Search results for: score prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4151

Search results for: score prediction

3521 Prediction of Conducted EMI Noise in a Converter

Authors: Jon Cobb, Nasir

Abstract:

Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique.

Keywords: EMI, electromagnetic interference, SMPS, switch-mode power supply, common mode, CM, differential mode, DM, noise

Procedia PDF Downloads 1211
3520 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline

Authors: Kenan Morani, Esra Kaya Ayana

Abstract:

This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.

Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation

Procedia PDF Downloads 134
3519 Developing Norms for Sit and Reach Test in the Local Environment of Khyber Pakhtunkhwa, Pakistan

Authors: Hazratullah Khattak, Abdul Waheed Mughal, Inamullah Khattak

Abstract:

This study is envisaged as vital contribution as it intends to develop norms for the Sit and Reach Test in the Local Environment of Khyber Pakhtunkhwa Pakistan, for the age group between 12-14 years which will be used to measure the flexibility level of early adolescents (12-14 years). Sit and Reach test was applied on 2000 volunteers, 400 subjects from each selected district (Five (5) Districts, Peshawar, Nowshera, Karak, Dera Ismail Khan and Swat (20% percent of the total 25 districts) using convenient sampling technique. The population for this study is comprised of all the early adolescents aging 12-14 years (Age Mean 13 + 0.63, Height 154 + 046, Weight 46 + 7.17, BMI 19 + 1.45) representing various public and private sectors educational institutions of the Khyber Pakhtunkhwa. As for as the norms developed for Sit and Reach test, the score below 6.8 inches comes in the category of poor, 6.9 to 9.6 inches (below Average), 9.7 to 10.8 inches (Average), 10.9 to 13 inches (Above average) and above 13 inches score is considered as Excellent.

Keywords: fitness, flexibility, norms, sit and reach

Procedia PDF Downloads 281
3518 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 110
3517 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 121
3516 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 112
3515 Sexual Behaviors and Its Predictors among Iranian Women in Iran: A Cross-Sectional Study

Authors: Zahra Karimian, Effat Merghati Khoei, Raziyeh Maasoumi

Abstract:

Background: Women's sexual well-being is center of focus in the field of sexology. Study of sexual behavior and investigating its predictors is important in women's health promotion. Objectives: This study aimed to explore the components of sexual behaviors and their possible associations with the women's demographic. Methods: A National Sexual Behavior Assessment Questionnaire was administered to 500 women ages 15 to 45 who referred to the public health centers seeking for health care services. The associations with demographic were examined. Results: From all participant, 31.8% of women obtain high score in the sexual capacity 21.2% in sexual motivation and 0.2% in sexual function. In sexual script component, 86.2% of women were holding traditional beliefs toward sexual behaviors; the majority (91.5%) of women believed in mutual and relational sexuality, 83.4% believed in androcentricity (male-dominated sexuality). Pearson correlation test showed significant positive correlations between sexual capacity, motivation, function and sexual script (p < 0.05). Regression model showed that sexual capacity is associated with women's education, age of her spouse. Sexual function and sexual motivation were significantly associated with the age of subjects' spouses. Conclusion: In this study, lower score was found in sexual performance while women were scored higher in the sexual capacity and motivation. We argue that these lower score in sexual performance more likely is due to the level of participants' religiosity and formation of their sexuality through an androcentric culture. Women's level of education and the spouse age appear to be predicting factors in the scores the subjects gained. We suggest that gender-specific and culturally sensitive sexuality education should be focus of women's health programs in Iran.

Keywords: sexual behaviors, women, health, Iran

Procedia PDF Downloads 241
3514 Comparative Analysis of Mechanical Properties of Paddy Rice for Different Variety-Moisture Content Interactions

Authors: Johnson Opoku-Asante, Emmanuel Bobobee, Joseph Akowuah, Eric Amoah Asante

Abstract:

In recent years, the issue of postharvest losses has become a serious concern in Sub-Saharan Africa. Postharvest technology development and adaptation need urgent attention, particularly for small and medium-scale rice farmers in Africa. However, to better develop any postharvest technology, knowledge of the mechanical properties of different varieties of paddy rice is vital. There is also the issue of the development of new rice cultivars. The objectives of this research are to (1) determine the mechanical properties of the selected paddy rice varieties at varying moisture content. (2) conduct a comparative analysis of the mechanical properties of selected rice paddy for different variety-moisture content interactions. (3) determine the significant statistical differences between the mean values of the various variety-moisture content interactions The mechanical properties of AGRA rice, CRI-Amankwatia, CRI-Enapa and CRI-Dartey, four local varieties developed by Crop Research Institute of Ghana are compared at 11.5%, 13.0% and 16.5% dry basis moisture content. The mechanical properties measured are Sphericity, Aspect ratio, Grain mass, 1000 Grain mass, Bulk Density, True Density, Porosity and Angle of Repose. Samples were collected from the Kwadaso Agric College of the CRI in Kumasi. The samples were threshed manually and winnowed before conducting the experiment. The moisture content was determined on a dry basis using the Moistex Screw-Type Digital Grain Moisture Meter. Other equipment used for data collection were venire calipers and Citizen electronic scale. A 4×3 factorial arrangement was used in a completely randomized design in three replications. Tukey's HSD comparisons test was conducted during data analysis to compare all possible pairwise combinations of the various varieties’ moisture content interaction. From the results, it was concluded that Sphericity recorded 0.391 mm³ to 0.377 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5%, respectively, whereas Aspect Ratio recorded 0.298 mm³ to 0.269 mm³ for CRI-Dartey at 16.5% and CRI-Enapa at 13.5% respectively. For grain mass, AGRA rice at 13.0% also recorded 0.0312 g as the highest score and CRI-Enapa at 13.0% obtained 0.0237 as the lowest score. For the GM1000, it was observed that it ranges from 29.33 g for CRI-Amankwatia at 16.5% moisture content to 22.54 g for CRI-Enapa at 16.5% interactions. Bulk Density ranged from 654.0 kg/m³ to 422.9 kg/m³ for CRI-Amankwatia at 16.5% and CRI-Enapa at 11.5% as the highest and lowest recordings, respectively. It was also observed that the true Density ranges from 1685.8 kg/m3 for AGRA rice at 13.0% moisture content to 1352.5 kg/m³ for CRI-Enapa at 16.5% interactions. In the case of porosity, CRI-Enapa at 11.5% received the highest score of 70.83% and CRI-Amankwatia at 16.5 received the lowest score of 55.88%. Finally, in the case of Angle of Repose, CRI-Amankwatia at 16.5% recorded the highest score of 47.3o and CRI-Enapa at 11.5% recorded the least score of 34.27o. In all cases, the difference in mean value was less than the LSD. This indicates that there were no significant statistical differences between their mean values, indicating that technologies developed and adapted for one variety can equally be used for all the other varieties.

Keywords: angle of repose, aspect ratio, bulk density, porosity, sphericity, mechanical properties

Procedia PDF Downloads 104
3513 Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids

Authors: Caroline E. Mendes, Alberto C. Badino

Abstract:

Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa were obtained using the dynamic pressure-step method, while  was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching  of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.

Keywords: bubble column, internal loop airlift, gas hold-up, kLa

Procedia PDF Downloads 275
3512 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 82
3511 Evaluation of the Efficacy and Tolerance of Gabapentin in the Treatment of Neuropathic Pain

Authors: A. Ibovi Mouondayi, S. Zaher, R. Assadi, K. Erraoui, S. Sboul, J. Daoudim, S. Bousselham, K. Nassar, S. Janani

Abstract:

INTRODUCTION: Neuropathic pain (NP) caused by damage to the somatosensory nervous system has a significant impact on quality of life and is associated with a high economic burden on the individual and society. The treatment of neuropathic pain consists of the use of a wide range of therapeutic agents, including gabapentin, which is used in the treatment of neuropathic pain. OBJECTIF: The objective of this study was to evaluate the efficacy and tolerance of gabapentin in the treatment of neuropathic pain. MATERIAL AND METHOD: This is a monocentric, cross-sectional, descriptive, retrospective study conducted in our department over a period of 19 months from October 2020 to April 2022. The missing parameters were collected during phone calls of the patients concerned. The diagnostic tool adopted was the DN4 questionnaire in the dialectal Arabic version. The impact of NP was assessed by the visual analog scale (VAS) on pain, sleep, and function. The impact of PN on mood was assessed by the "Hospital anxiety, and depression scale HAD" score in the validated Arabic version. The exclusion criteria were patients followed up for depression and other psychiatric pathologies. RESULTS: A total of 67 patients' data were collected. The average age was 64 years (+/- 15 years), with extremes ranging from 26 years to 94 years. 58 women and 9 men with an M/F sex ratio of 0.15. Cervical radiculopathy was found in 21% of this population, and lumbosacral radiculopathy in 61%. Gabapentin was introduced in doses ranging from 300 to 1800 mg per day with an average dose of 864 mg (+/- 346) per day for an average duration of 12.6 months. Before treatment, 93% of patients had a non-restorative sleep quality (VAS>3). 54% of patients had a pain VAS greater than 5. The function was normal in only 9% of patients. The mean anxiety score was 3.25 (standard deviation: 2.70), and the mean HAD depression score was 3.79 (standard deviation: 1.79). After treatment, all patients had improved the quality of their sleep (p<0.0001). A significant difference was noted in pain VAS, function, as well as anxiety and depression, and HAD score. Gabapentin was stopped for side effects (dizziness and drowsiness) and/or unsatisfactory response. CONCLUSION: Our data demonstrate a favorable effect of gabapentin on the management of neuropathic pain with a significant difference before and after treatment on the quality of life of patients associated with an acceptable tolerance profile.

Keywords: neuropathic pain, chronic pain, treatment, gabapentin

Procedia PDF Downloads 95
3510 Relationship between Physical Activity Level and Functional Movement in 16-years old Schoolchildren: A Multilevel Modelling Approach

Authors: Josip Karuc, Marjeta Mišigoj-Duraković, Goran Marković, Vedran Hadžić, Michael J. Duncan, Hrvoje Podnar, Maroje Sorić

Abstract:

As a part of the CRO-PALS longitudinal study, this investigation aimed to examine the association between different levels of physical activity (PA) and movement quality in 16-years old school children. The total number of participants in this research was 725. Movement quality was assessed via the Functional Movement Screen (FMSTM), and the PA level was estimated using the School Health Action, Planning, and Evaluation System (SHAPES) questionnaire. In addition, body fat and socioeconomic status (SES) were assessed. In order to investigate the association between total FMS score and different levels of PA, multilevel modeling was employed for boys (n=359) and girls (n=366) separately. All models were adjusted for age, body fat, and SES. Among boys, MVPA, MPA, and VPA were not significant predictors of the total FMS score (β=0.000, p=0.78; β=-0.002, p=0.455; β=0.004, p=0.158, respectively). On the contrary, among girls, VPA and MVPA showed significant effects on the total FMS score (β=0.011, p=0.001, β=0.005, p=0.006, respectively). The findings of this research provide evidence that the intensity of PA is a minor but relevant factor in describing the association between PA and movement quality in adolescent girls but not in boys. This means that the PA level does not guarantee optimal functional movement patterns. Therefore, practicing functional movement patterns in an isolated manner and at moderate to vigorous intensity could be beneficial in order to reduce the risk of injury incidence and potential orthopedic abnormalities in later life. This work was supported by the Croatian Science Foundation, grant no: IP-2016-06-9926 and grant no: DOK-2018-01-2328.

Keywords: functional movement screen, fundamental movement patterns, movement quality, pediatric

Procedia PDF Downloads 162
3509 Mediterranean Diet, Duration of Admission and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study

Authors: Christos Lampropoulos, Maria Konsta, Ifigenia Apostolou, Vicky Dradaki, Tamta Sirbilatze, Irini Dri, Christina Kordali, Vaggelis Lambas, Kostas Argyros, Georgios Mavras

Abstract:

Objectives: Mediterranean diet has been associated with lower incidence of cardiovascular disease and cancer. The purpose of our study was to examine the hypothesis that Mediterranean diet may protect against mortality and reduce admission duration in elderly, hospitalized patients. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). The following data were taken into account in analysis: anthropometric and laboratory data, dietary habits (MedDiet score), patients’ nutritional status [Mini Nutritional Assessment (MNA) score], physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission, compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and admission duration difference respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 30% per each unit increase of MedDiet score (OR=0.7, 95% CI:0.6-0.8, p < 0.0001). Patients with cancer-related admission were 37.7 times more likely to die, compared to those with infection (OR=37.7, 95% CI:4.4-325, p=0.001). According to multivariate linear regression analysis, admission duration was inversely related to Mediterranean diet, since it is decreased 0.18 days on average for each unit increase of MedDiet score (b:-0.18, 95% CI:-0.33 - -0.035, p=0.02). Additionally, the duration of current admission increased on average 0.83 days for each previous hospital admission (b:0.83, 95% CI:0.5-1.16, p<0.0001). The admission duration of patients with cancer was on average 4.5 days higher than the patients who admitted due to infection (b:4.5, 95% CI:0.9-8, p=0.015). Conclusion: Mediterranean diet adequately protects elderly, hospitalized patients against mortality and reduces the duration of hospitalization.

Keywords: Mediterranean diet, malnutrition, nutritional status, prognostic factors for mortality

Procedia PDF Downloads 314
3508 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain

Authors: Gonzalez Carlos, Martinez Fransisco

Abstract:

The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.

Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast

Procedia PDF Downloads 84
3507 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 180
3506 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)

Authors: Mohamed Hamada Abdelkader Fayed

Abstract:

Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.

Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy

Procedia PDF Downloads 216
3505 Vulnerability of People to Climate Change: Influence of Methods and Computation Approaches on Assessment Outcomes

Authors: Adandé Belarmain Fandohan

Abstract:

Climate change has become a major concern globally, particularly in rural communities that have to find rapid coping solutions. Several vulnerability assessment approaches have been developed in the last decades. This comes along with a higher risk for different methods to result in different conclusions, thereby making comparisons difficult and decision-making non-consistent across areas. The effect of methods and computational approaches on estimates of people’s vulnerability was assessed using data collected from the Gambia. Twenty-four indicators reflecting vulnerability components: (exposure, sensitivity, and adaptive capacity) were selected for this purpose. Data were collected through household surveys and key informant interviews. One hundred and fifteen respondents were surveyed across six communities and two administrative districts. Results were compared over three computational approaches: the maximum value transformation normalization, the z-score transformation normalization, and simple averaging. Regardless of the approaches used, communities that have high exposure to climate change and extreme events were the most vulnerable. Furthermore, the vulnerability was strongly related to the socio-economic characteristics of farmers. The survey evidenced variability in vulnerability among communities and administrative districts. Comparing output across approaches, overall, people in the study area were found to be highly vulnerable using the simple average and maximum value transformation, whereas they were only moderately vulnerable using the z-score transformation approach. It is suggested that assessment approach-induced discrepancies be accounted for in international debates to harmonize/standardize assessment approaches to the end of making outputs comparable across regions. This will also likely increase the relevance of decision-making for adaptation policies.

Keywords: maximum value transformation, simple averaging, vulnerability assessment, West Africa, z-score transformation

Procedia PDF Downloads 105
3504 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning

Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana

Abstract:

Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.

Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning

Procedia PDF Downloads 40
3503 The Relationship between Self-Care Behaviour and Quality of Life Among Heart Failure Patients in Jakarta, Indonesia

Authors: Shedy Maharani Nariswari, Prima Agustia Nova, I. Made Kariasa

Abstract:

Background. Heart Failure (HF) is a chronic and progressive condition associated with significant morbidity, mortality, health care expenditures, and a high readmission rate over the years. Self‐care is essential to manage chronic heart failure in the long term, and it is related to better outcomes and can enhance the quality of life. Objective. The aims of this study were to describe the relationship between self-care behavior and quality of life among heart failure patients in East Jakarta, Indonesia. Methods. This study used a correlational-descriptive design with a cross-sectional study, the sampling method used purposive sampling method. Self-care was measured using Self-care Heart Failure Index version 6.2, and quality of life was measured using The Minnesota Living with Heart Failure. Pearson correlation and Spearman-rho correlations are used to analyze the data. Results. We recruited 103 patients with HF in both outpatient and inpatient ward: mean age 59.26 ± 11.643 years, 63.1% male. Patients with higher levels of education were associated with higher self-care maintenance (p= 0.007). The patient's average quality of life is quite high, with a score of 72,07 ± 16,89. There were a significant relationship among self-care maintenance (r=0,305, p=0,001), self-care management (r=0,330, p=0,001), and self-care confidence (r=0,335, p=0,001) towards the quality of life. Most participants have inadequate self-care maintenance, self-care management, and self-care confidence (score < 70), while the score of quality of life is categorized as poor. Conclusion. The self-care behaviors were limited among patients living with HF in Indonesia yet was associated with better quality of life. It is necessary to promote health related to knowledge and adherence to self-care behavior so that it can improve the quality of life of heart failure patients. This study can be used as a reference to promote self-care among patients with heart failure, it can help to enhance their quality of life.

Keywords: heart failure, self-care maintenance, self-care management, self-care confidence, quality of life

Procedia PDF Downloads 107
3502 Relationship between Mental Health and Food Access among Healthcare College Students in a Snowy Area in Japan

Authors: Yuki Irie, Shota Ogawa, Hitomi Kosugi, Hiromitsu Shinozaki

Abstract:

Background: Dropout from higher educational institutions is a major problem both for students and institutions, and poor mental health is one of the risk factors. Medical college students are at higher risk of poor mental health than general students because of their hard academic schedules. On the other hand, food insecurity has negative impacts on mental health. The healthcare college of the project site is located heavily snowy area. The students without own vehicles may be at higher risk of food insecurity, especially in the winter season. Therefore, they have many risks to mental health. The aim of the study is to clarify the relationship between mental health and its risk factors to promote students’ mental well-being. Method: A cross-sectional design was used to investigate the relationship between mental health status and lifestyle, including diet and food security among the students (n=421, 147 male, 274 females; 20.7 ± 2.8 years old). Participants were required to answer 3 questionnaires which consisted of diet, lifestyle, food security, and mental health. The survey was conducted during the snowy season from Dec. 2022 to Jan. 2023. Results: Mean mental score was 6.7±4.6 (max. score 27, a higher score means worse mental health). Significant risk factors in mental health were breakfast habit (p=0.02), subjective dietary habit (p=0.00), subjective health (p=0.00), exercise habit (p=0.02), food insecurity in the winter season (p=0.01), and vitamin A intakes (p=0.03). Conclusions: Nutrients intakes are not associated with mental health except vitamin A; however, some other lifestyle factors are significantly associated with mental health. Nutrition doesn’t lead to poor mental health directly; however, the promotion of a healthy lifestyle and improved food security in winter may be effective in better mental health.

Keywords: mental health, winter, lifestyle, students

Procedia PDF Downloads 93
3501 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections

Authors: Ravneil Nand

Abstract:

Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.

Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse

Procedia PDF Downloads 338
3500 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 98
3499 Numerical Prediction of Entropy Generation in Heat Exchangers

Authors: Nadia Allouache

Abstract:

The concept of second law is assumed to be important to optimize the energy losses in heat exchangers. The present study is devoted to the numerical prediction of entropy generation due to heat transfer and friction in a double tube heat exchanger partly or fully filled with a porous medium. The goal of this work is to find the optimal conditions that allow minimizing entropy generation. For this purpose, numerical modeling based on the control volume method is used to describe the flow and heat transfer phenomena in the fluid and the porous medium. Effects of the porous layer thickness, its permeability, and the effective thermal conductivity have been investigated. Unexpectedly, the fully porous heat exchanger yields a lower entropy generation than the partly porous case or the fluid case even if the friction increases the entropy generation.

