Search results for: saline and alkaline soils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1655

Search results for: saline and alkaline soils

1025 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria

Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji

Abstract:

Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.

Keywords: organic amendment, parent material, rainfall simulation, soil erosion

Procedia PDF Downloads 343
1024 Response of Lepidium Sativum to Ionic Toxicity

Authors: M. F. El-Barghathi, R. El-Tajouri

Abstract:

The effect of different concentrations of cadmium sulfate "CdSO4" (0.0, 10, 50, 100, 500 ppm) was tested on seed germination, seedling elongation and growth of Lepidium sativum (garden cress) plants. Results indicated that seed germination and seedling elongation were not inhibited by different concentrations of CdSO4. This could suggest that, Lepidium sativum may be used as a phyto remediation tool of soils contaminated with cadmium.

Keywords: Lepidium sativum, heavy metals, ionic toxicity, phytoremediation

Procedia PDF Downloads 556
1023 Comparative Studies and Optimization of Biodiesel Production from Oils of Selected Seeds of Nigerian Origin

Authors: Ndana Mohammed, Abdullahi Musa Sabo

Abstract:

The oils used in this work were extracted from seeds of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcasby solvent extraction method using n-hexane, and gave the yield of 48.00±0.00%, 44.30±0.52%, 45.50±0.64%, 47.60±0.51%, 41.50±0.32% and 46.50±0.71% respectively. However these feed stocks are highly challenging to trans-esterification reaction because they were found to contain high amount of free fatty acids (FFA) (6.37±0.18, 17.20±0.00, 6.14±0.05, 8.60±0.14, 5.35±0.07, 4.24±0.02mgKOH/g) in order of the above. As a result, two-stage trans-esterification reactions process was used to produce biodiesel; Acid esterification was used to reduce high FFA to 1% or less, and the second stage involve the alkaline trans-esterification/optimization of process condition to obtain high yield quality biodiesel. The salient features of this study include; characterization of oils using AOAC, AOCS standard methods to reveal some properties that may determine the viability of sample seeds as potential feed stocks for biodiesel production, such as acid value, saponification value, Peroxide value, Iodine value, Specific gravity, Kinematic viscosity, and free fatty acid profile. The optimization of process parameters in biodiesel production was investigated. Different concentrations of alkaline catalyst (KOH) (0.25, 0.5, 0.75, 1.0 and 1.50w/v, methanol/oil molar ratio (3:1, 6:1, 9:1, 12:1, and 15:1), reaction temperature (500 C, 550 C, 600 C, 650 C, 700 C), and the rate of stirring (150 rpm,225 rpm,300 rpm and 375 rpm) were used for the determination of optimal condition at which maximum yield of biodiesel would be obtained. However, while optimizing one parameter other parameters were kept fixed. The result shows the optimal biodiesel yield at a catalyst concentration of 1%, methanol/oil molar ratio of 6:1, except oil from ricinuscommunis which was obtained at 9:1, the reaction temperature of 650 C was observed for all samples, similarly the stirring rate of 300 rpm was also observed for all samples except oil from ricinuscommunis which was observed at 375 rpm. The properties of biodiesel fuel were evaluated and the result obtained conformed favorably to ASTM and EN standard specifications for fossil diesel and biodiesel. Therefore biodiesel fuel produced can be used as substitute for fossil diesel. The work also reports the result of the study on the evaluation of the effect of the biodiesel storage on its physicochemical properties to ascertain the level of deterioration with time. The values obtained for the entire samples are completely out of standard specification for biodiesel before the end of the twelve months test period, and are clearly degraded. This suggests the biodiesels from oils of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcascannot be stored beyond twelve months.

Keywords: biodiesel, characterization, esterification, optimization, transesterification

Procedia PDF Downloads 421
1022 Evaluation of Living Mulches Effectiveness in Weed Suppression, and Seed Yield of Black cumin (Nigella sativa L.) Under Salt Stress

Authors: Fatemeh Benakashani, Hossein Tavakoli, Elias Soltani

Abstract:

To ensure the sustainability of crop cultivation and rural economies, it is imperative that we focus on cultivating resilient crops capable of withstanding salt stress. However, the effective management of weeds in salt-affected soils remains a significant challenge. This study investigates the impact of living mulches, specifically Berseem clover (Trifolium alexandrinum) and Barley (Hordeum vulgare), on weed control, as well as the quality and yield of Black cumin (Nigella sativa) in salt-affected soil. In our research, we employed a two-fold mowing strategy for the living mulches: once following crop establishment and once before the flowering stage. Notably, the weed-free plots demonstrated Black cumin's seed yield, and oil content (31.1% to 34.3%), consistent with previous studies, highlighting its potential for the reclamation and utilization of salt-affected lands. However, Black cumin exhibited limited competitiveness against prevalent weeds in the field, such as Amaranthus retroflexus, Chenopodium album, and Portulaca oleracea, which significantly diminished both the 1000 grain mass in plots where weeds were present. Interestingly, the introduction of living mulches led to improvements in seed yield and seed oil content when compared to both weed-free and weed-infested plots. Notably, Berseem clover exhibited greater biomass than Barley, indicating its heightened competitiveness against weeds. Nevertheless, it's worth noting that in the long term, Berseem clover also competed with the main crop, thereby limiting overall productivity. Consequently, we recommend relocating the Berseem clover living mulch following the establishment of Black cumin as a strategy for weed management in Black cumin fields situated in salt-affected soils.

Keywords: weed management, competition, clover, barley, medicinal plant

Procedia PDF Downloads 66
1021 The Relation between Urbanization and Forestry Policies in Turkey

Authors: Azize Serap Tuncer

Abstract:

Turkey is one of the most outstanding figures among the Mediterranean countries from the natural and historical point at view. It is relatively rich country as regards the flora and vegetation. But at the same time as a result of improper and unplanned usage of the land for centuries, its forests and fertile soils have been exposed to great damages. While rapid and uncontrolled urbanization has important effects on the environment, urban development legislations, have become very unsufficient for the protection of these areas. Some of them have been completely eradicated, and some others have lost their fertility. Besides Turkey has a high main land with a rough surface and its soils areas exposed to heavy erosion. On the other hand as a developing country, it is not willing to endanger the goals of industrialization and avoid foreign direct investment by implementing strict environmental policies. Although this kind of pressure on forestland resources threatens the stability of forest land and land use management, in recent years, there has been an obvious increase in public concern about environmental problems like over global warming, environmental pollution, deforestation and their potential effects on natural resources. To protect the ecological balance and prevention of naturel resources from the unplanned intervention of human-beıng is only possible establishing conservation areas wıth co-operation at the national and the internatıonal levels. This study was carried out to evaluate the relation between urbanization and forestry policies in Turkey. While it elaborates the normative arrangements resulting in power conflicts, it also addresses which shortages and discrepancies are responsible for the said conflicts. The present urban reconstruction and transformation practices and their aesthetic and functional aspects were studied with some examples in a country level and evaluated within the assistance of literature researches, analyses, and observations. Atatürk Forest Farm and ODTU Forest examples were negotiated as two famous cases. Obtained findings were supported by charts and photos.

Keywords: deforestration, environmental policies, metropolitan, pollution, urbanization

Procedia PDF Downloads 156
1020 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 77
1019 Geology and Geochemistry of the Paleozoic Basement, Western Algeria

Authors: Hadj Mohamed Nacera, Boutaleb Abdelhak

Abstract:

The Hercynian granite in Western Algeria, has a typical high-K calc-alkaline evolution, with peraluminous trend U-Pb zircon geochronology yielded the minimum emplacement age of 297 ± 1 Ma. It shows dark microgranular enclaves, veins of pegmatite, aplite, tourmaline and quartz. The granite plutons selected for this study are formed during the late Variscian phase and intrudes the Lower Silurian metasediments which were affected by the major Hercynian folding phases. An important Quartz vein field cross-cutting metasedimentary and granitic rocks. Invisible gold occurs in a very small arsenopyrite minerals. The purpose of this study is to highlight the relationship between the gold mineralisation and the intrusion by combining petrographic and geochemic studies.

Keywords: Algeria, basement, geochemestry, granite

Procedia PDF Downloads 272
1018 An Evaluation of the Influence of Corn Cob Ash on the Strength Parameters of Lateritic SoiLs

Authors: O. A. Apampa, Y. A. Jimoh

Abstract:

The paper reports the investigation of Corn Cob Ash as a chemical stabilizing agent for laterite soils. Corn cob feedstock was obtained from Maya, a rural community in the derived savannah agro-ecological zone of South-Western Nigeria and burnt to ashes of pozzolanic quality. Reddish brown silty clayey sand material characterized as AASHTO A-2-6(3) lateritic material was obtained from a borrow pit in Abeokuta and subjected to strength characterization tests according to BS 1377: 2000. The soil was subsequently mixed with CCA in varying percentages of 0-7.5% at 1.5% intervals. The influence of CCA stabilized soil was determined for the Atterberg limits, compaction characteristics, CBR and the unconfined compression strength. The tests were repeated on laterite cement-soil mixture in order to establish a basis for comparison. The result shows a similarity in the compaction characteristics of soil-cement and soil-CCA. With increasing addition of binder from 1.5% to 7.5%, Maximum Dry Density progressively declined while the OMC steadily increased. For the CBR, the maximum positive impact was observed at 1.5% CCA addition at a value of 85% compared to the control value of 65% for the cement stabilization, but declined steadily thereafter with increasing addition of CCA, while that of soil-cement continued to increase with increasing addition of cement beyond 1.5% though at a relatively slow rate. Similar behavior was observed in the UCS values for the soil-CCA mix, increasing from a control value of 0.4 MN/m2 to 1.0 MN/m2 at 1.5% CCA and declining thereafter, while that for soil-cement continued to increase with increasing cement addition, but at a slower rate. This paper demonstrates that CCA is effective for chemical stabilization of a typical Nigerian AASHTO A-2-6 lateritic soil at maximum stabilizer content limit of 1.5% and therefore recommends its use as a way of finding further application for agricultural waste products and achievement of environmental sustainability in line with the ideals of the millennium development goals because of the economic and technical feasibility of the processing of the cobs from corn.

Keywords: corn cob ash, pozzolan, cement, laterite, stabilizing agent, cation exchange capacity

Procedia PDF Downloads 297
1017 Phytoremediation-A Plant Based Cleansing Method to Obtain Quality Medicinal Plants and Natural Products

Authors: Hannah S. Elizabeth, D. Gnanasekaran, M. R. Manju Gowda, Antony George

Abstract:

Phytoremediation a new technology of remediating the contaminated soil, water and air using plants and serves as a green technology with environmental friendly approach. The main aim of this technique is cleansing and detoxifying of organic compounds, organo-phosphorous pesticides, heavy metals like arsenic, iron, cadmium, gold, radioactive elements which cause teratogenic and life threatening diseases to mankind and animal kingdom when consume the food crops, vegetables, fruits, cerals, and millets obtained from the contaminated soil. Also, directly they may damage the genetic materials thereby alters the biosynthetic pathways of secondary metabolites and other phytoconstituents which may have different pharmacological activities which lead to lost their efficacy and potency as well. It would reflect in mutagenicity, drug resistance and affect other antagonistic properties of normal metabolism. Is the technology for real clean-up of contaminated soils and the contaminants which are potentially toxic. It reduces the risks produced by a contaminated soil by decreasing contaminants using plants as a source. The advantages are cost-effectiveness and less ecosystem disruption. Plants may also help to stabilize contaminants by accumulating and precipitating toxic trace elements in the roots. Organic pollutants can potentially be chemically degraded and ultimately mineralized into harmless biological compounds. Hence, the use of plants to revitalize contaminated sites is gaining more attention and preferred for its cost-effective when compared to other chemical methods. The introduction of harmful substances into the environment has been shown to have many adverse effects on human health, agricultural productivity, and natural ecosystems. Because the costs of growing a crop are minimal compared to those of soil removal and replacement, the use of plants to remediate hazardous soils is seen as having great promise.

Keywords: cost effective, eco-friendly, phytoremediation, secondary metabolites

Procedia PDF Downloads 281
1016 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies

Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif

Abstract:

Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environment

Keywords: PGPR, nitrogen fixation, phosphate solubilization, colonization

Procedia PDF Downloads 340
1015 Hormones and Mineral Elements Associated with Osteoporosis in Postmenopausal Women in Eastern Slovakia

Authors: M. Mydlárová Blaščáková, J. Poráčová, Z. Tomková, Ľ. Blaščáková, M. Nagy, M. Konečná, E. Petrejčíková, Z. Gogaľová, V. Sedlák, J. Mydlár, M. Zahatňanská, K. Hricová

Abstract:

Osteoporosis is a multifactorial disease that results in reduced quality of life, causes decreased bone strength, and changes in their microarchitecture. Mostly postmenopausal women are at risk. In our study, we measured anthropometric parameters of postmenopausal women (104 women of control group – CG and 105 women of osteoporotic group - OG) and determined TSH hormone levels and PTH as well as mineral elements - Ca, P, Mg and enzyme alkaline phosphatase. Through the correlation analysis in CG, we have found association based on age and BMI, P and Ca, as well as Mg and Ca; in OG we determined interdependence based on an association of age and BMI, age and Ca. Using the Student's t test, we found significantly important differences in biochemical parameters of Mg (p ˂ 0,001) and TSH (p ˂ 0,05) between CG and OG.

