Search results for: process operation
16708 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal
Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova
Abstract:
This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring
Procedia PDF Downloads 12616707 Decommissioning of Nuclear Power Plants: The Current Position and Requirements
Abstract:
Undoubtedly from construction's perspective, the use of explosives will remove a large facility such as a 40-storey building , that took almost 3 to 4 years for construction, in few minutes. Usually, the reconstruction or decommissioning, the last phase of life cycle of any facility, is considered to be the shortest. However, this is proved to be wrong in the case of nuclear power plant. Statistics says that in the last 30 years, the construction of a nuclear power plant took an average time of 6 years whereas it is estimated that decommissioning of such plants may take even a decade or more. This paper is all about the decommissioning phase of a nuclear power plant which needs to be given more attention and encouragement from the research institutes as well as the nuclear industry. Currently, there are 437 nuclear power reactors in operation and 70 reactors in construction. With around 139 nuclear facilities already been shut down and are in different decommissioning stages and approximately 347 nuclear reactors will be in decommissioning phase in the next 20 years (assuming the operation time of a reactor as 40 years), This fact raises the following two questions (1) How far is the nuclear and construction Industry ready to face the challenges of decommissioning project? (2) What is required for a safety and reliable decommissioning project delivery? The decommissioning of nuclear facilities across the global have severe time and budget overruns. Largely the decommissioning processes are being executed by the force of manual labour where the change in regulations is respectively observed. In term of research and development, some research projects and activities are being carried out in this area, but the requirement seems to be much more. The near future of decommissioning shall be better through a sustainable development strategy where all stakeholders agree to implement innovative technologies especially for dismantling and decontamination processes and to deliever a reliable and safety decommissioning. The scope of technology transfer from other industries shall be explored. For example, remotery operated robotic technologies used in automobile and production industry to reduce time and improve effecincy and saftey shall be tried here. However, the innovative technologies are highly requested but they are alone not enough, the implementation of creative and innovative management methodologies should be also investigated and applied. Lean Management with it main concept "elimination of waste within process", is a suitable example here. Thus, the cooperation between international organisations and related industries and the knowledge-sharing may serve as a key factor for the successful decommissioning projects.Keywords: decommissioning of nuclear facilities, innovative technology, innovative management, sustainable development
Procedia PDF Downloads 47116706 Fabrication of Silicon Solar Cells Using All Sputtering Process
Authors: Ching-Hua Li, Sheng-Hui Chen
Abstract:
Sputtering is a popular technique with many advantages for thin film deposition. To fabricate a hydrogenated silicon thin film using sputtering process for solar cell applications, the ion bombardment during sputtering will generate microstructures (voids and columnar structures) to form silicon dihydride bodings as defects. The properties of heterojunction silicon solar cells were studied by using boron grains and silicon-boron targets. Finally, an 11.7% efficiency of solar cell was achieved by using all sputtering process.Keywords: solar cell, sputtering process, pvd, alloy target
Procedia PDF Downloads 58016705 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea
Authors: Jaehyung Jung, Kiman Kim, Heesang Eum
Abstract:
Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell
Procedia PDF Downloads 22116704 Understanding the Importance of Participation in the City Planning Process and Its Influencing Factors
Authors: Louis Nwachi
Abstract:
Urban planning systems in most countries still rely on expert-driven, top-down technocratic plan-making processes rather than a public and people-led process. This paper set out to evaluate the need for public participation in the plan-making process and to highlight the factors that affect public participation in the plan-making process. In doing this, it adopted a qualitative approach based on document review and interviews taken from real-world phenomena. A case study strategy using the Metropolitan Area of Abuja, the capital of Nigeria, as the study sample was used in carrying out the research. The research finds that participation is an important tool in the plan-making process and that public engagement in the process contributes to the identification of key urban issues that are unique to the specific local areas, thereby contributing to the establishment of priorities and, in turn, to the mobilization of resources to meet the identified needs. It also finds that the development of a participation model by city authorities encourages public engagement and helps to develop trust between those in authority and the different key stakeholder groups involved in the plan-making process.Keywords: plan-making, participation, urban planning, city
