strategy was done in collaboration with different non-profit institutions to create awareness and provide opportunities for physical fitness, social interaction and life-long fitness skills associated with the jogging. The workshop provided collaboration amongst different entities and novel ideas to create opportunities for a typically underserved population.Keywords: inclusion, participation, management, disability, fitness
Procedia PDF Downloads 394433 Developmental Trajectories and Predictors of Adolescent Depression: A Short Term Study
Authors: Hyang Lim, Sungwon Choi
Abstract:
Many previous studies in area of adolescents' depression have used a longitudinal design. The previous studies have found that the developmental trajectory of them is only one. But it needs to be examined whether the trajectory is applied to all adolescents. Some factors in their home and/or school have an effect on adolescents' depression and more likely to be specific groups. The present study was a longitudinal study aimed to identify the trajectories and to explore the predictors of adolescents' depression. The study used Korean Children and Youth Panel Survey (KCYPS) data. In this study, 2,351 second and third-year of middle school and first of high school students' data was analyzed by using semi-parametric group modeling (SGM). There were 5 trajectory groups for adolescents; low depressed stables, low depressed risers, moderately depressed decreases, moderately depressed stables, severe depressed decreases. The predictors of adolescents' depression were parental abuse, parental neglect, annual family income, parental academic background, friendship at school, and teacher-student relationship at school. All predictors had the significant difference across trajectory group profile for adolescents. The findings of the present study recommend to promote the socioeconomic status and to train social skill for the interpersonal relationship at the home and school. And the results suggest that the proper prevention programs for each group in the middle adolescents that target selected factors may be helpful in reducing the level of depression.Keywords: adolescent, depression, KCYPS, school life, semi-parametric group-based modeling
Procedia PDF Downloads 449432 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis
Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan
Abstract:
Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow
Procedia PDF Downloads 143431 The Reasons and the Practical Benefits Behind the Motivation of Businesses to Participate in the Dual Education System (DLS)
Authors: Ainur Bulasheva
Abstract:
During the last decade, the dual learning system (DLS) has been actively introduced in various industries in Kazakhstan, including both vocational, post-secondary, and higher education levels. It is a relatively new practice-oriented approach to training qualified personnel in Kazakhstan, officially introduced in 2012. Dual learning was integrated from the German vocational education and training system, combining practical training with part-time work in production and training in an educational institution. The policy of DLS has increasingly focused on decreasing youth unemployment and the shortage of mid-level professionals by providing incentives for employers to involve in this system. By participating directly in the educational process, the enterprise strives to train its future personnel to meet fast-changing market demands. This study examines the effectiveness of DLS from the perspective of employers to understand the motivations of businesses to participate (invest) in this program. The human capital theory of Backer, which predicts that employers will invest in training their workers (in our case, dual students) when they expect that the return on investment will be greater than the cost - acts as a starting point. Further extensionists of this theory will be considered to understand investing intentions of businesses. By comparing perceptions of DLS employers and non-dual practices, this study determines the efficiency of promoted training approach for enterprises in the Kazakhstan agri-food industry.Keywords: vocational and technical education, dualeducation, human capital theory, argi-food industry
Procedia PDF Downloads 69430 Effect of Withania Somnifera in Alloxan Induced Diabetic Rabbits
Authors: Farah Ali, Tehreem Fayyaz, Musadiq Idris
Abstract:
The present work was undertaken to investigate effects of various extracts of W. somniferafor anti-diabetic activity in alloxan induced diabetic rabbits. Rabbits were acclimatized for a week to standard laboratory temperature. Animals were fed according to a strict schedule (8 am, 3 pm and 10 pm) with green fodder (Medicago sativa) and tap water ad libitum. Animals were divided into nine groups of six rabbits each in a random manner. Body weights and physical activities of all rabbits were recorded before start of experiments. The animals of group 1 and 2 were given lactose (250 mg/kg,p.o) and Withaniasomniferaroot powder (100 mg/kg, p.o) respectively daily from day 1-20. Animals of group 3 were given alloxan (100 mg/kg,i.v) as a single dose on day 1. Powdered root of Withaniasomnifera in the doses of 100, 150, 200 mg/kg and its aqueous and ethanol extracts (equivalent to 200 mg/kg of crude drug) were given to the treated animals (groups 4-8), respectively by oral route for three weeks (day 1-20o.d), along with alloxan (100 mg/kg, i.v) as a single dose on day 1. Group 9 was treated with metformin (200 mg/kg, p.o) daily from day 1-20, along with a single dose of