Keywords: factors, bone mass density, Central Europe, biomarkers

Procedia PDF Downloads 196
1014 Experimental Studies on Stress Strain Behavior of Expanded Polystyrene Beads-Sand Mixture

Authors: K. N. Ashna

Abstract:

Lightweight fills are a viable alternative where weak soils such as soft clay, peat, and loose silt are encountered. Materials such as Expanded Polystyrene (EPS) geo-foam, plastics, tire wastes, rubber wastes have been used along with soil in order to obtain a lightweight fill. Out of these, Expanded Polystyrene (EPS) geo-foam has gained wide popularity in civil engineering over the past years due to its wide variety of applications. It is extremely lightweight, durable and is available in various densities to meet the strength requirements. It can be used as backfill behind retaining walls to reduce lateral load, as a fill over soft clay or weak soils to prevent the excessive settlements and to reduce seismic forces. Geo-foam is available in block form as well as beads form. In this project Expanded Polystyrene (EPS) beads of various diameters and varying densities were mixed along with sand to study their lightweight as well as strength properties. Four types of EPS beads were used 1mm, 2mm, 3-7 mm and a mix of 1-7 mm. In this project, EPS beads were varied at .25%, .5%, .75% and 1% by weight of sand. A water content of 10% by weight of sand was added to prevent segregation of the mixture. Unconsolidated Unconfined (UU) tri-axial test was conducted at 100kPa, 200 kPa and 300 kPa and angle of internal friction, and cohesion was obtained. Unit weight of the mix was obtained for a relative density of 65%. The results showed that by increasing the EPS content by weight, maximum deviator stress, unit weight, angle of internal friction and initial elastic modulus decreased. An optimum EPS bead content was arrived at by considering the strength as well as the unit weight. The stress-strain behaviour of the mix was found to be dependent on type of bead, bead content and density of the beads. Finally, regression equations were developed to predict the initial elastic modulus of the mix.

Keywords: expanded polystyrene beads, geofoam, lightweight fills, stress-strain behavior, triaxial test

Procedia PDF Downloads 265
1013 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan

Procedia PDF Downloads 116
1012 Concentrations of Cortisol and Progesterone after Dexamethasone Challenge in Egyptian Stray Bitches

Authors: K. A. El-Battawy

Abstract:

This investigation was done to evaluate cortisol secretion in bitches following dexamethasone administration as well as its impact on progesterone levels during four days trail. Five bitches were used as their own pre-challenge control in a 4-day trial. On the control day, saline was injected intravenous (i.v.) and on the treatment day, 15 mg / animal of dexamethasone-21-disodiumphosphate (Dexa-TAD) was injected i.v. Blood samples were collected for four days then the analysis of cortisol and progesterone (P4) were done. Levels of cortisol decreased sharply within 24 h after dexamethasone administration. These low levels of cortisol remained for approximately 24hour then started again to reach normally back. Progesterone concentrations did not differ than pre-treatment one. In conclusion, this study confirms that single injection of dexamethasone lowered significantly the cortisol concentrations for approximately 24hour and did not affect the progesterone levels in bitches.

Keywords: dexa, progesterone, cortisol, blood, bitch, concentration

Procedia PDF Downloads 306
1011 Bioremediation Influence on Shear Strength of Contaminated Soils

Authors: Tawar Mahmoodzadeh

Abstract:

Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent.

Keywords: oil contamination soil, shear strength, compaction, bioremediation

Procedia PDF Downloads 154
1010 Alkali Activation of Fly Ash, Metakaolin and Slag Blends: Fresh and Hardened Properties

Authors: Weiliang Gong, Lissa Gomes, Lucile Raymond, Hui Xu, Werner Lutze, Ian L. Pegg

Abstract:

Alkali-activated materials, particularly geopolymers, have attracted much interest in academia. Commercial applications are on the rise, as well. Geopolymers are produced typically by a reaction of one or two aluminosilicates with an alkaline solution at room temperature. Fly ash is an important aluminosilicate source. However, using low-Ca fly ash, the byproduct of burning hard or black coal reacts and sets slowly at room temperature. The development of mechanical durability, e.g., compressive strength, is slow as well. The use of fly ashes with relatively high contents ( > 6%) of unburned carbon, i.e., high loss on ignition (LOI), is particularly disadvantageous as well. This paper will show to what extent these impediments can be mitigated by mixing the fly ash with one or two more aluminosilicate sources. The fly ash used here is generated at the Orlando power plant (Florida, USA). It is low in Ca ( < 1.5% CaO) and has a high LOI of > 6%. The additional aluminosilicate sources are metakaolin and blast furnace slag. Binary fly ash-metakaolin and ternary fly ash-metakaolin-slag geopolymers were prepared. Properties of geopolymer pastes before and after setting have been measured. Fresh mixtures of aluminosilicates with an alkaline solution were studied by Vicat needle penetration, rheology, and isothermal calorimetry up to initial setting and beyond. The hardened geopolymers were investigated by SEM/EDS and the compressive strength was measured. Initial setting (fluid to solid transition) was indicated by a rapid increase in yield stress and plastic viscosity. The rheological times of setting were always smaller than the Vicat times of setting. Both times of setting decreased with increasing replacement of fly ash with blast furnace slag in a ternary fly ash-metakaolin-slag geopolymer system. As expected, setting with only Orlando fly ash was the slowest. Replacing 20% fly ash with metakaolin shortened the set time. Replacing increasing fractions of fly ash in the binary system by blast furnace slag (up to 30%) shortened the time of setting even further. The 28-day compressive strength increased drastically from < 20 MPa to 90 MPa. The most interesting finding relates to the calorimetric measurements. The use of two or three aluminosilicates generated significantly more heat (20 to 65%) than the calculated from the weighted sum of the individual aluminosilicates. This synergetic heat contributes or may be responsible for most of the increase of compressive strength of our binary and ternary geopolymers. The synergetic heat effect may be also related to increased incorporation of calcium in sodium aluminosilicate hydrate to form a hybrid (N,C)A-S-H) gel. The time of setting will be correlated with heat release and maximum heat flow.