Procedia PDF Downloads 10316703 Effects of Safety Intervention Program towards Behaviors among Rubber Wood Processing Workers Using Theory of Planned Behavior
Authors: Junjira Mahaboon, Anongnard Boonpak, Nattakarn Worrasan, Busma Kama, Mujalin Saikliang, Siripor Dankachatarn
Abstract:
Rubber wood processing is one of the most important industries in southern Thailand. The process has several safety hazards for example unsafe wood cutting machine guarding, wood dust, noise, and heavy lifting. However, workers’ occupational health and safety measures to promote their behaviors are still limited. This quasi-experimental research was to determine factors affecting workers’ safety behaviors using theory of planned behavior after implementing job safety intervention program. The purposes were to (1) determine factors affecting workers’ behaviors and (2) to evaluate effectiveness of the intervention program. The sample of study was 66 workers from a rubber wood processing factory. Factors in the Theory of Planned Behavior model (TPB) were measured before and after the intervention. The factors of TPB included attitude towards behavior, subjective norm, perceived behavioral control, intention, and behavior. Firstly, Job Safety Analysis (JSA) was conducted and Safety Standard Operation Procedures (SSOP) were established. The questionnaire was also used to collect workers’ characteristics and TPB factors. Then, job safety intervention program to promote workers’ behavior according to SSOP were implemented for a four month period. The program included SSOP training, personal protective equipment use, and safety promotional campaign. After that, the TPB factors were again collected. Paired sample t-test and independent t-test were used to analyze the data. The result revealed that attitude towards behavior and intention increased significantly after the intervention at p<0.05. These factors also significantly determined the workers’ safety behavior according to SSOP at p<0.05. However, subjective norm, and perceived behavioral control were not significantly changed nor related to safety behaviors. In conclusion, attitude towards behavior and workers’ intention should be promoted to encourage workers’ safety behaviors. SSOP intervention program e.g. short meeting, safety training, and promotional campaign should be continuously implemented in a routine basis to improve workers’ behavior.Keywords: job safety analysis, rubber wood processing workers, safety standard operation procedure, theory of planned behavior
Procedia PDF Downloads 19516702 Quality Based Approach for Efficient Biologics Manufacturing
Authors: Takashi Kaminagayoshi, Shigeyuki Haruyama
Abstract:
To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process.Keywords: antibody drugs, biologics, manufacturing efficiency, PDCA cycle, quality engineering
Procedia PDF Downloads 34616701 FMCW Doppler Radar Measurements with Microstrip Tx-Rx Antennas
Authors: Yusuf Ulaş Kabukçu, Si̇nan Çeli̇k, Onur Salan, Mai̇de Altuntaş, Mert Can Dalkiran, Gökseni̇n Bozdağ, Metehan Bulut, Fati̇h Yaman
Abstract:
This study presents a more compact implementation of the 2.4GHz MIT Coffee Can Doppler Radar for 2.6GHz operating frequency. The main difference of our prototype depends on the use of microstrip antennas which makes it possible to transport with a small robotic vehicle. We have designed our radar system with two different channels: Tx and Rx. The system mainly consists of Voltage Controlled Oscillator (VCO) source, low noise amplifiers, microstrip antennas, splitter, mixer, low pass filter, and necessary RF connectors with cables. The two microstrip antennas, one is element for transmitter and the other one is array for receiver channel, was designed, fabricated and verified by experiments. The system has two operation modes: speed detection and range detection. If the switch of the operation mode is ‘Off’, only CW signal transmitted for speed measurement. When the switch is ‘On’, CW is frequency-modulated and range detection is possible. In speed detection mode, high frequency (2.6 GHz) is generated by a VCO, and then amplified to reach a reasonable level of transmit power. Before transmitting the amplified signal through a microstrip patch antenna, a splitter used in order to compare the frequencies of transmitted and received signals. Half of amplified signal (LO) is forwarded to a mixer, which helps us to compare the frequencies of transmitted and received (RF) and has the IF output, or in other words information of Doppler frequency. Then, IF output is filtered and amplified to process the signal digitally. Filtered and amplified signal showing Doppler frequency is used as an input of audio input of a computer. After getting this data Doppler frequency is shown as a speed change on a figure via Matlab script. According to experimental field measurements the accuracy of speed measurement is approximately %90. In range detection mode, a chirp signal is used to form a FM chirp. This FM chirp helps to determine the range of the target since only Doppler frequency measured with CW is not enough for range detection. Such a FMCW Doppler radar may be used in border security of the countries since it is capable of both speed and range detection.Keywords: doppler radar, FMCW, range detection, speed detection