Keywords: heat exchangers, porous medium, second law approach, turbulent flow

Procedia PDF Downloads 300
3498 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 217
3497 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 61
3496 Vancomycin Resistance Enterococcus and Implications to Trauma and Orthopaedic Care

Authors: O. Davies, K. Veravalli, P. Panwalkar, M. Tofighi, P. Butterick, B. Healy, A. Mofidi

Abstract:

Vancomycin resistant enterococcus infection is a condition that usually impacts ICUs, transplant, dialysis, and cancer units, often as a nosocomial infection. After an outbreak in the acute trauma and orthopaedic unit in Morriston hospital, we aimed to access the conditions that predispose VRE infections in our unit. Thirteen cases of VRE infection and five cases of VRE colonisations were identified in patients who were treated for orthopaedic care between 1/1/2020 and 1/11/2021. Cases were reviewed to identify predisposing factors, specifically looking at age, presenting condition and treatment, presence of infection and antibiotic care, active haemo-oncological condition, long term renal dialysis, previous hospitalisation, VRE predisposition, and clearance (PREVENT) scores, and outcome of care. The presenting condition, treatment, presence of postoperative infection, VRE scores, age was compared between colonised and the infected cohort. VRE type in both colonised and infection group was Enterococcus Faecium in all but one patient. The colonised group had the same age (T=0.6 P>0.05) and sex (2=0.115, p=0.74), presenting condition and treatment which consisted of peri-femoral fixation or arthroplasty in all patients. The infected group had one case of myelodysplasia and four cases of chronic renal failure requiring dialysis. All of the infected patient had sustained an infected complication of their fracture fixation or arthroplasty requiring reoperation and antibiotics. The infected group had an average VRE predisposition score of 8.5 versus the score of 3 in the colonised group (F=36, p<0.001). PREVENT score was 7 in the infected group and 2 in the colonised group(F=153, p<0.001). Six patients(55%) succumbed to their infection, and one VRE infection resulted in limb loss. In the orthopaedic cohort, VRE infection is a nosocomial condition that has peri-femoral predilection and is seen in association with immunosuppression or renal failure. The VRE infection cohort has been treated for infective complication of original surgery weeks prior to VRE infection. Based on our findings, we advise avoidance of infective complications, change of practice in use of antibiotics and use radical surgery and surveillance for VRE infections beyond infective precautions. PREVENT score shows that the infected group are unlikely to clear their VRE in the future but not the colonised group.

Keywords: surgical site infection, enterococcus, orthopaedic surgery, vancomycin resistance

Procedia PDF Downloads 150
3495 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 109
3494 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 422
3493 Effect of Educational Information with Video Compact Disc on Anxiety Level in Patients Undergoing Bronchoscopy in Ramathibodi Hospital

Authors: Chariya Laohavich, Viboon Bunsrangsuk

Abstract:

Objective: Bronchoscopy is a common outpatient procedure. The authors compared the patient anxiety level before and after received video-assisted procedural information. Method: One hundred and twenty patients who never received bronchoscopy and scheduled for elective bronchoscopy at outpatient Bronchosope unit at Ramathibodi Hospital, Mahidol University were randomized into control and intervention group. Video-assisted procedural information was given in intervention group. Pre and post procedural anxiety score were recorded and compared between two groups. Paired T-test was used for statistical analysis. Result: There was statistically significant decrease (p < 0.001) for anxiety score in patients who received video assisted procedural information compare with control group. Conclusion: Video-assisted procedural information should be given to patient who will have bronchoscopy to reduce anxiety.

Keywords: anxiety, bronchoscopy, video compact disc (VCD)

Procedia PDF Downloads 351
3492 A Sector-Wise Study on Detecting Earnings Management in India

Authors: Raghuveer Kaur, Kartikay Sharma, Ashu Khanna

Abstract:

Earnings management has been present from times immemorial. The recent downfall of giant enterprises like Enron, Satyam and WorldCom has brought a lot of focus on the study and detection of earnings management. The present study is an attempt to study earnings management in one of the fastest emerging economy - India. The study makes an attempt to understand earnings management in different sectors of the economy. The paper first tests a hypothesis to check whether different sectors of India are engaged in earnings management or not. In the later section the paper aims to study the level of earnings management in 6 popular sectors of India: IT&BPO, Retail, Telecom, Biotech, Hotels and coffee. To measure earnings management two popular techniques of detecting earnings management has been employed: Modified Jones Model and Beniesh M Score. A total of 332 companies were studied. Publicly available data from Capitaline database has been used. The paper also classifies the top and bottom five performers on the basis of sales turnover in each sector and identifies whether they manage their earnings or not.

Keywords: earnings management, India, modified Jones model, Beneish M score

Procedia PDF Downloads 516