Keywords: alkali-activated materials, binary and ternary geopolymers, blends of fly ash, metakaolin and blast furnace slag, rheology, synergetic heats

Procedia PDF Downloads 116
1009 Polydopamine Nanoparticle as a Stable and Capacious Nano-Reservoir of Rifampicin

Authors: Tasnuva Tamanna, Aimin Yu

Abstract:

Application of nanoscience in biomedical field has come across as a new era. This study involves the synthesis of nano drug carrier with antibiotic loading. Based on the founding that polydopamine (PDA) nanoparticles could be formed via self-polymerization of dopamine at alkaline pH, one-step synthesis of rifampicin coupled polydopamine (PDA-R) nanoparticles was achieved by adding rifampicin into the dopamine solution. The successful yield of PDA nanoparticles with or without the presence of rifampicin during the polymerization process was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Drug loading was monitored by UV-vis spectroscopy and the loading efficiency of rifampicin was calculated to be 76%. Such highly capacious nano-reservoir was found very stable with little drug leakage at pH 3.

Keywords: drug loading, nanoparticles, polydopamine, rifampicin

Procedia PDF Downloads 478
1008 Radiation Induced DNA Damage and Its Modification by Herbal Preparation of Hippophae rhamnoides L. (SBL-1): An in vitro and in vivo Study in Mice

Authors: Anuranjani Kumar, Madhu Bala

Abstract:

Ionising radiation exposure induces generation of free radicals and the oxidative DNA damage. SBL-1, a radioprotective leaf extract prepared from leaves Hippophae rhamnoides L. (Common name; Seabuckthorn), showed > 90% survival in mice population that was treated with lethal dose (10 Gy) of ⁶⁰Co gamma irradiation. In this study, early effects of pre-treatment with or without SBL-1 in blood peripheral blood lymphocytes (PBMCs) were investigated by cell viability assays (trypan blue and MTT). The quantitative in vitro study of Hoescht/PI staining was performed to check the apoptosis/necrosis in PBMCs irradiated at 2 Gy with or without pretreatment of SBL-1 (at different concentrations) up to 24 and 48h. Comet assay was performed in vivo, to detect the DNA strands breaks and its repair mechanism on peripheral blood lymphocytes at lethal dose (10 Gy). For this study, male mice (wt. 28 ± 2g) were administered radioprotective dose (30mg/kg body weight) of SBL-1, 30 min prior to irradiation. Animals were sacrificed at 24h and 48h. Blood was drawn through cardiac puncture, and blood lymphocytes were separated using histopaque column. Both neutral and alkaline comet assay were performed using standardized technique. In irradiated animals, alkaline comet assay revealed single strand breaks (SSBs) that showed significant (p < 0.05) increase in percent DNA in tail and Olive tail moment (OTM) at 24 h while at 48h the percent DNA in tail further increased significantly (p < 0.02). The double strands breaks (DSBs) increased significantly (p < 0.01) at 48 h in neutral assay, in comparison to untreated control. The animals pre-treated with SBL-1 before irradiation showed significantly (p < 0.05) less DSBs at 48 h treatment in comparison to irradiated group of animals. The SBL-1 alone treated group itself showed no toxicity. The antioxidant potential of SBL-1 were also investigated by in vitro biochemical assays such as DPPH (p < 0.05), ABTS, reducing ability (p < 0.09), hydroxyl radical scavenging (p < 0.05), ferric reducing antioxidant power (FRAP), superoxide radical scavenging activity (p < 0.05), hydrogen peroxide scavenging activity (p < 0.05) etc. SBL-1 showed strong free radical scavenging power that plays important role in the studies of radiation-induced injuries. The SBL-1 treated PBMCs showed significant (p < 0.02) viability in trypan blue assay at 24-hour incubation.