Procedia PDF Downloads 39816700 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: neural network, dry relaxation, knitting, linear regression
Procedia PDF Downloads 58516699 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions
Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong
Abstract:
A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition
Procedia PDF Downloads 15316698 Maintaining Energy Security in Natural Gas Pipeline Operations by Empowering Process Safety Principles Through Alarm Management Applications
Authors: Huseyin Sinan Gunesli
Abstract:
Process Safety Management is a disciplined framework for managing the integrity of systems and processes that handle hazardous substances. It relies on good design principles, well-implemented automation systems, and operating and maintenance practices. Alarm Management Systems play a critically important role in the safe and efficient operation of modern industrial plants. In that respect, Alarm Management is one of the critical factors feeding the safe operations of the plants in the manner of applying effective process safety principles. Trans Anatolian Natural Gas Pipeline (TANAP) is part of the Southern Gas Corridor, which extends from the Caspian Sea to Italy. TANAP transports Natural Gas from the Shah Deniz gas field of Azerbaijan, and possibly from other neighboring countries, to Turkey and through Trans Adriatic Pipeline (TAP) Pipeline to Europe. TANAP plays a crucial role in maintaining Energy Security for the region and Europe. In that respect, the application of Process Safety principles is vital to deliver safe, reliable and efficient Natural Gas delivery to Shippers both in the region and Europe. Effective Alarm Management is one of those Process Safety principles which feeds safe operations of the TANAP pipeline. Alarm Philosophy was designed and implemented in TANAP Pipeline according to the relevant standards. However, it is essential to manage the alarms received in the control room effectively to maintain safe operations. In that respect, TANAP has commenced Alarm Management & Rationalization program as of February 2022 after transferring to Plateau Regime, reaching the design parameters. While Alarm Rationalization started, there were more than circa 2300 alarms received per hour from one of the compressor stations. After applying alarm management principles such as reviewing and removal of bad actors, standing, stale, chattering, fleeting alarms, comprehensive review and revision of alarm set points through a change management principle, conducting alarm audits/design verification and etc., it has been achieved to reduce down to circa 40 alarms per hour. After the successful implementation of alarm management principles as specified above, the number of alarms has been reduced to industry standards. That significantly improved operator vigilance to focus on mainly important and critical alarms to avoid any excursion beyond safe operating limits leading to any potential process safety events. Following the ‟What Gets Measured, Gets Managed” principle, TANAP has identified key Performance Indicators (KPIs) to manage Process Safety principles effectively, where Alarm Management has formed one of the key parameters of those KPIs. However, review and analysis of the alarms were performed manually. Without utilizing Alarm Management Software, achieving full compliance with international standards is almost infeasible. In that respect, TANAP has started using one of the industry-wide known Alarm Management Applications to maintain full review and analysis of alarms and define actions as required. That actually significantly empowered TANAP’s process safety principles in terms of Alarm Management.Keywords: process safety principles, energy security, natural gas pipeline operations, alarm rationalization, alarm management, alarm management application
Procedia PDF Downloads 10416697 Sustainable and Responsible Mining - Lundin Mining’s Subsidiary in Portugal, Sociedade Mineira de Neves-Corvo Case
Authors: Jose Daniel Braga Alves, Joaquim Gois, Alexandre Leite
Abstract:
This abstract presents the responsible and sustainable mining case study of a Portuguese mine operation, highlighting how mine exploitation can sustainably exist in balance with the environment, aligned with all stakeholders. The mining operation is remotely located in a United Nations (UN) biodiversity reserve, away from major industrial centers or logistical ports, and presents an interesting investigation to assess the balanced mine operation in alignment with all key stakeholders, which presents unique opportunities as well as challenges. Based on the sustainable mining framework, it is intended to detail examples of best practices from Sociedade Mineira de Neves-Corvo (SOMINCOR), demonstrating social acceptance by the local community, health, and safety at work, reduction of environmental impacts and management of mining waste, which directly influence the acceptance and recognition of a sustainable operation. The case study aims to present the SOMINCOR approach to sustainable mining, focusing on social responsibility, considering materials provided by Lundin Mining Corporation (LMC) and SOMINCOR and the socially responsible approach of the mining operations., referencing related international guidelines, UN Sustainable Development Goals. The researchers reviewed LMC's annual Sustainability Reports (2019, 2020 and 2021) and updated information regarding material topics of the most significant interest to internal and external stakeholders. These material topics formed the basis of the corporation-wide sustainability strategy. LMC's Responsible Mining Policy (RMP) was reviewed, focusing on the commitment that guides the approach to responsible operation and management of the Company's business. Social performance, compliance, environmental management, governance, human rights, and economic contribution are principles of the RMP. The Human Rights Risk Impact Assessment (HRRIA), based on frameworks including UN Guiding Principles (UNGP), Voluntary Principles on Security and Human Rights, and a community engagement program implemented (SLO index), was part of this research. The program consists of ongoing surveys and perceptions studies using behavioural science insights, data from which was not available within the timeframe of completing this research. LMC stakeholder engagement standards and grievance mechanisms were also reviewed. Stakeholder engagement and the community's perception are key to this operation to ensure social license to operate (SLO). Preliminary surveys with local communities provided input data for the local development strategy. After the implementation of several initiatives, subsequent surveys were performed to assess acceptance and trust from the local communities and changes to the SLO index. SOMINCOR's operation contributes to 12 out of 17 sustainable development goals. From the assessed and available data, local communities and social engagement are priorities to SOMINCOR. Experience to date shows that the continual engagement with local communities and the grievance mechanisms in place are respected and followed for all concerns presented by any stakeholder. It can be concluded that this underground mine in Portugal complies with applicable regulations and goes beyond them with regard to sustainable development and engagement with key stakeholders.Keywords: sustainable mining, development goals, portuguese mining, zinc copper
Procedia PDF Downloads 7716696 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery
Authors: Meet Bhatia
Abstract:
Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection
Procedia PDF Downloads 33716695 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator
Authors: Mohammad Ruhul Amin, Nusrat Jahan
Abstract:
Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization
Procedia PDF Downloads 49816694 Corrosion Behvaior of CS1018 in Various CO2 Capture Solvents
Authors: Aida Rafat, Ramazan Kahraman, Mert Atilhan
Abstract:
The aggressive corrosion behavior of conventional amine solvents is one of main barriers against large scale commerizaliation of amine absorption process for carbon capture application. Novel CO2 absorbents that exhibit minimal corrosivity against operation conditions are essential to lower corrosion damage and control and ensure more robustness in the capture plant. This work investigated corrosion behavior of carbon steel CS1018 in various CO2 absrobent solvents. The tested solvents included the classical amines MEA, DEA and MDEA, piperazine activated solvents MEA/PZ, MDEA/PZ and MEA/MDEA/PZ as well as mixtures of MEA and Room Temperature Ionic Liquids RTIL, namely MEA/[C4MIM][BF4] and MEA/[C4MIM][Otf]. Electrochemical polarization technique was used to determine the system corrosiveness in terms of corrosion rate and polarization behavior. The process parameters of interest were CO2 loading and solution temperature. Electrochemical resulted showed corrosivity order of classical amines at 40°C is MDEA> MEA > DEA wherase at 80°C corrosivity ranking changes to MEA > DEA > MDEA. Corrosivity rankings were mainly governed by CO2 absorption capacity at the test temperature. Corrosivity ranking for activated amines at 80°C was MEA/PZ > MDEA/PZ > MEA/MDEA/PZ. Piperazine addition seemed to have a dual advanatge in terms of enhancing CO2 absorption capacity as well as nullifying corrosion. For MEA/RTIL mixtures, the preliminary results showed that the partial repalcement of aqueous phase in MEA solution by the more stable nonvolatile RTIL solvents reduced corrosion rates considerably.Keywords: corrosion, amines, CO2 capture, piperazine, ionic liquids
Procedia PDF Downloads 46016693 Unfolding the Social Clash between Online and Non-Online Transportation Providers in Bandung
Authors: Latifah Putti Tiananda, Sasti Khoirunnisa, Taniadiana Yapwito, Jessica Noviena
Abstract:
Innovations are often met with two responses, acceptance or rejection. In the past few years, Indonesia is experiencing a revolution of transportation service, which utilizes online platform for its operation. Such improvement is welcomed by consumers and challenged by conventional or ‘non-online’ transportation providers simultaneously. Conflicts arise as the existence of this online transportation mode results in declining income of non-online transportation workers. Physical confrontations and demonstrations demand policing from central authority. However, the obscurity of legal measures from the government persists the social instability. Bandung, a city in West Java with the highest rate of online transportation usage, has recently issued a recommendation withholding the operation of online transportation services to maintain peace and order. Thus, this paper seeks to elaborate the social unrest between the two contesting transportation actors in Bandung and explore community-based approaches to solve this problem. Using qualitative research method, this paper will also feature in-depth interviews with directly involved sources from Bandung.Keywords: Bandung, market competition, online transportation services, social unrest
Procedia PDF Downloads 27516692 Design of a Surveillance Drone with Computer Aided Durability
Authors: Maram Shahad Dana Anfal
Abstract:
This research paper presents the design of a surveillance drone with computer-aided durability and model analyses that provides a cost-effective and efficient solution for various applications. The quadcopter's design is based on a lightweight and strong structure made of materials such as aluminum and titanium, which provide a durable structure for the quadcopter. The structure of this product and the computer-aided durability system are both designed to ensure frequent repairs or replacements, which will save time and money in the long run. Moreover, the study discusses the drone's ability to track, investigate, and deliver objects more quickly than traditional methods, makes it a highly efficient and cost-effective technology. In this paper, a comprehensive analysis of the quadcopter's operation dynamics and limitations is presented. In both simulation and experimental data, the computer-aided durability system and the drone's design demonstrate their effectiveness, highlighting the potential for a variety of applications, such as search and rescue missions, infrastructure monitoring, and agricultural operations. Also, the findings provide insights into possible areas for improvement in the design and operation of the drone. Ultimately, this paper presents a reliable and cost-effective solution for surveillance applications by designing a drone with computer-aided durability and modeling. With its potential to save time and money, increase reliability, and enhance safety, it is a promising technology for the future of surveillance drones. operation dynamic equations have been evaluated successfully for different flight conditions of a quadcopter. Also, CAE modeling techniques have been applied for the modal risk assessment at operating conditions.Stress analysis have been performed under the loadings of the worst-case combined motion flight conditions.Keywords: drone, material, solidwork, hypermesh
Procedia PDF Downloads 14616691 Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines
Authors: H. Al-Jabli
Abstract:
Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.Keywords: high saline brine, freeze-melting process, ice crystallization, brine disposal process
Procedia PDF Downloads 27116690 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System
Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou
Abstract:
The paper discusses the main aspects involved in the development of a supply chain management system using the newly developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.Keywords: demand forecasting, machine learning, risk management, supply chain design
Procedia PDF Downloads 9716689 Modeling Intelligent Threats: Case of Continuous Attacks on a Specific Target
Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez
Abstract:
In this paper, we treat a model that falls in the area of protecting targeted systems from intelligent threats including terrorism. We introduce the concept of system survivability, in the context of continuous attacks, as the probability that a system under attack will continue operation up to some fixed time t. We define a constant attack rate (CAR) process as an attack on a targeted system that follows an exponential distribution. We consider the superposition of several CAR processes. From the attacker side, we determine the optimal attack strategy that minimizes the system survivability. We also determine the optimal strengthening strategy that maximizes the system survivability under limited defensive resources. We use operations research techniques to identify optimal strategies of each antagonist. Our results may be used as interesting starting points to develop realistic protection strategies against intentional attacks.Keywords: CAR processes, defense/attack strategies, exponential failure, survivability
Procedia PDF Downloads 39516688 Adsorption of 17a-Ethinylestradiol on Activated Carbon Based on Sewage Sludge in Aqueous Medium
