Search results for: dynamics of polymeric liquid
4457 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions
Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban
Abstract:
The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics
Procedia PDF Downloads 4104456 Numerical Study of Sloshing in a Flexible Tank
Authors: Wissem Tighidet, Faïçal Naït Bouda, Moussa Allouche
Abstract:
The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation.Keywords: arbitrary lagrangian-eulerian, fluid-structure interaction, sloshing, volume of fluid
Procedia PDF Downloads 1054455 Extraction of Strontium Ions through Ligand Assisted Ionic Liquids
Authors: Pradeep Kumar, Abhishek Kumar Chandra, Ashok Khanna
Abstract:
Extraction of Strontium by crown ether (DCH18C6) hasbeen investigated in [BMIM][TF2N] Ionic Liquid (IL) giving higher extraction ~98% and distribution ratio as compared to other organic solvents (Dodecane, Hexane, & Isodecyl alcohol + Dodecane). Distribution ratio of Sr in IL at 0.15M DCH18C6 indicates an enhancement of 20000, 2000, 500 times over Dodecane, Hexane and 5% Isodecyl Alcohol + 95 % Dodecane at 0.01M aqueous acidity respectively. In presence of IL, Sr extraction decreases with increase in HNO3 concentration in aqueous phase whereas opposite trend was observed with organic solvents.Extraction of Sr initially increases with increase in DCH18C6 concentration in IL, finally reaching an asymptotic constant.Keywords: distribution ratio, ionic liquid, ligand, organic solvent, stripping
Procedia PDF Downloads 4434454 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation
Procedia PDF Downloads 4254453 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 3644452 Influence of Temperature and Immersion on the Behavior of a Polymer Composite
Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli
Abstract:
This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical
Procedia PDF Downloads 1164451 Molecular Modeling and Prediction of the Physicochemical Properties of Polyols in Aqueous Solution
Authors: Maria Fontenele, Claude-Gilles Dussap, Vincent Dumouilla, Baptiste Boit
Abstract:
Roquette Frères is a producer of plant-based ingredients that employs many processes to extract relevant molecules and often transforms them through chemical and physical processes to create desired ingredients with specific functionalities. In this context, Roquette encounters numerous multi-component complex systems in their processes, including fibers, proteins, and carbohydrates, in an aqueous environment. To develop, control, and optimize both new and old processes, Roquette aims to develop new in silico tools. Currently, Roquette uses process modelling tools which include specific thermodynamic models and is willing to develop computational methodologies such as molecular dynamics simulations to gain insights into the complex interactions in such complex media, and especially hydrogen bonding interactions. The issue at hand concerns aqueous mixtures of polyols with high dry matter content. The polyols mannitol and sorbitol molecules are diastereoisomers that have nearly identical chemical structures but very different physicochemical properties: for example, the solubility of sorbitol in water is 2.5 kg/kg of water, while mannitol has a solubility of 0.25 kg/kg of water at 25°C. Therefore, predicting liquid-solid equilibrium properties in this case requires sophisticated solution models that cannot be based solely on chemical group contributions, knowing that for mannitol and sorbitol, the chemical constitutive groups are the same. Recognizing the significance of solvation phenomena in polyols, the GePEB (Chemical Engineering, Applied Thermodynamics, and Biosystems) team at Institut Pascal has developed the COSMO-UCA model, which has the structural advantage of using quantum mechanics tools to predict formation and phase equilibrium properties. In this work, we use molecular dynamics simulations to elucidate the behavior of polyols in aqueous solution. Specifically, we employ simulations to compute essential metrics such as radial distribution functions and hydrogen bond autocorrelation functions. Our findings illuminate a fundamental contrast: sorbitol and mannitol exhibit disparate hydrogen bond lifetimes within aqueous environments. This observation serves as a cornerstone in elucidating the divergent physicochemical properties inherent to each compound, shedding light on the nuanced interplay between their molecular structures and water interactions. We also present a methodology to predict the physicochemical properties of complex solutions, taking as sole input the three-dimensional structure of the molecules in the medium. Finally, by developing knowledge models, we represent some physicochemical properties of aqueous solutions of sorbitol and mannitol.Keywords: COSMO models, hydrogen bond, molecular dynamics, thermodynamics