Keywords: radiation, SBL-1, SSBs, DSBs, FRAP, PBMCs

Procedia PDF Downloads 154
1007 High Temperature in Caustic Pretreatment of Gold Locked in the Residue after Filtration from Gold Cyanidation Leaching

Authors: K. L. Kabemba, R. F. Sandenberg

Abstract:

The usual way to desorb gold is by elution with a hot concentrated alkaline solution of sodium cyanide. The high temperature is necessary because the dielectric constant of water decreases with increasing temperature hence the electrostatic forces between charcoal and the gold cyanide complex decreases. High alkalinity and a high concentration of cyanide are necessary for gold desorption because both OH- and CN- ions are preferentially adsorbed. The rate of elution increases with increasing anion concentration but decreases with increasing cation concentration that means the rate of elution passes through a maximum as the concentration of the eluting salt (NaCN, for example) is increased. The anion that gives the best results, the cyanide ion, decomposes fairly rapidly at elevated temperatures (40% in 6 hours, 90% in 24 hours at 95°C).

Keywords: caustic, cyanide, gold, temperature

Procedia PDF Downloads 387
1006 Component Comparison of Polyaluminum Chloride Produced from Various Methods

Authors: Wen Po Cheng, Chia Yun Chung, Ruey Fang Yu, Chao Feng Chen

Abstract:

The main objective of this research was to study the differences of aluminum hydrolytic products between two PACl preparation methods. These two methods were the acidification process of freshly formed amorphous Al(OH)3 and the conventional alkalization process of aluminum chloride solution. According to Ferron test and 27Al NMR analysis of those two PACl preparation procedures, the reaction rate constant (k) values and Al13 percentage of acid addition process at high basicity value were both lower than those values of the alkaline addition process. The results showed that the molecular structure and size distribution of the aluminum species in both preparing methods were suspected to be significantly different at high basicity value.

Keywords: polyaluminum chloride, Al13, amorphous aluminum hydroxide, Ferron test

Procedia PDF Downloads 376
1005 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.

Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor

Abstract:

Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.

Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape

Procedia PDF Downloads 392
1004 Production of Bricks Using Mill Waste and Tyre Crumbs at a Low Temperature by Alkali-Activation

Authors: Zipeng Zhang, Yat C. Wong, Arul Arulrajah

Abstract:

Since automobiles became widely popular around the early 20th century, end-of-life tyres have been one of the major types of waste humans encounter. Every minute, there are considerable quantities of tyres being disposed of around the world. Most end-of-life tyres are simply landfilled or simply stockpiled, other than recycling. To address the potential issues caused by tyre waste, incorporating it into construction materials can be a possibility. This research investigated the viability of manufacturing bricks using mill waste and tyre crumb by alkali-activation at a relatively low temperature. The mill waste was extracted from a brick factory located in Melbourne, Australia, and the tyre crumbs were supplied by a local recycling company. As the main precursor, the mill waste was activated by the alkaline solution, which was comprised of sodium hydroxide (8m) and sodium silicate (liquid). The introduction ratio of alkaline solution (relative to the solid weight) and the weight ratio between sodium hydroxide and sodium silicate was fixed at 20 wt.% and 1:1, respectively. The tyre crumb was introduced to substitute part of the mill waste at four ratios by weight, namely 0, 5, 10 and 15%. The mixture of mill waste and tyre crumbs were firstly dry-mixed for 2 min to ensure the homogeneity, followed by a 2.5-min wet mixing after adding the solution. The ready mixture subsequently was press-moulded into blocks with the size of 109 mm in length, 112.5 mm in width and 76 mm in height. The blocks were cured at 50°C with 95% relative humidity for 2 days, followed by a 110°C oven-curing for 1 day. All the samples were then placed under the ambient environment until the age of 7 and 28 days for testing. A series of tests were conducted to evaluate the linear shrinkage, compressive strength and water absorption of the samples. In addition, the microstructure of the samples was examined via the scanning electron microscope (SEM) test. The results showed the highest compressive strength was 17.6 MPa, found in the 28-day-old group using 5 wt.% tyre crumbs. Such strength has been able to satisfy the requirement of ASTM C67. However, the increasing addition of tyre crumb weakened the compressive strength of samples. Apart from the strength, the linear shrinkage and water absorption of all the groups can meet the requirements of the standard. It is worth noting that the use of tyre crumbs tended to decrease the shrinkage and even caused expansion when the tyre content was over 15 wt.%. The research also found that there was a significant reduction in compressive strength for the samples after water absorption tests. In conclusion, the tyre crumbs have the potential to be used as a filler material in brick manufacturing, but more research needs to be done to tackle the durability problem in the future.

