Search results for: short-term electricity price forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2406

Search results for: short-term electricity price forecast

1776 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan

Authors: Muhammad Afzal, Muhammad Sajjad

Abstract:

Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.

Keywords: climate change, economic growth, energy, environment

Procedia PDF Downloads 163
1775 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency

Authors: F. Ahwide, Y. Aldali

Abstract:

This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).

Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya

Procedia PDF Downloads 475
1774 Customer Focus in Digital Economy: Case of Russian Companies

Authors: Maria Evnevich

Abstract:

In modern conditions, in most markets, price competition is becoming less effective. On the one hand, there is a gradual decrease in the level of marginality in main traditional sectors of the economy, so further price reduction becomes too ‘expensive’ for the company. On the other hand, the effect of price reduction is leveled, and the reason for this phenomenon is likely to be informational. As a result, it turns out that even if the company reduces prices, making its products more accessible to the buyer, there is a high probability that this will not lead to increase in sales unless additional large-scale advertising and information campaigns are conducted. Similarly, a large-scale information and advertising campaign have a much greater effect itself than price reductions. At the same time, the cost of mass informing is growing every year, especially when using the main information channels. The article presents generalization, systematization and development of theoretical approaches and best practices in the field of customer focus approach to business management and in the field of relationship marketing in the modern digital economy. The research methodology is based on the synthesis and content-analysis of sociological and marketing research and on the study of the systems of working with consumer appeals and loyalty programs in the 50 largest client-oriented companies in Russia. Also, the analysis of internal documentation on customers’ purchases in one of the largest retail companies in Russia allowed to identify if buyers prefer to buy goods for complex purchases in one retail store with the best price image for them. The cost of attracting a new client is now quite high and continues to grow, so it becomes more important to keep him and increase the involvement through marketing tools. A huge role is played by modern digital technologies used both in advertising (e-mailing, SEO, contextual advertising, banner advertising, SMM, etc.) and in service. To implement the above-described client-oriented omnichannel service, it is necessary to identify the client and work with personal data provided when filling in the loyalty program application form. The analysis of loyalty programs of 50 companies identified the following types of cards: discount cards, bonus cards, mixed cards, coalition loyalty cards, bank loyalty programs, aviation loyalty programs, hybrid loyalty cards, situational loyalty cards. The use of loyalty cards allows not only to stimulate the customer to purchase ‘untargeted’, but also to provide individualized offers, as well as to produce more targeted information. The development of digital technologies and modern means of communication has significantly changed not only the sphere of marketing and promotion, but also the economic landscape as a whole. Factors of competitiveness are the digital opportunities of companies in the field of customer orientation: personalization of service, customization of advertising offers, optimization of marketing activity and improvement of logistics.

Keywords: customer focus, digital economy, loyalty program, relationship marketing

Procedia PDF Downloads 163
1773 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls

Authors: Tamar Trop, Michal Roffeh

Abstract:

One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.

Keywords: green façade, green wall, living wall, willingness to pay

Procedia PDF Downloads 29
1772 Photovoltaic-Driven Thermochemical Storage for Cooling Applications to Be Integrated in Polynesian Microgrids: Concept and Efficiency Study

Authors: Franco Ferrucci, Driss Stitou, Pascal Ortega, Franck Lucas

Abstract:

The energy situation in tropical insular regions, as found in the French Polynesian islands, presents a number of challenges, such as high dependence on imported fuel, high transport costs from the mainland and weak electricity grids. Alternatively, these regions have a variety of renewable energy resources, which favor the exploitation of smart microgrids and energy storage technologies. With regards to the electrical energy demand, the high temperatures in these regions during the entire year implies that a large proportion of consumption is used for cooling buildings, even during the evening hours. In this context, this paper presents an air conditioning system driven by photovoltaic (PV) electricity that combines a refrigeration system and a thermochemical storage process. Thermochemical processes are able to store energy in the form of chemical potential with virtually no losses, and this energy can be used to produce cooling during the evening hours without the need to run a compressor (thus no electricity is required). Such storage processes implement thermochemical reactors in which a reversible chemical reaction between a solid compound and a gas takes place. The solid/gas pair used in this study is BaCl2 reacting with ammonia (NH3), which is also the coolant fluid in the refrigeration circuit. In the proposed system, the PV-driven electric compressor is used during the daytime either to run the refrigeration circuit when a cooling demand occurs or to decompose the ammonia-charged salt and remove the gas from thermochemical reactor when no cooling is needed. During the evening, when there is no electricity from solar source, the system changes its configuration and the reactor reabsorbs the ammonia gas from the evaporator and produces the cooling effect. In comparison to classical PV-driven air conditioning units equipped with electrochemical batteries (e.g. Pb, Li-ion), the proposed system has the advantage of having a novel storage technology with a much longer charge/discharge life cycle, and no self-discharge. It also allows a continuous operation of the electric compressor during the daytime, thus avoiding the problems associated with the on-off cycling. This work focuses on the system concept and on the efficiency study of its main components. It also compares the thermochemical with electrochemical storage as well as with other forms of thermal storage, such as latent (ice) and sensible heat (chilled water). The preliminary results show that the system seems to be a promising alternative to simultaneously fulfill cooling and energy storage needs in tropical insular regions.

