Search results for: pullout tests
3881 Embedded Test Framework: A Solution Accelerator for Embedded Hardware Testing
Authors: Arjun Kumar Rath, Titus Dhanasingh
Abstract:
Embedded product development requires software to test hardware functionality during development and finding issues during manufacturing in larger quantities. As the components are getting integrated, the devices are tested for their full functionality using advanced software tools. Benchmarking tools are used to measure and compare the performance of product features. At present, these tests are based on a variety of methods involving varying hardware and software platforms. Typically, these tests are custom built for every product and remain unusable for other variants. A majority of the tests goes undocumented, not updated, unusable when the product is released. To bridge this gap, a solution accelerator in the form of a framework can address these issues for running all these tests from one place, using an off-the-shelf tests library in a continuous integration environment. There are many open-source test frameworks or tools (fuego. LAVA, AutoTest, KernelCI, etc.) designed for testing embedded system devices, with each one having several unique good features, but one single tool and framework may not satisfy all of the testing needs for embedded systems, thus an extensible framework with the multitude of tools. Embedded product testing includes board bring-up testing, test during manufacturing, firmware testing, application testing, and assembly testing. Traditional test methods include developing test libraries and support components for every new hardware platform that belongs to the same domain with identical hardware architecture. This approach will have drawbacks like non-reusability where platform-specific libraries cannot be reused, need to maintain source infrastructure for individual hardware platforms, and most importantly, time is taken to re-develop test cases for new hardware platforms. These limitations create challenges like environment set up for testing, scalability, and maintenance. A desirable strategy is certainly one that is focused on maximizing reusability, continuous integration, and leveraging artifacts across the complete development cycle during phases of testing and across family of products. To get over the stated challenges with the conventional method and offers benefits of embedded testing, an embedded test framework (ETF), a solution accelerator, is designed, which can be deployed in embedded system-related products with minimal customizations and maintenance to accelerate the hardware testing. Embedded test framework supports testing different hardwares including microprocessor and microcontroller. It offers benefits such as (1) Time-to-Market: Accelerates board brings up time with prepacked test suites supporting all necessary peripherals which can speed up the design and development stage(board bring up, manufacturing and device driver) (2) Reusability-framework components isolated from the platform-specific HW initialization and configuration makes the adaptability of test cases across various platform quick and simple (3) Effective build and test infrastructure with multiple test interface options and preintegrated with FUEGO framework (4) Continuos integration - pre-integrated with Jenkins which enabled continuous testing and automated software update feature. Applying the embedded test framework accelerator throughout the design and development phase enables to development of the well-tested systems before functional verification and improves time to market to a large extent.Keywords: board diagnostics software, embedded system, hardware testing, test frameworks
Procedia PDF Downloads 1473880 Analysis of Gas Transport and Sorption Processes in Coal under Confining Pressure Conditions
Authors: Anna Pajdak, Mateusz Kudasik, Norbert Skoczylas, Leticia Teixeira Palla Braga
Abstract:
A substantial majority of gas transport and sorption researches into coal are carried out on samples that are free of stress. In natural conditions, coal occurs at considerable depths, which often exceed 1000 meters. In such conditions, coal is subjected to geostatic pressure. Thus, in natural conditions, the sorption capacity of coal subjected to geostatic pressure can differ considerably from the sorption capacity of coal, determined in laboratory conditions, which is free of stress. The work presents the results of filtration and sorption tests of gases in coal under confining pressure conditions. The tests were carried out on the author's device, which ensures: confining pressure regulation in the range of 0-30 MPa, isobaric gas pressure conditions, and registration of changes in sample volume during its gas saturation. Based on the conducted research it was found, among others, that the sorption capacity of coal relative to CO₂ was reduced by about 15% as a result of the change in the confining pressure from 1.5 MPa to 30 MPa exerted on the sample. The same change in sample load caused a significant, more than tenfold reduction in carbon permeability to CO₂. The results confirmed that a load of coal corresponding to a hydrostatic pressure of 1000 meters underground reduces its permeability and sorption properties. These results are so important that the effect of load on the sorption properties of coal should be taken into account in laboratory studies on the applicability of CO₂ Enhanced Coal Bed Methane Recovery (CO₂-ECBM) technology.Keywords: coal, confining pressure, gas transport, sorption
Procedia PDF Downloads 1223879 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution
Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish
Abstract:
The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)
Procedia PDF Downloads 3963878 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors
Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira
Abstract:
Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete
Procedia PDF Downloads 2053877 A Structural Constitutive Model for Viscoelastic Rheological Behavior of Human Saphenous Vein Using Experimental Assays
Authors: Rassoli Aisa, Abrishami Movahhed Arezu, Faturaee Nasser, Seddighi Amir Saeed, Shafigh Mohammad
Abstract:
Cardiovascular diseases are one of the most common causes of mortality in developed countries. Coronary artery abnormalities and carotid artery stenosis, also known as silent death, are among these diseases. One of the treatment methods for these diseases is to create a deviatory pathway to conduct blood into the heart through a bypass surgery. The saphenous vein is usually used in this surgery to create the deviatory pathway. Unfortunately, a re-surgery will be necessary after some years due to ignoring the disagreement of mechanical properties of graft tissue and/or applied prostheses with those of host tissue. The objective of the present study is to clarify the viscoelastic behavior of human saphenous tissue. The stress relaxation tests in circumferential and longitudinal direction were done in this vein by exerting 20% and 50% strains. Considering the stress relaxation curves obtained from stress relaxation tests and the coefficients of the standard solid model, it was demonstrated that the saphenous vein has a non-linear viscoelastic behavior. Thereafter, the fitting with Fung’s quasilinear viscoelastic (QLV) model was performed based on stress relaxation time curves. Finally, the coefficients of Fung’s QLV model, which models the behavior of saphenous tissue very well, were presented.Keywords: Viscoelastic behavior, stress relaxation test, uniaxial tensile test, Fung’s quasilinear viscoelastic (QLV) model, strain rate
Procedia PDF Downloads 3363876 Downside Risk Analysis of the Nigerian Stock Market: A Value at Risk Approach
Authors: Godwin Chigozie Okpara
Abstract:
This paper using standard GARCH, EGARCH, and TARCH models on day of the week return series (of 246 days) from the Nigerian Stock market estimated the model variants’ VaR. An asymmetric return distribution and fat-tail phenomenon in financial time series were considered by estimating the models with normal, student t and generalized error distributions. The analysis based on Akaike Information Criterion suggests that the EGARCH model with student t innovation distribution can furnish more accurate estimate of VaR. In the light of this, we apply the likelihood ratio tests of proportional failure rates to VaR derived from EGARCH model in order to determine the short and long positions VaR performances. The result shows that as alpha ranges from 0.05 to 0.005 for short positions, the failure rate significantly exceeds the prescribed quintiles while it however shows no significant difference between the failure rate and the prescribed quantiles for long positions. This suggests that investors and portfolio managers in the Nigeria stock market have long trading position or can buy assets with concern on when the asset prices will fall. Precisely, the VaR estimates for the long position range from -4.7% for 95 percent confidence level to -10.3% for 99.5 percent confidence level.Keywords: downside risk, value-at-risk, failure rate, kupiec LR tests, GARCH models
Procedia PDF Downloads 4443875 The Disruptive Effect of COVID-19 on the Informativeness of Dividend Increases: Some Evidence from Johannesburg Stock Exchange-Listed Companies
Authors: Faustina Masocha
Abstract:
This study sought to determine if the Covid-19 pandemic played a disruptive role in the signalling effect of dividend increases for the Top 40 companies listed on the Johannesburg Stock Exchange. With the use of Event Study Methodologies, it was found that dividend increases that were announced in the 2018 and 2019 financial years resulted in Cumulative Abnormal Returns (CARs) that were significantly different from zero, as confirmed by a p-value of 0,0300. This resulted in the conclusion that, under normal circumstances, dividend increases follow the precepts outlined in signalling theories which indicate that the announcement of dividend increases sent positive signals about the expected financial performance of a company. To prove the notion that Covid-19 plays a disruptive role on the signalling hypothesis, it was found from both parametric and non-parametric tests of significance that CARs related to dividend increases that were announced during the 2020 and 2021 financial years, when the Covid-19 pandemic was at its peak, were not significantly different from zero. Therefore, although the dividend increases still resulted in some CARs, such CARs were not statistically different from zero to confirm the signalling hypothesis. A p-value of 0.9830 from parametric t-tests and a p-value of 0.8971 from the Wilcoxon signed-rank test were used as a gauge that led to the conclusion that Covid-19 plays a disruptive effect on the signalling process of dividend increases.Keywords: cumulative abnormal returns, dividend increases, event study methodology, signalling
Procedia PDF Downloads 1233874 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement
Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana
Abstract:
The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.Keywords: one-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical
Procedia PDF Downloads 3173873 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness
Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki
Abstract:
Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation
Procedia PDF Downloads 4703872 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications
Authors: Khurram Munir, Cuie Wen, Yuncang Li
Abstract:
Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion
Procedia PDF Downloads 1583871 Effects of Certain Natural Food Additives (Pectin, Gelatin and Whey Proteins) on the Qualities of Fermented Milk
Authors: Abderrahim Cheriguene, Fatiha Arioui
Abstract:
The experimental study focuses on the extraction of pectin, whey protein and gelatin, and the study of their functional properties. Microbiological, physicochemical and sensory approach integrated has been implanted to study the effect of the incorporation of these natural food additives in the matrix of a fermented milk type set yogurt, to study the stability of the product during the periods of fermentation and post-acidification over a period of 21 days at 4°C. Pectin was extracted in hot HCl solution. Thermo-precipitation was carried out to obtain the whey proteins while the gelatin was extracted by hydrolysis of the collagen from bovine ossein. The fermented milk was prepared by varying the concentration of the incorporated additives. The measures and controls carried performed periodically on fermented milk experimental tests were carried out: pH, acidity, viscosity, the enumeration of Streptococcus thermophilus, cohesiveness, adhesiveness, taste, aftertaste, whey exudation, and odor. It appears that the acidity, viscosity, and number of Streptococcus thermophilus increased with increasing concentration of additive added in the experimental tests. Indeed, it seems clear that the quality of fermented milk and storability is more improved than the incorporation rate is high. The products showed a better test and a firmer texture limiting the whey exudation.Keywords: fermented milk, pectin, gelatin, whey proteins, functional properties, quality, conservation, valorization
Procedia PDF Downloads 1363870 Ground Deformation Module for the New Laboratory Methods
Authors: O. Giorgishvili
Abstract:
For calculation of foundations one of the important characteristics is the module of deformation (E0). As we all know, the main goal of calculation of the foundations of buildings on deformation is to arrange the base settling and difference in settlings in such limits that do not cause origination of cracks and changes in design levels that will be dangerous to standard operation in the buildings and their individual structures. As is known from the literature and the practical application, the modulus of deformation is determined by two basic methods: laboratory method, soil test on compression (without the side widening) and soil test in field conditions. As we know, the deformation modulus of soil determined by field method is closer to the actual modulus deformation of soil, but the complexity of the tests to be carried out and the financial concerns did not allow determination of ground deformation modulus by field method. Therefore, we determine the ground modulus of deformation by compression method without side widening. Concerning this, we introduce a new way for determination of ground modulus of deformation by laboratory order that occurs by side widening and more accurately reflects the ground modulus of deformation and more accurately reflects the actual modulus of deformation and closer to the modulus of deformation determined by the field method. In this regard, we bring a new approach on the ground deformation detection laboratory module, which is done by widening sides. The tests and the results showed that the proposed method of ground deformation modulus is closer to the results that are obtained in the field, which reflects the foundation's work in real terms more accurately than the compression of the ground deformation module.Keywords: build, deformation modulus, foundations, ground, laboratory research
Procedia PDF Downloads 3703869 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle
Authors: Pawel Magryta, Mateusz Paszko
Abstract:
In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag
Procedia PDF Downloads 3113868 The Examination of Cement Effect on Isotropic Sands during Static, Dynamic, Melting and Freezing Cycles
Authors: Mehdi Shekarbeigi
Abstract:
The consolidation of loose substrates as well as substrate layers through promoting stabilizing materials is one of the most commonly used road construction techniques. Cement, lime, and flax, as well as asphalt emulsion, are common materials used for soil stabilization to enhance the soil’s strength and durability properties. Cement could be simply used to stabilize permeable materials such as sand in a relatively short time threshold. In this research, typical Portland cement is selected for the stabilization of isotropic sand; the effect of static and cyclic loading on the behavior of these soils has been examined with various percentages of Portland cement. Thus, firstly, a soil’s general features are investigated, and then static tests, including direct cutting, density and single axis tests, and California Bearing Ratio, are performed on the samples. After that, the dynamic behavior of cement on silica sand with the same grain size is analyzed. These experiments are conducted on cement samples of 3, 6, and 9 of the same rates and ineffective limiting pressures of 0 to 1200 kPa with 200 kPa steps of the face according to American Society for Testing and Materials D 3999 standards. Also, to test the effect of temperature on molds and frost