Keywords: bricks, mill waste, tyre crumbs, waste recycling

Procedia PDF Downloads 122
1003 Surface Water Flow of Urban Areas and Sustainable Urban Planning

Authors: Sheetal Sharma

Abstract:

Urban planning is associated with land transformation from natural areas to modified and developed ones which leads to modification of natural environment. The basic knowledge of relationship between both should be ascertained before proceeding for the development of natural areas. Changes on land surface due to build up pavements, roads and similar land cover, affect surface water flow. There is a gap between urban planning and basic knowledge of hydrological processes which should be known to the planners. The paper aims to identify these variations in surface flow due to urbanization for a temporal scale of 40 years using Storm Water Management Mode (SWMM) and again correlating these findings with the urban planning guidelines in study area along with geological background to find out the suitable combinations of land cover, soil and guidelines. For the purpose of identifying the changes in surface flows, 19 catchments were identified with different geology and growth in 40 years facing different ground water levels fluctuations. The increasing built up, varying surface runoff are studied using Arc GIS and SWMM modeling, regression analysis for runoff. Resulting runoff for various land covers and soil groups with varying built up conditions were observed. The modeling procedures also included observations for varying precipitation and constant built up in all catchments. All these observations were combined for individual catchment and single regression curve was obtained for runoff. Thus, it was observed that alluvial with suitable land cover was better for infiltration and least generation of runoff but excess built up could not be sustained on alluvial soil. Similarly, basalt had least recharge and most runoff demanding maximum vegetation over it. Sandstone resulted in good recharging if planned with more open spaces and natural soils with intermittent vegetation. Hence, these observations made a keystone base for planners while planning various land uses on different soils. This paper contributes and provides a solution to basic knowledge gap, which urban planners face during development of natural surfaces.

Keywords: runoff, built up, roughness, recharge, temporal changes

Procedia PDF Downloads 278
1002 Investigation into Black Oxide Coating of 410 Grade Surgical Stainless Steel Using Alkaline Bath Treatment

Authors: K. K. Saju, A. R. Reghuraj

Abstract:

High reflectance of surgical instruments under bright light hinders the visual clarity during laparoscopic surgical procedures leading to loss of precision and device control and creates strain and undesired difficulties to surgeons. Majority of the surgical instruments are made of surgical grade steel. Instruments with a non reflective surface can enhance the visual clarity during precision surgeries. A conversion coating of black oxide has been successfully developed 410 grade surgical stainless steel .The characteristics of the developed coating suggests the application of this technique for developing 410 grade surgical instruments with minimal reflectance.

Keywords: conversion coatings, 410 stainless steel, black oxide, reflectance

Procedia PDF Downloads 456
1001 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu

Authors: Kaleeswari R. K., Seevagan L .

Abstract:

Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.

Keywords: soil quality index, soil attributes, soil mapping, and rice soil

Procedia PDF Downloads 86
1000 Phytoremediation of artisanal gold mine tailings - Potential of Chrysopogon zizanioides and Andropogon gayanus in the Sahelian climate

Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien

Abstract:

Soil pollution and, consequently, water resources by micropollutants from gold mine tailings constitute a major threat in developing countries due to the lack of waste treatment. Phytoremediation is an alternative for extracting or trapping micropollutants from contaminated soils by mining residues. The potentialities of Chrysopogon zizanioides (acclimated plant) and Andropogon gayanus (native plant) to accumulate arsenic (As), mercury (Hg), iron (Fe) and zinc (Zn) were studied in artisanal gold mine in Ouagadougou, Burkina Faso. The phytoremediation effectiveness of two plant species was studied in 75 pots of 30 liters each, containing mining residues from the artisanal gold processing site in the rural commune of Nimbrogo. The experiments cover three modalities: Tn - planted unpolluted soils; To – unplanted mine tailings and Tp – planted mine tailings arranged in a randomized manner. The pots were amended quarterly with compost to provide nutrients to the plants. The phytoremediation assessment consists of comparing the growth, biomass and capacity of these two herbaceous plants to extract or to trap Hg, Fe, Zn and As in mining residues in a controlled environment. The analysis of plant species parameters cultivated in mine tailings shows indices of relative growth of A. gayanus very significantly high (34.38%) compared to 20.37% for C.zizanioides. While biomass analysis reveals that C. zizanioides has greater foliage and root system growth than A. gayanus. The results after a culture time of 6 months showed that C. zizanioides and A. gayanus have the potential to accumulate Hg, Fe, Zn and As. Root biomass has a more significant accumulation than aboveground biomass for both herbaceous species. Although the BCF bioaccumulation factor values for both plants together are low (<1), the removal efficiency of Hg, Fe, Zn and As is 45.13%, 42.26%, 21.5% and 2.87% respectively in 24 weeks of culture with C. zizanioides. However, pots grown with A. gayanus gives an effectiveness rate of 43.55%; 41.52%; 2.87% and 1.35% respectively for Fe, Zn, Hg and As. The results indicate that the plant species studied have a strong phytoremediation potential, although that of A. gayanus is relatively less than C. zizanioides.