Procedia PDF Downloads 434450 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue
Procedia PDF Downloads 4494449 Comparative Study of Heat Transfer Capacity Limits of Heat Pipes
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.Keywords: heat pipe, HVAC system, grooved Heat pipe, heat pipe limits
Procedia PDF Downloads 4214448 The Effect of the Flow Pipe Diameter on the Rheological Behavior of a Polymeric Solution (CMC)
Authors: H. Abchiche, M. Mellal
Abstract:
The aim of this work is to study the parameters that influence the rheological behavior of a complex fluid (sodium Carboxyméthylcellulose solution), on a capillary rheometer. An installation has been made to be able to vary the diameter of trial conducts. The obtained results allowed us to deduce that: the diameter of trial conducts have a remarkable effect on the rheological responds.Keywords: bingham’s fluid, CMC, cylindrical conduit, rheological behavior
Procedia PDF Downloads 3324447 Improve Heat Pipes Thermal Performance In H-VAC Systems Using CFD Modeling
Authors: A. Ghanami, M.Heydari
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.Keywords: Heat pipe, HVAC system, Grooved Heat pipe, Heat pipe limits.
Procedia PDF Downloads 4824446 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan
Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang
Abstract:
Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan
Procedia PDF Downloads 1654445 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots
Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu
Abstract:
The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.Keywords: deep reinforcement learning, interpretation, motion control, legged robots
Procedia PDF Downloads 214444 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid
Authors: D. Šedivý, S. Fialová
Abstract:
The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid
Procedia PDF Downloads 3864443 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth
Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos
Abstract:
Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.Keywords: tissue engineering, PHBHV, stem cells, cellular attachment
Procedia PDF Downloads 2104442 A Two-Step, Temperature-Staged, Direct Coal Liquefaction Process
Authors: Reyna Singh, David Lokhat, Milan Carsky
Abstract:
The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal is an abundant resource. This work was aimed at producing a high value hydrocarbon liquid product from the Direct Coal Liquefaction (DCL) process at, comparatively, mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated. In a two reactor lab-scale pilot plant facility, the objectives included maximising thermal dissolution of the coal in the presence of a hydrogen donor solvent in the first stage, subsequently promoting hydrogen saturation and hydrodesulphurization (HDS) performance in the second. The feed slurry consisted of high grade, pulverized bituminous coal on a moisture-free basis with a size fraction of < 100μm; and Tetralin mixed in 2:1 and 3:1 solvent/coal ratios. Magnetite (Fe3O4) at 0.25wt% of the dry coal feed was added for the catalysed runs. For both stages, hydrogen gas was used to maintain a system pressure of 100barg. In the first stage, temperatures of 250℃ and 300℃, reaction times of 30 and 60 minutes were investigated in an agitated batch reactor. The first stage liquid product was pumped into the second stage vertical reactor, which was designed to counter-currently contact the hydrogen rich gas stream and incoming liquid flow in the fixed catalyst bed. Two commercial hydrotreating catalysts; Cobalt-Molybdenum (CoMo) and Nickel-Molybdenum (NiMo); were compared in terms of their conversion, selectivity and HDS performance at temperatures 50℃ higher than the respective first stage tests. The catalysts were activated at 300°C with a hydrogen flowrate of approximately 10 ml/min prior to the testing. A gas-liquid separator at the outlet of the reactor