samples, 0, 5, 10, and 20 are carried out during 0, 5, 10, and 20-second periods. Results of the static tests showed that increasing the cement percentage increases the soil density and shear strength. The single-axis compressive strength increase is higher for samples with higher cement content and lower densities. The results also illustrate the relationship between single-axial compressive strength and cement weight parameters. Results of the dynamic experiments indicate that increasing the number of loading cycles and melting and freezing cycles enhances permeability and decreases the applied pressure. According to the results of this research, it could be stated that samples containing 9% cement have the highest amount of shear modulus and, therefore, decrease the permeability of soil. This amount could be considered as the optimal amount. Also, the enhancement of effective limited pressure from 400 to 800kPa increased the shear modulus of the sample by an average of 20 to 30 percent in small strains.Keywords: cement, isotropic sands, static load, three-axis cycle, melting and freezing cycles
Procedia PDF Downloads 773867 Textile-Based Sensing System for Sleep Apnea Detection
Authors: Mary S. Ruppert-Stroescu, Minh Pham, Bruce Benjamin
Abstract:
Sleep apnea is a condition where a person stops breathing and can lead to cardiovascular disease, hypertension, and stroke. In the United States, approximately forty percent of overnight sleep apnea detection tests are cancelled. The purpose of this study was to develop a textile-based sensing system that acquires biometric signals relevant to cardiovascular health, to transmit them wirelessly to a computer, and to quantitatively assess the signals for sleep apnea detection. Patient interviews, literature review and market analysis defined a need for a device that ubiquitously integrated into the patient’s lifestyle. A multi-disciplinary research team of biomedical scientists, apparel designers, and computer engineers collaborated to design a textile-based sensing system that gathers EKG, Sp02, and respiration, then wirelessly transmits the signals to a computer in real time. The electronic components were assembled from existing hardware, the Health Kit which came pre-set with EKG and Sp02 sensors. The respiration belt was purchased separately and its electronics were built and integrated into the Health Kit mother board. Analog ECG signals were amplified and transmitted to the Arduino™ board where the signal was converted from analog into digital. By using textile electrodes, ECG lead-II was collected, and it reflected the electrical activity of the heart. Signals were collected when the subject was in sitting position and at sampling rate of 250 Hz. Because sleep apnea most often occurs in people with obese body types, prototypes were developed for a man’s size medium, XL, and XXL. To test user acceptance and comfort, wear tests were performed on 12 subjects. Results of the wear tests indicate that the knit fabric and t-shirt-like design were acceptable from both lifestyle and comfort perspectives. The airflow signal and respiration signal sensors return good signals regardless of movement intensity. Future study includes reconfiguring the hardware to a smaller size, developing the same type of garment for the female body, and further enhancing the signal quality.Keywords: sleep apnea, sensors, electronic textiles, wearables
Procedia PDF Downloads 2753866 Innovative Activity and Development: Analysing Firm Data from Eurozone Country-Members
Authors: Ilias A. Makris
Abstract:
In this work, we attempt to associate firm characteristics with innovative activity. We collect microdata from listed firms of selected Eurozone Country-members, after the beginning of 2007 financial crisis. The following literature, several indicators of growth and performance were selected and tested for their ability to interpret innovative activity. The main scope is to examine the possible differences in performance and growth between innovative and non-innovative firms, during a severe recession. Additionally to that, a special focus will be held on whether macroeconomic performance and national innovation system, determines the extent of innovators' performance. Preliminary findings, through correlation matrices and non-parametric tests, strongly indicate the positive relation between innovative activity and most of the measures used (profitability, size, employment), confirming that even during a recessionary period, innovative firms not only survive but also seem to succeed better economic results in almost all indexes relative to non-innovative. However, even though innovators seem to perform better in all economies examined, the extent of that performance seems to be strongly affected by the supportive mechanisms (financial and structural) that their country provides. Thus, it is clear, that the technologically intensive 'gap' between European South and North, during the economic crisis, became chaotic, due to the harsh austerity measures and reduced budgets in those countries, even in sectors with high potentials in economic activity and employment, impairing the effects of crisis and enhancing the vicious circle of recession.Keywords: eurozone, innovative activity, development, firm performance, non-parametric tests
Procedia PDF Downloads 4383865 Bending Tests for the Axial Load Identifications in Space Structures with Unknown Boundary Conditions
Authors: M. Bonopera, N. Tullini, C. C. Chen, T. K. Lin, K. C. Chang
Abstract:
This paper presents the extension of a static method for the axial load identifications in prismatic beam-columns with uncertain length and unknown boundary conditions belonging to generic space structures, such as columns of space frames or struts and ties of space trusses. The non-destructive method requires the knowledge of the beam-column flexural rigidity only. Flexural displacements are measured at five cross sections along the beam-column subjected to an additional vertical load at the mid-span. Unlike analogous dynamic methods, any set of experimental data may be used in the identification procedure. The method is verified by means of many numerical and experimental tests on beam-columns having unknown boundary conditions and different slenderness belonging to three different space prototypes in small-scale. Excellent estimates of the tensile and compressive forces are obtained for the elements with higher slenderness and when the greatest possible distance between sensors is adopted. Moreover, the application of larger values of the vertical load and very accurate displacement measurements are required. The method could be an efficacious technique in-situ, considering that safety inspections will become increasingly important in the near future, especially because of the improvement of the material properties that allowed designing space structures composed of beam-columns with higher slenderness.Keywords: force identification, in-situ test, space structure, static test
Procedia PDF Downloads 2463864 Improvement of Microstructure, Wear and Mechanical Properties of Modified G38NiCrMo8-4-4 Steel Used in Mining Industry
Authors: Mustafa Col, Funda Gul Koc, Merve Yangaz, Eylem Subasi, Can Akbasoglu
Abstract:
G38NiCrMo8-4-4 steel is widely used in mining industries, machine parts, gears due to its high strength and toughness properties. In this study, microstructure, wear and mechanical properties of G38NiCrMo8-4-4 steel modified with boron used in the mining industry were investigated. For this purpose, cast materials were alloyed by melting in an induction furnace to include boron with the rates of 0 ppm, 15 ppm, and 50 ppm (wt.) and were formed in the dimensions of 150x200x150 mm by casting into the sand mould. Homogenization heat treatment was applied to the specimens at 1150˚C for 7 hours. Then all specimens were austenitized at 930˚C for 1 hour, quenched in the polymer solution and tempered at 650˚C for 1 hour. Microstructures of the specimens were investigated by using light microscope and SEM to determine the effect of boron and heat treatment conditions. Changes in microstructure properties and material hardness were obtained due to increasing boron content and heat treatment conditions after microstructure investigations and hardness tests. Wear tests were carried out using a pin-on-disc tribometer under dry sliding conditions. Charpy V notch impact test was performed to determine the toughness properties of the specimens. Fracture and worn surfaces were investigated with scanning electron microscope (SEM). The results show that boron element has a positive effect on the hardness and wear properties of G38NiCrMo8-4-4 steel.Keywords: G38NiCrMo8-4-4 steel, boron, heat treatment, microstructure, wear, mechanical properties
Procedia PDF Downloads 1963863 Degradation of Acetaminophen with Fe3O4 and Fe2+ as Activator of Peroxymonosulfate
Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin
Abstract:
Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2 > 0.95), while the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.Keywords: acetaminophen, peroxymonosulfate, radicals, Fe3O4
Procedia PDF Downloads 2583862 Urban Development Criteria with a Focus on Resilience to Pandemics: A Case Study of Corona Virus (Covid-19)
Authors: Elham Zabetian Targhi, Niusha Fardnava, Saba Saghafi
Abstract:
Urban resilience to Corona Virus has become a major concern for cities these days. Our country also has not been safe from the destructive effects of this virus in social, economic, physical, governance, and management dimensions; and according to official statistics, hundreds of thousands of people in Iran have been infected with this virus and tens of thousands have died so far. Therefore, to measure urban resilience to this pandemic, some criteria and sub-criteria were developed based on the authors’ documentary and field studies, and their significance or weights were determined using analytical-comparative research method using a questionnaire of paired or L-Saati comparisons from the viewpoint of experts in urban sciences and urban development using AHP hierarchical analysis in EXPERT CHOICE software. Then, designing a questionnaire with a five-point Likert scale, the satisfaction of Tehran residents with the extracted criteria and sub-criteria was measured and the correlation between the important criteria in each dimension was assessed using correlation tests in SPSS16 software. According to the obtained results of AHP analysis and the scores of each sub-criterion, the weight of all criteria was normal. In the next stage, according to the pairwise correlation tests between the important criteria in each dimension from the viewpoint of urban science experts and Tehran residents, it was concluded that the reliability of the correlation between the criteria is 99%. In all the cases, the P-value or the same significance level was less than 0.05, which indicated the significance of the pairwise relations between the variables.Keywords: Urban Resilience, Pandemics, Corona Virus (Covid-19), Criteria.
Procedia PDF Downloads 833861 Profiles of Physical Fitness and Enjoyment among Children: Associations with Sport Participation
Authors: Norjali Wazir M. R. W., Pion P., Mostaert M., De Meester A., Lenoir M., Bardid F.