Keywords: artisanal gold mine tailings, andropogon gayanus, chrysopogon zizanioides, phytoremediation

Procedia PDF Downloads 65
999 Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume

Authors: Ramez F. Saad, Ahmad Kobaissi, Bernard Amiaud, Julien Ruelle, Emile Benizri

Abstract:

Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services.

Keywords: plant association, legumes, hyperaccumulating plants, ultramafic soil physicochemical properties

Procedia PDF Downloads 166
998 Changes in Fish and Shellfish in Thondamanaru Lagoon, Jaffna, Sri Lanka

Authors: S. Piratheepa, G. Rajendramani, T. Eswaramohan

Abstract:

Current study was conducted for one year from June 2014 to May 2015, with an objective of identification of fish and shellfish diversity in the Thondamanaru lagoon ecosystem. In this study, 11 species were identified from Thondamanaru lagoon, Jaffna, Sri Lanka. There are four fishes, Chanos chanos, Hemirhamphus sp., Nematalosa sp. and Mugil cephalus and seven shell fishes, Penaeus indicus, Penaeus monodon, Penaeus latisulcatus, Penaeus semisulcatus, Metapenaeus monoceros, Portunus pelagicus and Scylla serrata. Species composition of Mugil cephalus, Penaeus indicus and Metapenaeus monoceros was high during rainy seasons. However, lagoon is being subjected to adverse environmental conditions that threaten its fish and shellfish biodiversity due to lack of saline water availability and changes in rainfall pattern.

Keywords: diversity, shell fish, shrimp, Thondamanaru lagoon

Procedia PDF Downloads 312
997 Biorefinery as Extension to Sugar Mills: Sustainability and Social Upliftment in the Green Economy

Authors: Asfaw Gezae Daful, Mohsen Alimandagari, Kathleen Haigh, Somayeh Farzad, Eugene Van Rensburg, Johann F. Görgens

Abstract:

The sugar industry has to 're-invent' itself to ensure long-term economic survival and opportunities for job creation and enhanced community-level impacts, given increasing pressure from fluctuating and low global sugar prices, increasing energy prices and sustainability demands. We propose biorefineries for re-vitalisation of the sugar industry using low value lignocellulosic biomass (sugarcane bagasse, leaves, and tops) annexed to existing sugar mills, producing a spectrum of high value platform chemicals along with biofuel, bioenergy, and electricity. Opportunity is presented for greener products, to mitigate climate change and overcome economic challenges. Xylose from labile hemicellulose remains largely underutilized and the conversion to value-add products a major challenge. Insight is required on pretreatment and/or extraction to optimize production of cellulosic ethanol together with lactic acid, furfural or biopolymers from sugarcane bagasse, leaves, and tops. Experimental conditions for alkaline and pressurized hot water extraction dilute acid and steam explosion pretreatment of sugarcane bagasse and harvest residues were investigated to serve as a basis for developing various process scenarios under a sugarcane biorefinery scheme. Dilute acid and steam explosion pretreatment were optimized for maximum hemicellulose recovery, combined sugar yield and solids digestibility. An optimal range of conditions for alkaline and liquid hot water extraction of hemicellulosic biopolymers, as well as conditions for acceptable enzymatic digestibility of the solid residue, after such extraction was established. Using data from the above, a series of energy efficient biorefinery scenarios are under development and modeled using Aspen Plus® software, to simulate potential factories to better understand the biorefinery processes and estimate the CAPEX and OPEX, environmental impacts, and overall viability. Rigorous and detailed sustainability assessment methodology was formulated to address all pillars of sustainability. This work is ongoing and to date, models have been developed for some of the processes which can ultimately be combined into biorefinery scenarios. This will allow systematic comparison of a series of biorefinery scenarios to assess the potential to reduce negative impacts on and maximize the benefits of social, economic, and environmental factors on a lifecycle basis.

Keywords: biomass, biorefinery, green economy, sustainability

Procedia PDF Downloads 514
996 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications

Authors: S. Trafela, X. Xua, K. Zuzek Rozmana

Abstract:

In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.

Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation

Procedia PDF Downloads 161