ensured that the gas was exhausted to the online VARIOplus gas analyser. The liquid was collected and sampled for analysis using Gas Chromatography-Mass Spectrometry (GC-MS). Internal standard quantification methods for the sulphur content, the BTX (benzene, toluene, and xylene) and alkene quality; alkanes and polycyclic aromatic hydrocarbon (PAH) compounds in the liquid products were guided by ASTM standards of practice for hydrocarbon analysis. In the first stage, using a 2:1 solvent/coal ratio, an increased coal to liquid conversion was favoured by a lower operating temperature of 250℃, 60 minutes and a system catalysed by magnetite. Tetralin functioned effectively as the hydrogen donor solvent. A 3:1 ratio favoured increased concentrations of the long chain alkanes undecane and dodecane, unsaturated alkenes octene and nonene and PAH compounds such as indene. The second stage product distribution showed an increase in the BTX quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, NiMo performed better than CoMo. CoMo is selective to a higher concentration of cyclohexane. For 16 days on stream each, NiMo had a higher activity than CoMo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated.Keywords: catalyst, coal, liquefaction, temperature-staged
Procedia PDF Downloads 6484441 Quasistationary States and Mean Field Model
Authors: Sergio Curilef, Boris Atenas
Abstract:
Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states
Procedia PDF Downloads 2114440 Thermochromic Behavior of Fluoran-Based Mixtures Containing Liquid-Crystalline 4-n-Alkylbenzoic Acids as Color Developers
Authors: Magdalena Wilk-Kozubek, Jakub Pawłów, Maciej Czajkowski, Maria Zdończyk, Katarzyna Ślepokura, Joanna Cybińska
Abstract:
Thermochromic materials belong to the family of intelligent materials that change their color in response to temperature changes; this ability is called thermochromism. Thermochromic behavior can be displayed by both isolated compounds and multicomponent mixtures. Fluoran leuco dye-based mixtures are well-known thermochromic systems used, for example, in heat-sensitive FAX paper. Weak acids often serve as color developers for such systems. As the temperature increases, the acids melt, and the mixtures become colored. The objective of this research is to determine the influence of acids showing a liquid crystalline nematic phase on the development of the fluoran dye. For this purpose, fluoran-based mixtures with 4-n-alkylbenzoic acids were prepared. The mixtures are colored at room temperature, but they become colorless upon the melting of the acids. The melting of acids is associated not only with a change in the color of the mixtures but also with a change in their emission color. Phase transitions were investigated by temperature-dependent powder X-ray diffraction and differential scanning calorimetry; nematic phases were visualized by polarized optical microscopy, and color and emission changes were studied by UV-Vis diffuse reflectance and photoluminescence spectroscopies, respectively. When 4-n-alkylbenzoic acids are used as color developers, the fluoran-based mixtures become colorless after the melting of the acids. This is because the melting of acids is accompanied by the transition from the crystalline phase to the nematic phase, in which the molecular arrangement of the acids does not allow the fluoran dye to be developed.Keywords: color developer, leuco dye, liquid crystal, thermochromism
Procedia PDF Downloads 974439 Lotus Mechanism: Validation of Deployment Mechanism Using Structural and Dynamic Analysis
Authors: Parth Prajapati, A. R. Srinivas
Abstract:
The purpose of this paper is to validate the concept of the Lotus Mechanism using Computer Aided Engineering (CAE) tools considering the statics and dynamics through actual time dependence involving inertial forces acting on the mechanism joints. For a 1.2 m mirror made of hexagonal segments, with simple harnesses and three-point supports, the maximum diameter is 400 mm, minimum segment base thickness is 1.5 mm, and maximum rib height is considered as 12 mm. Manufacturing challenges are explored for the segments using manufacturing research and development approaches to enable use of large lightweight mirrors required for the future space system.Keywords: dynamics, manufacturing, reflectors, segmentation, statics
Procedia PDF Downloads 3734438 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics
Authors: A. Kalaei, A. H. W. Ngan
Abstract:
In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress
Procedia PDF Downloads 1234437 Chemically Modified Chitosan Derivatives with Ameliorated Properties Appropriate for Drug Delivery
Authors: Georgia M. Michailidou, Nina-Maria S. Ainali, Eleftheria C. Xanthopoulou, Dimitrios N. Bikiaris
Abstract:
Polysaccharides are polymeric materials derived from nature. They are extensively used in pharmaceutical technology due to their low cost, their ready availability and their low toxicity. Chitosan is the product derived from the deacetylation of chitin usually obtained from arthropods. It is a linear polysaccharide which is composed of repeated units of N-deacetylated amino groups and some N-acetylated groups residues. Due to its excellent biological properties, it is an attractive natural polymer. It is biocompatible with low toxicity and complete biodegradability. Although it has excellent properties, the chemical modification of its structure results in new derivatives with ameliorated and more improved properties compared to the initial polymer. This is the exact purpose of the present study in which chitosan was modified with three different monomers, namely trans-aconitic acid, succinic anhydride and 2-hydroxyethyl acrylate. In chitosan’s modification with trans aconitic acid, EDC was utilized as an activator of the carboxylic groups of the monomer, and then a coupling reaction with the amino groups took place. Succinic anhydride reacted with chitosan through a ring opening reaction while 2-hydroxyethyl acrylate reacted through the addition of chitosan’s amino group to the double bond of the monomer. Through FTIR and NMR measurements the success of each reaction was confirmed, and the new structures of the derivatives were verified. X-ray diffraction was utilized in order to examine the effect of the modifications in chitosan’s crystallinity. Finally, swelling tests were conducted in order to assess the improved ability of the new polymeric materials to absorb water. Our results support the successful modification of chitosan’s macromolecular chains in all three reactions. Furthermore, the new derivatives appear to be amorphous concerning their crystallinity and have great ability in absorbing water.Keywords: chitosan, derivatives, modification, polysaccharide
Procedia PDF Downloads 1074436 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide
Procedia PDF Downloads 5854435 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements
Authors: Maria Pintea, Nigel Mason
Abstract:
Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging
Procedia PDF Downloads 1094434 Solubility of Carbon Dioxide in Methoxy and Nitrile-Functionalized Ionic Liquids
Authors: D. A. Bruzon, G. Tapang, I. S. Martinez
Abstract:
Global warming and climate change are significant environmental concerns, which require immediate global action in carbon emission mitigation. The capture, sequestration, and conversion of carbon dioxide to other products such as methane or ethanol are ways to control excessive emissions. Ionic liquids have shown great potential among the materials studied as carbon capture solvents and catalysts in the reduction of CO2. In this study, ionic liquids comprising of a methoxy (-OCH3) and cyano (-CN) functionalized imidazolium cation, [MOBMIM] and [CNBMIM] respectively, paired with tris(pentafluoroethyl)trifluorophosphate [FAP] anion were evaluated as effective capture solvents, and organocatalysts in the reduction of CO2. An in-situ electrochemical set-up, which can measure controlled amounts of CO2 both in the gas and in the ionic liquid phase, was used. Initially, reduction potentials of CO2 in the CO2-saturated ionic liquids containing the internal standard cobaltocene were determined using cyclic voltammetry. Chronoamperometric transients were obtained at potentials slightly less negative than the reduction potentials of CO2 in each ionic liquid. The time-dependent current response was measured under a controlled atmosphere. Reduction potentials of CO2 in methoxy and cyano-functionalized [FAP] ionic liquids were observed to occur at ca. -1.0 V (vs. Cc+/Cc), which was significantly lower compared to the non-functionalized analog [PMIM][FAP], with an observed reduction potential of CO2 at -1.6 V (vs. Cc+/Cc). This decrease in the potential required for CO2 reduction in the functionalized ionic liquids shows that the functional