Authors: Karoline Reis de Sena
Abstract:
Endocrine disruptors are unregulated or not fully regulated compounds, even in the most developed countries, and which can be a danger to the environment and human health. They pass untreated through the secondary stage of conventional wastewater treatment plants, then the effluent from the wastewater treatment plants is discharged into the rivers, upstream and downstream from the drinking water treatment plants that use the same river water as the tributary. Long-term consumption of drinking water containing low concentrations of these compounds can cause health problems; these are persistent in nature and difficult to remove. In this way, research on emerging pollutants is expanding and is fueled by progress in finding the appropriate method for treating wastewater. Adsorption is the most common separation process, it is a simple and low-cost operation, but it is not eco-efficient. Concomitant to this, biosorption arises, which is a subcategory of adsorption where the biosorbent is biomass and which presents numerous advantages when compared to conventional treatment methods, such as low cost, high efficiency, minimization of the use of chemicals, absence of need for additional nutrients, biosorbent regeneration capacity and the biomass used in the production of biosorbents are found in abundance in nature. Thus, the use of alternative materials, such as sewage sludge, for the synthesis of adsorbents has proved to be an economically viable alternative, together with the importance of valuing the generated by-product flows, as well as managing the problem of their correct disposal. In this work, an alternative for the management of sewage sludge is proposed, transforming it into activated carbon and using it in the adsorption process of 17a-ethinylestradiol.Keywords: 17α-ethinylestradiol, adsorption, activated carbon, sewage sludge, micropollutants
Procedia PDF Downloads 9516687 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split
Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel
Abstract:
The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.Keywords: deethanizer, demethanizer, residue gas, NGL
Procedia PDF Downloads 26616686 The Relationship between Operating Condition and Sludge Wasting of an Aerobic Suspension-Sequencing Batch Reactor (ASSBR) Treating Phenolic Wastewater
Authors: Ali Alattabi, Clare Harris, Rafid Alkhaddar, Ali Alzeyadi
Abstract:
Petroleum refinery wastewater (PRW) can be considered as one of the most significant source of aquatic environmental pollution. It consists of oil and grease along with many other toxic organic pollutants. In recent years, a new technique was implemented using different types of membranes and sequencing batch reactors (SBRs) to treat PRW. SBR is a fill and draw type sludge system which operates in time instead of space. Many researchers have optimised SBRs’ operating conditions to obtain maximum removal of undesired wastewater pollutants. It has gained more importance mainly because of its essential flexibility in cycle time. It can handle shock loads, requires less area for operation and easy to operate. However, bulking sludge or discharging floating or settled sludge during the draw or decant phase with some SBR configurations are still one of the problems of SBR system. The main aim of this study is to develop and innovative design for the SBR optimising the process variables to result is a more robust and efficient process. Several experimental tests will be developed to determine the removal percentages of chemical oxygen demand (COD), Phenol and nitrogen compounds from synthetic PRW. Furthermore, the dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) of the SBR system will be monitored online to ensure a good environment for the microorganisms to biodegrade the organic matter effectively.Keywords: petroleum refinery wastewater, sequencing batch reactor, hydraulic retention time, Phenol, COD, mixed liquor suspended solids (MLSS)
Procedia PDF Downloads 26316685 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies
Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim
Abstract:
Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton
Procedia PDF Downloads 6016684 A Three-Step Iterative Process for Common Fixed Points of Three Contractive-Like Operators
Authors: Safeer Hussain Khan, H. Fukhar-ud-Din
Abstract:
The concept of quasi-contractive type operators was given by Berinde and extended by Imoru and Olatinwo. They named this new type as contractive-like operators. On the other hand, Xu and Noo introduced a three-step-one-mappings iterative process which can be seen as a generalization of Mann and Ishikawa iterative processes. Approximating common fixed points has its own importance as it has a direct link with minimization problem. Motivated by this, in this paper, we first extend the iterative process of Xu and Noor to the case of three-step-three-mappings and then prove a strong convergence result using contractive-like operators for this iterative process. In general, this generalizes corresponding results using Mann, Ishikawa and Xu-Noor iterative processes with quasi-contractive type operators. It is to be pointed out that our results can also be proved with iterative process involving error terms.Keywords: contractive-like operator, iterative process, common fixed point, strong convergence