Abstract:
Background and study aim: Most of the people assume that someone will perform well on something they like. A tool evaluating how much an individual likes an activity can also be guidance for talent detection and to keep youngster doing what they like as a recreational sport. The purpose of this study was to identify the relationship between physical performances with something that they like. Material and methods: In this cross-sectional study, 558 pupils age between 8 years to 11 years were tested using test battery containing 7 physical performance tests (I Do) compared to a pictorial scale containing 7 pictures (I Like) referring to the physical performance tests. Pearson correlation was computed to investigate the relation between the actual performance and the enjoyment. Results: Moderate significant correlations between each of the respective I Do, and I Like components were found. It appears that the correlation between the endurance items is higher as compared to the other six characteristics. Rerunning the analysis for age and sex groups separately resulted in only one significant correlation across all age group, namely between the evaluations of cardiovascular endurance. Conclusions: Information on enjoyment appears to be a useful and cost-effective addition to current multidimensional test batteries in a sport. By providing a clear picture on activities the young child or athlete likes or dislikes, attrition can be increased if a child starts his ‘career’ in a sport that alludes to skills or tasks he/she likes. This enjoyment will increase the intrinsic motivation, which is beneficial for sustained sports participation as well as for avoiding dropout in promising young athletes.Keywords: I Do, I Like, physical performance, enjoyment
Procedia PDF Downloads 1543860 Structural Testing and the Finite Element Modelling of Anchors Loaded Against Partially Confined Surfaces
Authors: Ali Karrech, Alberto Puccini, Ben Galvin, Davide Galli
Abstract:
This paper summarises the laboratory tests, numerical models and statistical approach developed to investigate the behaviour of concrete blocks loaded in shear through metallic anchors. This research is proposed to bridge a gap in the state of the art and practice related to anchors loaded against partially confined concrete surfaces. Eight concrete blocks (420 mm x 500 mm x 1000 mm) with 150 and/or 250 deep anchors were tested. The stainless-steel anchors of diameter 16 mm were bonded with HIT-RE 500 V4 injection epoxy resin and were subjected to shear loading against partially supported edges. In addition, finite element models were constructed to validate the laboratory tests and explore the influence of key parameters such as anchor depth, anchor distance from the edge, and compressive strength on the stability of the block. Upon their validation experimentally, the numerical results were used to populate, develop and interpret a systematic parametric study based on the Design of Experiment approach through the Box-Behnken design and Response Surface Methodology. An empirical model has been derived based on this approach, which predicts the load capacity with the desirable intervals of confidence.Keywords: finite element modelling, design of experiment, response surface methodology, Box-Behnken design, empirical model, interval of confidence, load capacity
Procedia PDF Downloads 263859 Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials
Authors: Barry Hojjatie
Abstract:
Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm.Keywords: ceramis, biaxial, flexure test, uniaxial
Procedia PDF Downloads 1553858 Ethnopharmacological Analysis of Fermented Herbal Concoctions
Authors: Ishmael Ntlhamu
Abstract:
In Limpopo Province, the use of herbal concoctions is becoming very popular. These concoctions are claimed to be capable of treating ulcers, diabetes, certain STDs, blood cleansing, and many more types of diseases. The aim of this study was to evaluate the phytochemical composition, evaluate the pharmacological effects and consumption safety in herbal concoctions to treat various kinds of ailments in Limpopo. The concoctions were extracted with 80% acetone. Microorganisms in the concoctions were identified using the Vitek 2 compact system. Qualitative phytochemical analysis was determined using standard chemical tests and thin layer chromatography (TLC). Total polyphenol content was quantified. Antioxidant activity was quantified using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay and ferric reducing power. Antimicrobial activities were determined using a broth micro-dilution assay and bioautography. Cell viability assay was used to determine the cytotoxicity. Results showed that concoctions had antioxidant activity. Presence of different phytoconstituents was observed. Isolated microorganisms were identified as Burkholderia pseudomallei, Staphylococcus vitulimus, Enterococcus columbae, Kocuria kristanae, Staphylococcus intermedius, Cryptococcus laurenti. and Burkholderia pseudomallei (highly pathogenic). Therefore, phytochemicals prove that the concoctions can heal as the antimicrobial tests also displayed activity. Moreover, the concoctions did not exhibit cytotoxic effects. However, contaminants raise concerns, not only for consumer safety but also the quality of herbal concoctions available as part of the traditional medicinal practice in Limpopo.Keywords: antimicrobials, concoctions, cytotoxicity, phytochemicals
Procedia PDF Downloads 1403857 Use of Polymeric Materials in the Architectural Preservation
Authors: F. Z. Benabid, F. Zouai, A. Douibi, D. Benachour
Abstract:
These Fluorinated polymers and polyacrylics have known a wide use in the field of historical monuments. PVDF provides a great easiness to processing, a good UV resistance and good chemical inertia. Although the quality of physical characteristics of the PMMA and its low price with a respect to PVDF, its deterioration against UV radiations limits its use as protector agent for the stones. On the other hand, PVDF/PMMA blend is a compromise of a great development in the field of architectural restoration, since it is the best method in term of quality and price to make new polymeric materials having enhanced properties. Films of different compositions based on the two polymers within an adequate solvent (DMF) were obtained to perform an exposition to artificial ageing and to the salted fog, a spectroscopic analysis (FTIR and UV) and optical analysis (refractive index). Based on its great interest in the field of building, a variety of standard tests has been elaborated for the first time at the central laboratory of ENAP (Souk-Ahras) in order to evaluate our blend performance. The obtained results have allowed observing the behavior of the different compositions of the blend under various tests. The addition of PVDF to PMMA enhances the properties of this last to know the exhibition to the natural and artificial ageing and to the saline fog. On the other hand, PMMA enhances the optical properties of the blend. Finally, 70/30 composition of the blend is in concordance with results of previous works and it is the adequate proportion for an eventual application.Keywords: blend, PVDF, PMMA, preservation, historic monuments
Procedia PDF Downloads 3093856 Tensile and Bond Characterization of Basalt-Fabric Reinforced Alkali Activated Matrix
Authors: S. Candamano, A. Iorfida, F. Crea, A. Macario
Abstract:
Recently, basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result to be effective in structural strengthening and cost/environment efficient. In this study, authors investigate their mechanical behavior when an inorganic matrix, belonging to the family of alkali-activated binders, is used. In particular, the matrix has been designed to contain high amounts of industrial by-products and waste, such as Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash. Fresh state properties, such as workability, mechanical properties and shrinkage behavior of the matrix have been measured, while microstructures and reaction products were analyzed by Scanning Electron Microscopy and X-Ray Diffractometry. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. An appropriate experimental campaign based on direct tensile tests on composite specimens and single-lap shear bond test on brickwork substrate has been thus carried out to investigate their mechanical behavior under tension, the stress-transfer mechanism and failure modes. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST) were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, an average compressive strength of 32 MPa and flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline aluminium-modified calcium silicate hydrate (C-A-S-H) gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. Test results indicate that the behavior is mainly governed by cracks development (II) and widening (III) up to failure. The ultimate tensile strength and strain were respectively σᵤ = 456 MPa and ɛᵤ= 2.20%. The tensile modulus of elasticity in stage III was EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of a fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali-Activated Materials can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.Keywords: Alkali-activated binders, Basalt-FRCM composites, direct shear tests, structural strengthening
Procedia PDF Downloads 1313855 Evaluating Cognition and Movement Coordination of Adolescents with Intellectual Disabilities through Ball Games
Authors: Wann-Yun Shieh, Hsin-Yi Kathy Cheng, Yan-Ying Ju, Yu-Chun Yu, Ya-Cheng Shieh
Abstract:
Adolescents who have intellectual disabilities often demonstrate maladaptive behaviors in their daily activities due to either physical abnormalities or neurological disorders. These adolescents commonly struggle with their cognition and movement coordination when it comes to executing tasks such as throwing or catching objects smoothly, quickly, and gracefully, in contrast to their typically developing peers. Simply measuring movement time and distance doesn't provide a comprehensive view of their performance challenges. In this study, a ball-playing approach was proposed to assess the cognition and movement coordination of adolescents with intellectual disabilities using a smart ball equipped with an embedded inertial sensor. Four distinct ball games were specifically designed for this smart ball: two focusing on lower limb activities (dribbling along a straight line and navigating a zigzag path) and two centered around upper limb tasks (picking up and throwing and catching the ball). The cognition and movement coordination of 25 adolescents with intellectual disabilities (average age 18.36 ± 2.46 years) with that of 25 typically developing adolescents (average age 18.36 ± 0.49 years) were compared in these four tests. The results clearly revealed significant differences in the cognition and movement coordination between the adolescents with intellectual disabilities and the typically developing adolescents. These differences encompassed aspects such as movement speed, hand-eye coordination, and control over objects across all the tests conducted.Keywords: cognition, intellectual disabilities, movement coordination, smart ball
Procedia PDF Downloads 753854 Hand Movements and the Effect of Using Smart Teaching Aids: Quality of Writing Styles Outcomes of Pupils with Dysgraphia
Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Sajedah Al Yaari, Adham Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Ayah Al Yaari, Fatehi Eissa
Abstract:
Dysgraphia is a neurological disorder of written expression that impairs writing ability and fine motor skills, resulting primarily in problems relating not only to handwriting but also to writing coherence and cohesion. We investigate the properties of smart writing technology to highlight some unique features of the effects they cause on the academic performance of pupils with dysgraphia. In Amis, dysgraphics undergo writing problems to express their ideas due to ordinary writing aids, as the default strategy. The Amis data suggests a possible connection between available writing aids and pupils’ writing improvement; therefore, texts’ expression and comprehension. A group of thirteen dysgraphic pupils were placed in a regular classroom of primary school, with twenty-one pupils being recruited in the study as a control group. To ensure validity, reliability and accountability to the research, both groups studied writing courses for two semesters, of which the first was equipped with smart writing aids while the second took place in an ordinary classroom. Two pre-tests were undertaken at the beginning of the first two semesters, and two post-tests were administered at the end of both semesters. Tests examined pupils’ ability to write coherent, cohesive and expressive texts. The dysgraphic group received the treatment of a writing course in the first semester in classes with smart technology and produced significantly greater increases in writing expression than in an ordinary classroom, and their performance was better than that of the control group in the second semester. The current study concludes that using smart teaching aids is a ‘MUST’, both for teaching and learning dysgraphia. Furthermore, it is demonstrated that for young dysgraphia, expressive tasks are more challenging than coherent and cohesive tasks. The study, therefore, supports the literature suggesting a role for smart educational aids in writing and that smart writing techniques may be an efficient addition to regular educational practices, notably in special educational institutions and speech-language therapeutic facilities. However, further research is needed to prompt the adults with dysgraphia more often than is done to the older adults without dysgraphia in order to get them to finish the other productive and/or written skills tasks.Keywords: smart technology, writing aids, pupils with dysgraphia, hands’ movement
Procedia PDF Downloads 403853 Toxicity Analysis of Metal Coating Industry Wastewaters by Phytotoxicity Method
Authors: Sukru Dursun, Zeynep Cansu Ayturan, Mostafa Maroof
Abstract:
Metal coating which is important method used for protecting metals against oxidation and corrosion, decreasing friction, protecting metals from chemicals, easing cleaning of the metals. There are several methods used for metal coating such as hot-dip galvanizing, thermal spraying, electroplating and sherardizing. Method which will be used for metal coating depends on the type of metal. The materials mostly used for coating are zinc, nickel, brass, chrome, gold, cadmium, copper, brass, and silver. Within these materials, chrome ion has significant negative impacts on human, other living organisms and environment. Moreover, especially on human chrome may cause lung cancer, stomach ulcer, kidney and liver function disorders and death. Therefore, wastewaters of metal coating industry including chrome should be treated very carefully. In this study, wastewater containing chrome produced by metal coating industry was analysed with phytotoxicity method that is based on measuring the reaction of some plant species against different concentrations of chrome solution. Main plants used for phytotoxicity tests are Lepidium sativum and Lemna minor. Owing to phytotoxicity test, assessing the negative effects of chrome which may harm plants and offering more accurate wastewater treatment techniques against chromium wastewater is possible. Furthermore, the results taken from phytotoxicity tests were analysed with respect to their variance and their importance against different concentrations of chrome solution were determined.Keywords: metal coating wastewater, chrome, phytotoxicity, Lepidium sativum, Lemna minor
Procedia PDF Downloads 3253852 In situ High Temperature Characterization of Diamond-Like Carbon Films
Authors: M. Rouhani, F. C. N. Hong, Y. R. Jeng
Abstract:
The tribological performance of DLC films is limited by graphitization at elevated temperatures. Despite of numerous studies on the thermal stability of DLC films, a comprehensive in-situ characterization at elevated temperature is still lacking. In this study, DLC films were deposited using filtered cathodic arc vacuum method. Thermal stability of the films was characterized in-situally using a synchronized technique integrating Raman spectroscopy and depth-sensing measurements. Tests were performed in a high temperature chamber coupled with feedback control to make it possible to study the temperature effects in the range of 21 – 450 ̊C. Co-located SPM and Raman microscopy maps at different temperature over a specific area on the surface of the film were prepared. The results show that the thermal stability of the DLC films depends on their sp3 content. Films with lower sp3 content endure graphitization during the temperature-course used in this study. The graphitization is accompanied with significant changes in surface roughness and Raman spectrum of the film. Surface roughness of the films start to change even before graphitization transformation could be detected using Raman spectroscopy. Depth-sensing tests (nanoindentation, nano-scratch and wear) endorse the surface roughness change seen before graphitization occurrence. This in-situ study showed that the surface of the films is more sensitive to temperature rise compared to the bulk. We presume the changes observed in films hardness, surface roughness and scratch resistance with temperature rise, before graphitization occurrence, is due to surface relaxation.Keywords: DLC film, nanoindentation, Raman spectroscopy, thermal stability
Procedia PDF Downloads 200