Keywords: microgrid, solar air-conditioning, solid/gas sorption, thermochemical storage, tropical and insular regions

Procedia PDF Downloads 239
1771 The Revealed Preference Methods in Economic Valuation of Environmental Goods: A Review

Authors: Sara Sousa

Abstract:

The environmental goods and services have often been neglected in crucial decisions affecting the environment mainly because the difficulty in estimating their economic value, since we are dealing with non-market goods and, thus, without a price associated. Nevertheless, the inexistence of prices does not necessarily mean these goods have no value. The environment is a key element in today's society that seeks to be as sustainable as possible, where the environmental assets have both use and non-use values. To estimate the use value, researchers may apply the revealed preference methods. This paper provides a theoretical review of the main concepts and methodologies on the economic valuation of the environment, with particular emphasis on the revealed preference techniques. Based on a detailed literature review, this study concludes that, despite some inherent limitations, the revealed preference methodologies – travel cost, hedonic price, and averting behaviour – represent essential tools for the researchers who accept the challenge to estimate the use value of environmental goods and services based on the actual individuals` behaviour. The main purpose of this study is to contribute to an increased theoretical information on the economic valuation of environmental assets, allowing researchers and policymakers to improve future decisions regarding the environment.

Keywords: economic valuation, environmental goods, revealed preference methods, total economic value

Procedia PDF Downloads 129
1770 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 37
1769 Water Saving in Electricity Generation System Considering Natural Gas Limitation

Authors: Mehdi Ganjkhani, Sobhan Badakhshan, Seyedvahid Hosseini

Abstract:

Power plants exploit striking proportion of underground water consumption. Correspondingly, natural gas-fired power plants need less water than the other conventional power plants. Therefore, shifting unit commitment planning toward these power plants would help to save water consumption. This paper discusses the impacts of water consumption limitation on natural gas consumption and vice versa as a short-term water consumption management solution. To do so, conventional unit commitment problem is extended by adding water consumption and natural gas constraints to the previous constrains. The paper presents the impact of water saving on natural gas demands as well as natural gas shortage on water demand. Correspondingly, the additional cost of electricity production according to the aforementioned constraints is evaluated. Finally, a test system is applied to investigate potentials and impacts of water saving and natural gas shortage. Different scenarios are conducted and the results are presented. The results of the study illustrate that in order to use less water for power production it needs to use more natural gas. Meanwhile, natural gas shortage causes to utilize more amount of water in aggregate.

Keywords: electric energy generation system, underground water sources, unit commitment, water consumption saving, natural gas

Procedia PDF Downloads 188
1768 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage

Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy

Abstract:

Availability of a wide variety of renewable resources, such as large reserves of hydro, biomass, solar and wind in Canada provides significant potential to improve the sustainability of energy uses. As buildings represent a considerable portion of energy use in Canada, application of distributed solar energy systems for heating and cooling may increase the amount of renewable energy use. Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. Heat production by concentrating solar rays using parabolic troughs can overcome the poor efficiencies of flat panels and evacuated tubes in cold climates. A numerical dynamic model is developed to simulate an installed parabolic solar trough facility in Winnipeg. The results of the numerical model are validated using the experimental data obtained from this system. The model is developed in Simulink and will be utilized to simulate a tri-generation system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates as this is lacking in the literature. In this paper, the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using organic Rankine cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modeling provides dynamic performance results using real time minutely meteorological data which are collected at the same location the solar system is installed. This is a big step ahead of the current models by accurately calculating the available solar energy at each time step considering the solar radiation fluctuations due to passing clouds. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. A natural gas water heater provides the required excess heat for the absorption cooling at low or no solar radiation periods. The results of the simulation are presented for a summer month in Winnipeg which includes the amount of generated electric power from ORC and contribution of solar energy in the cooling load provision