Procedia PDF Downloads 59416683 Requirements Management in Agile
Authors: Ravneet Kaur
Abstract:
The concept of Agile Requirements Engineering and Management is not new. However, the struggle to figure out how traditional Requirements Management Process fits within an Agile framework remains complex. This paper talks about a process that can merge the organization’s traditional Requirements Management Process nicely into the Agile Software Development Process. This process provides Traceability of the Product Backlog to the external documents on one hand and User Stories on the other hand. It also gives sufficient evidence that the system will deliver the right functionality with good quality in the form of various statistics and reports. In the nutshell, by overlaying a process on top of Agile, without disturbing the Agility, we are able to get synergic benefits in terms of productivity, profitability, its reporting, and end to end visibility to all Stakeholders. The framework can be used for just-in-time requirements definition or to build a repository of requirements for future use. The goal is to make sure that the business (specifically, the product owner) can clearly articulate what needs to be built and define what is of high quality. To accomplish this, the requirements cycle follows a Scrum-like process that mirrors the development cycle but stays two to three steps ahead. The goal is to create a process by which requirements can be thoroughly vetted, organized, and communicated in a manner that is iterative, timely, and quality-focused. Agile is quickly becoming the most popular way of developing software because it fosters continuous improvement, time-boxed development cycles, and more quickly delivering value to the end users. That value will be driven to a large extent by the quality and clarity of requirements that feed the software development process. An agile, lean, and timely approach to requirements as the starting point will help to ensure that the process is optimized.Keywords: requirements management, Agile
Procedia PDF Downloads 37016682 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9116681 Effect of Vegetable Oil Based Nanofluids on Machining Performance: An Experimental Investigation
Authors: Krishna Mohana Rao Gurram, R. Padmini, P. Vamsi Krishna
Abstract:
As a part of extensive research for ecologically safe and operator friendly cutting fluids, this paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid and CNT particles mixed separately with coconut oil, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry and lubricant environments. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining.Keywords: nanoparticles, vegetable oil, machining, MQL, surface roughness
Procedia PDF Downloads 35916680 A Hybrid Digital Watermarking Scheme
Authors: Nazish Saleem Abbas, Muhammad Haris Jamil, Hamid Sharif
Abstract:
Digital watermarking is a technique that allows an individual to add and hide secret information, copyright notice, or other verification message inside a digital audio, video, or image. Today, with the advancement of technology, modern healthcare systems manage patients’ diagnostic information in a digital way in many countries. When transmitted between hospitals through the internet, the medical data becomes vulnerable to attacks and requires security and confidentiality. Digital watermarking techniques are used in order to ensure the authenticity, security and management of medical images and related information. This paper proposes a watermarking technique that embeds a watermark in medical images imperceptibly and securely. In this work, digital watermarking on medical images is carried out using the Least Significant Bit (LSB) with the Discrete Cosine Transform (DCT). The proposed methods of embedding and extraction of a watermark in a watermarked image are performed in the frequency domain using LSB by XOR operation. The quality of the watermarked medical image is measured by the Peak signal-to-noise ratio (PSNR). It was observed that the watermarked medical image obtained performing XOR operation between DCT and LSB survived compression attack having a PSNR up to 38.98.Keywords: watermarking, image processing, DCT, LSB, PSNR
Procedia PDF Downloads 5016679 A Study on Stochastic Integral Associated with Catastrophes
Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan
Abstract:
We analyze stochastic integrals associated with a mutation process. To be specific, we describe the cell population process and derive the differential equations for the joint generating functions for the number of mutants and their integrals in generating functions and their applications. We obtain first-order moments of the processes of the two-way mutation process in first-order moment structure of X (t) and Y (t) and the second-order moments of a one-way mutation process. In this paper, we obtain the limiting behaviour of the integrals in limiting distributions of X (t) and Y (t).Keywords: stochastic integrals, single–server queue model, catastrophes, busy period
Procedia PDF Downloads 643