alloxan (100 mg/ kg, i.v) on day 1. Fasting serum glucose concentration in groups 3-9 was increased significantly (p<0.05) on day 3, with a maximum increase (215.3 mg/dl) in animals of toxic control (TC) group (3) on day 21 of the experiment as compared to normal control (NC) group (1). Effects of different doses (100, 150, 200 mg/kg, p.o) of W. somnifera root powder (WS) decreased the fasting serum glucose concentration as compared to toxic control group, with a maximum decrease (88.3 mg/dl) in group 2 (treated control) on day 21 of the experiment. Metformin (200 mg/kg, p.o) (reference control), aqueous extract (AWS) and ethanol extract (EWS) of W. somnifera (equivalent to 100 mg/kg W.somnifera root, p.o) antagonized the effects of alloxan as compared to toxic control group. These results indicate that the W. somnifera possess significant anti –diabetic activity.Keywords: diabetes, serum, glucose, blood, sugar, rabbits
Procedia PDF Downloads 561429 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network
Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka
Abstract:
Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.Keywords: aggregation, consumption, data gathering, efficiency
Procedia PDF Downloads 497428 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 149427 Awareness on Risk Factors of Cardiovascular Disease among Patients with Diabetes Mellitus Attending Diabetic Clinic of B. P. Koirala Institute of Health Sciences
Authors: Ram Sharan Mehta, Dina Khanal, Pushpa Parajuli, Gayanand Mandal, Bijaya Bartuala
Abstract:
Background: Cardiovascular disease (CVD) is the leading cause of death worldwide. Adequate awareness of risk factors of CVD is the first step towards effective preventive strategies to combat the CVD burden in diabetes patients.This study aims to assess the awareness on risk factors of CVD among patients with diabetes mellitus attending diabetic clinic of BPKIHS and to find the association between awareness with their selected socio demographic variables. Methods and Material: A descriptive cross sectional study was conducted among 112 patients with diabetes in diabetic clinic of BPKIHS. Convenient sampling technique was used for data collection over duration of one month using interview schedule by HDFQ II tool. Data were analyzed by using descriptive and inferential statistics. (Chi square). Results: The mean age of respondents was 55.4±12.13 years. That mean HDFQ score was 14.31± 5.08. Only 33% of the respondents had adequate level of awareness whereas majority of the respondents (67%) had inadequate level of awareness. Majority of the respondent (83.9%) were aware about smoking, (78.6%) physical activity, (75%) increasing age, (75.9%) high blood pressure, (71.4%) overweight respectively. Whereas most of the respondents were not aware of high cholesterol, fatty diet, preventive strategies and association of diabetes with CVD. Awareness was statistically significant with (p=0.043) educational status, (p=0.025) monthly income, (p=0.05) residence, (p=0.006) CVD information received and (p=0.022) co morbid condition as a heart disease. Conclusion: The findings of this study concluded most of the respondents had an inadequate level of awareness on risk factors of CVD. So Effective education and appropriate preventive strategies of CVD are indeed important to reduce CVD burden in diabetes patients.Keywords: cardiovascular disease, awareness, diabetes patients, risk
Procedia PDF Downloads 135426 Integer Programming: Domain Transformation in Nurse Scheduling Problem.
Authors: Geetha Baskaran, Andrzej Barjiela, Rong Qu
Abstract:
Motivation: Nurse scheduling is a complex combinatorial optimization problem. It is also known as NP-hard. It needs an efficient re-scheduling to minimize some trade-off of the measures of violation by reducing selected constraints to soft constraints with measurements of their violations. Problem Statement: In this paper, we extend our novel approach to solve the nurse scheduling problem by transforming it through Information Granulation. Approach: This approach satisfies the rules of a typical hospital environment based on a standard benchmark problem. Generating good work schedules has a great influence on nurses' working conditions which are strongly related to the level of a quality health care. Domain transformation that combines the strengths of operation research and artificial intelligence was proposed for the solution of the problem. Compared to conventional methods, our approach involves judicious grouping (information granulation) of shifts types’ that transforms the original problem into a smaller solution domain. Later these schedules from the smaller problem domain are converted back into the original problem domain by taking into account the constraints that could not be represented in the smaller domain. An Integer Programming (IP) package is used to solve the transformed scheduling problem by expending the branch and bound algorithm. We have used the GNU Octave for Windows to solve this problem. Results: The scheduling problem has been solved in the proposed formalism resulting in a high quality schedule. Conclusion: Domain transformation represents departure from a conventional one-shift-at-a-time scheduling approach. It offers an advantage of efficient and easily understandable solutions as well as offering deterministic reproducibility of the results. We note, however, that it does not guarantee the global optimum.Keywords: domain transformation, nurse scheduling, information granulation, artificial intelligence, simulation
Procedia PDF Downloads 397