Keywords: absorption cooling, parabolic solar trough, remote community, validated model

Procedia PDF Downloads 214
1767 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 506
1766 How to Capitalize on BioCNG at a Wastewater Plant

Authors: William G. "Gus" Simmons

Abstract:

Municipal and industrial wastewater plants across our country utilize anaerobic digestion as either primary treatment or as a means of waste sludge treatment and reduction. The emphasis on renewable energy and clean energy over the past several years, coupled with increasing electricity costs and increasing consumer demands for efficient utility operations has led to closer examination of the potential for harvesting the energy value of the biogas produced by anaerobic digestion. Although some facilities may have already come to the belief that harvesting this energy value is not practical or a top priority as compared to other capital needs and initiatives at the wastewater plant, we see that many are seeing biogas, and an opportunity for additional revenues, go up in flames as they continue to flare. Conversely, few wastewater plants under progressive and visionary leadership have demonstrated that harvesting the energy value from anaerobic digestion is more than “smoke and hot air”. From providing thermal energy to adjacent or on-campus operations to generating electricity and/or transportation fuels, these facilities are proving that energy harvesting can not only be profitable, but sustainable. This paper explores ways in which wastewater treatment plants can increase their value and import to the communities they serve through the generation of clean, renewable energy; also presented the processes in which these facilities moved from energy and cost sinks to sparks of innovation and pride in the communities in which they operate.

Keywords: anaerobic digestion, harvesting energy, biogas, renewable energy, sustainability

Procedia PDF Downloads 313
1765 Supply Chain of Energy Resources and Its Alternatives Due to the Arab Spring: The Case of Egyptian Natural Gas Flow to Jordan

Authors: Moh’d Anwer Al-Shboul

Abstract:

The year 2011 was a challenging year for Jordanian economy, which felt a variety of effects from the Arab Spring which took place in neighboring countries. Since February, 5th 2012, the Arab Gas Supply Pipeline, which carries natural gas from Egypt through the Sinai Peninsula and to Jordan and Israel, has been attacked more than 39 times. Jordan imported about 80 percent of its necessity of natural gas (about 250 million cubic feet of natural gas per day) from Egypt to generate particularly electricity, with the reminder of being produced locally. Jordan has utilized multiple alternatives to address the interruption of available natural gas supply from Egypt. The Jordanian distributed power plants now rely on the use of heavy fuel oil and diesel for electricity generation, in this case, it costs Jordan about four times than natural gas. The substitution of Egyptian natural gas supplies by fuel oil and diesel, coupled with the 32 percent rise in global fuel prices, has increased Jordan’s energy import bill by over 50 percent in 2011, reaching more than 16 percent of the 2011 GDP. The increase in the cost of electricity generation pushed the Jordanian economy to borrow from multiple internal and external resource channels, thus increasing the public debt. The Jordanian government’s short-term solution to the reduced natural gas supply from Egypt was alternatively purchasing the necessary quantities from some Gulf countries such as Qatar and/or Saudi Arabia, which can be imported with two possible methods. The first method is to rent a ship equipped with a liquefied natural gas (LNG) terminal, which is currently operating. The second method requires equipping the Aqaba port with an LNG terminal, which also currently is operating. In the long-term, a viable solution to depending on importing expensive and often unreliable natural gas supplies from surrounding countries is to depend more heavily on renewable supply energy, including solar, wind, and water energy.

Keywords: energy supply resources, Arab spring, liquefied natural gas, pipeline, Jordan

Procedia PDF Downloads 142
1764 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data

Authors: Natalia Feruleva

Abstract:

The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.

Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data

Procedia PDF Downloads 119
1763 Critical Success Factor of Exporting Thailand’s Ginger to Japan

Authors: Phutthiwat Waiyawuththanapoom, Pimploi Tirastittam, Manop Tirastittam

Abstract:

Thailand is the agriculture country which mainly exports the agriculture product to the other countries in so many ways which are fresh vegetable, chilled vegetable or frozen vegetable. The gross export for Thailand’s vegetable is 30-40 billion baht per year, and the growth rate is about 15-20 percent per year. Ginger is one of the main vegetable product that Thailand export to Japan because Thailand’s Ginger has a good quality and be able to supply Japan’s demand with a reasonable price. This research paper is aimed to study the factors which affect the efficiency of the supply chain process of Thailand’s ginger to Japan. There are 5 factors which related to the exporting Thailand’s ginger to Japan which are quality, price, equipment and supply standard, custom process and distribution pattern. The result of the research showed that the factor which reached the 'very good' significant level is quality of Thailand’s ginger with the score of 4.86. The other 5 factors are in the 'good' significant level. So the most important factor for Thai ginger farmer to concern is the quality of the product.

Keywords: critical success factor, export, ginger, supply chain

Procedia PDF Downloads 365
1762 First Report of Asiatic Black Bear: Evidence of Illegal Hunting and Trading from Manglawar Mountain, Swat, Pakistan

Authors: Waheed Akhtar

Abstract:

Bears in Asia facing multiple threats and challenges such as hunting, illegal trading, habitat loss, and human conflicts. According to IUCN Red List, the Asiatic black bear (Ursus thibetanus) is listed as Vulnerable since 1990, population declining by 49% during the last 30 years. The present study was conducted in Manglawar (DwaSaro Mountain) from April-August 2021, to collect all the information on Asiatic black bear observation, illegal hunting, and cub poaching. According to the response of the local community, very intensive illegal hunting and cub poaching were observed. Hunters usually installed many traps in the routes of black bears and when they move in the winter season the cubs get trapped and they collect them and kept in a specialized wooden box that is mainly helpful for further transportation. These cubs are then brought to the concerned Market where they sell them to many dealers. One of the potential observers of the illegal trading responds towards the Market price of the cubs, “The average price of the black bear cub is ranging from 45000-50000 Pakistani Rupees”. Apart from cubs' poaching, the black bear is also hunted for its skin, claws, and teeth.

Keywords: first report, illegal hunting, cub poaching, parts trading, Ursus thibetanus

Procedia PDF Downloads 61
1761 Factors Relating to Travel Behavior at the Floating Market of Thai Tourists

Authors: Siri-orn Champatong

Abstract:

The purpose of this research was to study factors that were related with travel behaviors of Thai tourists at the Ayothaya Floating Market, Phra Nakhon Sri Ayutthaya. The quantitative research was conducted with 400 samples of Thai tourists traveling to the Ayothaya Floating Market. The Questionnaire was a tool used to collect data, and the statistics used for data analysis were mean and Pearson product moment correlation coefficient. The results found that Thai tourists focused on attraction, easy access and facilities of the tourist spot at a high level. In addition, they gave priority to the marketing mix in the dimension of products, price, and distribution channels at a high level as well. For marketing promotion, it was at the moderate level. The results of hypothesis testing revealed that factors related to the attractions of the tourist destination, easy access to the tourist destination, the facilities of the tourist spot, and product and price of the marketing mix were associated with travel behaviors in the aspect of the number of visits used and the budget on tourism.

Keywords: floating market, marketing mix, tourism attractions, travelling behavior

Procedia PDF Downloads 284
1760 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system

Procedia PDF Downloads 348
1759 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin

Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi

Abstract:

The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.

Keywords: rainfall, neural networks, climatic indices, Mediterranean

Procedia PDF Downloads 312
1758 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 100
1757 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 99
1756 Market Illiquidity and Pricing Errors in the Term Structure of CDS

Authors: Lidia Sanchis-Marco, Antonio Rubia, Pedro Serrano

Abstract:

This paper studies the informational content of pricing errors in the term structure of sovereign CDS spreads. The residuals from a non-arbitrage model are employed to construct a Price discrepancy estimate, or noise measure. The noise estimate is understood as an indicator of market distress and reflects frictions such as illiquidity. Empirically, the noise measure is computed for an extensive panel of CDS spreads. Our results reveal an important fraction of systematic risk is not priced in default swap contracts. When projecting the noise measure onto a set of financial variables, the panel-data estimates show that greater price discrepancies are systematically related to a higher level of offsetting transactions of CDS contracts. This evidence suggests that arbitrage capital flows exit the marketplace during time of distress, and this consistent with a market segmentation among investors and arbitrageurs where professional arbitrageurs are particularly ineffective at bringing prices to their fundamental values during turbulent periods. Our empirical findings are robust for the most common CDS pricing models employed in the industry.

Keywords: credit default swaps, noise measure, illiquidity, capital arbitrage

Procedia PDF Downloads 568
1755 The Evaluation of Costs and Greenhouse Gas Reduction by Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gasses. In Japan, 'The National Plan for the Promotion of Biomass Utilization' and 'The Priority Plan for Social Infrastructure Development' were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Costs were estimated on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. Greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: global warming countermeasure, energy technology, solid fuel production, biogas

Procedia PDF Downloads 386
1754 Examines the Proportionality between the Needs of Industry and Technical and Vocational Training of Male and Female Vocational Schools

Authors: Khalil Aryanfar, Pariya Gholipor, Elmira Hafez

Abstract:

This study examines the proportionality between the needs of industry and technical and vocational training of male and female vocational schools. The research method was descriptive that was conducted in two parts: documentary analysis and needs assessment and Delphi method was used in the need assessment. The statistical population of the study included 312 individuals from the industry sector employers and 52 of them were selected through stratified random sampling. Methods of data collection in this study, upstream documents include: document of the development of technical and vocational training, Statistical Yearbook 1393 in Tehran, the available documents in Isfahan Planning Department, the findings indicate that there is an almost proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of welding, industrial electronics, electro technique, industrial drawing, auto mechanics, design, packaging, machine tool, metalworking, construction, accounting, computer graphics and the Administrative Affairs. The findings indicate that there is no proportionality between the needs of industry and Vocational training of male and female vocational schools in fields of Thermal - cooling systems, building electricity, building drawing, interior architecture, car electricity and motor repair.

Keywords: needs assessment, technical and vocational training, industry

Procedia PDF Downloads 451
1753 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling

Authors: Dong Wu, Michael Grenn

Abstract:

Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.

Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction

Procedia PDF Downloads 75
1752 Factors Related to Behaviors of Thai Travelers Traveling to Koh Kred Island, Nonthaburi Province

Authors: Bundit Pungnirund, Boonyada Pahasing

Abstract:

The objective of this research is to study factors related to behaviors of Thai travelers traveling to Koh Kret Island, Nonthaburi Province. The subjects of this study included 400 Thai travelers coming to Koh Kred. Questionnaires were used to collect data which were analyzed by computer program to find mean and correlation coefficient by Pearson. The results showed that Thai travelers reported their opinions and attitudes in high level on the marketing service mix, product, price, place, promotion, personal, physical evidence, and process. They reported on travelling motivation factor, tourist attraction, and facility at high level. Moreover, marketing service mix, product, price, place, promotion, personal, physical, and process including travelling motivation factor, tourist attraction, and facility had positive relationship with the frequency in travelling at statistically significant level (0.01), though in a low relationship but in the same direction.

Keywords: factors, behaviors, Thai travelers, Koh Kled, Nonthaburi Province

Procedia PDF Downloads 225
1751 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application

Authors: Miroslav Čulík, Petr Gurný

Abstract:

This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.

Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility

Procedia PDF Downloads 546
1750 Forecast Financial Bubbles: Multidimensional Phenomenon

Authors: Zouari Ezzeddine, Ghraieb Ikram

Abstract:

From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.

Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks

Procedia PDF Downloads 575
1749 Integration of PV Systems in Residential Buildings: A Solution for Supporting Electrical Grid in Kuwait

Authors: Nabil A. Ahmed, Nasser A. N. Mhaisen

Abstract:

The paper presents a solution to enhance the power quality and to reduce the peak load demand in Kuwait electric grid as a solution to the shortage of electricity production. Technical, environmental and economic feasibility study of utilizing integrated grid-connected photovoltaic (PV) system in residential buildings for supplying 7.1% of electrical power consumption in Kuwait is carried out using RETScreen software. A 10 KWp on-grid PV power generation system spread on the rooftop of the residential buildings is adopted and investigated and the complete system performance is simulated using PSIM software. Taking into account the international prices of electricity and natural gas, the proposed solution is investigated and tested for four different types of installation systems in terms of power generation and costs which includes horizontal installation, 25º tilted angle, single axis tracking and dual axis tracking. Results shows that the 25º tilted angle fixed mounted system is the most efficient type. The payback period as a tool of benefit analysis of the proposed system is calculated and it found to be 2.55 years.

Keywords: photovoltaics, residential buildings, electrical grid, production capacity, on-grid, power generation

Procedia PDF Downloads 492
1748 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 165
1747 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 444