groups methoxy and cyano effectively decreased the free energy of formation of the radical anion CO2●⁻, suggesting that these electrolytes may be used as organocatalysts in the reduction of the greenhouse gas. However, upon analyzing the solubility of the gas in each ionic liquid, [PMIM][FAP] showed the highest absorption capacity, at 4.81 mM under saturated conditions, compared to [MOBMIM][FAP] at 1.86 mM, and [CNBMIM][FAP] at 0.76 mM. Also, calculated Henry’s constant determined from the concentration-pressure graph of each functionalized ionic liquid shows that the groups -OCH3 and -CN attached terminal to a C4 alkyl chain do not significantly improve CO2 solubility.Keywords: carbon capture, CO2 reduction, electrochemistry, ionic liquids
Procedia PDF Downloads 4024433 Development of Immuno-Modulators: Application of Molecular Dynamics Simulation
Authors: Ruqaiya Khalil, Saman Usmani, Zaheer Ul-Haq
Abstract:
The accurate characterization of ligand binding affinity is indispensable for designing molecules with optimized binding affinity. Computational tools help in many directions to predict quantitative correlations between protein-ligand structure and their binding affinities. Molecular dynamics (MD) simulation is a modern state-of-the-art technique to evaluate the underlying basis of ligand-protein interactions by characterizing dynamic and energetic properties during the event. Autoimmune diseases arise from an abnormal immune response of the body against own tissues. The current regimen for the described condition is limited to immune-modulators having compromised pharmacodynamics and pharmacokinetics profiles. One of the key player mediating immunity and tolerance, thus invoking autoimmunity is Interleukin-2; a cytokine influencing the growth of T cells. Molecular dynamics simulation techniques are applied to seek insight into the inhibitory mechanisms of newly synthesized compounds that manifested immunosuppressant potentials during in silico pipeline. In addition to estimation of free energies associated with ligand binding, MD simulation yielded us a great deal of information about ligand-macromolecule interactions to evaluate the pattern of interactions and the molecular basis of inhibition. The present study is a continuum of our efforts to identify interleukin-2 inhibitors of both natural and synthetic origin. Herein, we report molecular dynamics simulation studies of Interluekin-2 complexed with different antagonists previously reported by our group. The study of protein-ligand dynamics enabled us to gain a better understanding of the contribution of different active site residues in ligand binding. The results of the study will be used as the guide to rationalize the fragment based synthesis of drug-like interleukin-2 inhibitors as immune-modulators.Keywords: immuno-modulators, MD simulation, protein-ligand interaction, structure-based drug design
Procedia PDF Downloads 2624432 Modelling and Simulation of Biomass Pyrolysis
Authors: P. Ahuja, K. S. S. Sai Krishna
Abstract:
There is a concern over the energy shortage in the modern societies as it is one of the primary necessities. Renewable energy, mainly biomass, is found to be one feasible solution as it is inexhaustible and clean energy source all over the world. Out of various methods, thermo chemical conversion is considered to be the most common and convenient method to extract energy from biomass. The thermo-chemical methods that are employed are gasification, liquefaction and combustion. On gasification biomass yields biogas, on liquefaction biomass yields bio-oil and on combustion biomass yields bio-char. Any attempt to biomass gasification, liquefaction or combustion calls for a good understanding of biomass pyrolysis. So, Irrespective of the method used the first step towards the thermo-chemical treatment of biomass is pyrolysis. Pyrolysis mainly converts the solid mass into liquid with gas and residual char as the byproducts. Liquid is used for the production of heat, power and many other chemicals whereas the gas and char can be used as fuels to generate heat.Keywords: biomass, fluidisation, pyrolysis, simulation
Procedia PDF Downloads 3424431 Pyrolysis of the Reed (Phragmites australis) and Evaluation of Pyrolysis Products
Authors: Ahmet Helvaci, Selcuk Dogan
Abstract:
Reed in especially almost all the lakes in Western Anatolia grows naturally. Due to the abundance of reed, pyrolysis of reed is very economical and practical application. In this study, it is aimed to determine the optimum conditions for the pyrolysis of the reed which is a cheap and abundant raw material and to evaluate pyrolysis products. For this purpose, reed was used obtained from Eber Lake located in the borders of Bolvadin county of Afyonkarahisar. Optimum pyrolysis conditions have been determined by examining the effects of changes in pyrolysis temperature and pyrolysis time. The evaluation of the obtained liquid and solid pyrolysis products has been investigated. Especially evaluability of solid carbon black production of tires has been investigated. Tire samples were prepared with carbon black samples obtained as a result of the pyrolysis process at different temperatures. Then, performance tests were made and compared with reference carbon blacks, used in the market and standards. At the same time, surface area measurement analysis of carbon black samples was made and compared again with reference carbon blacks. In addition, the fuel values of liquid products were also determined by calorimeter. It has been determined that the best surface area (about 370 m²/g) for carbon black samples, for tire production is 40 minutes at 500ᵒC. It was also found that the best result for evaluation studies in tire production was carbon black samples obtained at 450ᵒC pyrolysis temperature. In addition, it was seen that the calorimetry results of the liquid product obtained during 60 minutes of pyrolysis were quite good (around 5500 kcal/kg).Keywords: evaluation of products, optimization, pyrolysis, reed
Procedia PDF Downloads 1934430 Comparison of Bactec plus Blood Culture Media to BacT/Alert FAN plus Blood Culture Media for Identification of Bacterial Pathogens in Clinical Samples Containing Antibiotics
Authors: Recep Kesli, Huseyin Bilgin, Ela Tasdogan, Ercan Kurtipek
Abstract:
Aim: The aim of this study was to compare resin based Bactec plus aerobic/anaerobic blood culture bottles (Becton Dickinson, MD, USA) and polymeric beads based BacT/Alert FA/FN plus blood culture bottles (bioMerieux, NC, USA) in terms of microorganisms recovery rates and time to detection (TTD) in the patients receiving antibiotic treatment. Method: Blood culture samples were taken from the patients who admitted to the intensive care unit and received antibiotic treatment. Forty milliliters of blood from patients were equally distributed into four types of bottles: Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus. Bactec Plus and BacT/Alert Plus media were compared to culture recovery rates and TTD. Results: Blood culture samples were collected from 382 patients hospitalized in the intensive care unit and 245 patients who were diagnosed as having bloodstream infections were included in the study. A total of 1528 Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus blood culture bottles analyzed and 176, 144, 154, 126 bacteria or fungi were isolated, respectively. Gram-negative and gram-positive bacteria were significantly more frequently isolated in the resin-based Bactec Plus bottles than in the polymeric beads based BacT/Alert Plus bottles. The Bactec Plus and BacT/Alert Plus media recovery rates were similar for fungi and anaerobic bacteria. The mean TTDs in the Bactec Plus bottles were shorter than those in the BacT/Alert Plus bottles regardless of the microorganisms. Conclusion: The results of this study showed that resin-containing media is a reliable and time-saving tool for patients who are receiving antibiotic treatment due to sepsis in the intensive care unit.Keywords: Bactec Plus, BacT/Alert Plus, blood culture, antibiotic
Procedia PDF Downloads 1464429 Inhibition of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase from Mycobacterium Tuberculosis Using High Throughput Virtual Screening and Molecular Dynamics Studies
Authors: Christy Rosaline, Rathankar Roa, Waheeta Hopper
Abstract:
Persistence of tuberculosis, emergence of multidrug-resistance and extensively drug-resistant forms of the disease, has increased the interest in developing new antitubercular drugs. Developing inhibitors for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis (MtbDAH7Ps), an enzyme involved in shikimate pathway, gives a selective target for antitubercular agents. MtbDAH7Ps was screened against ZINC database, and shortlisted compounds were subjected to induce fit docking. Prime/Molecular Mechanics Generalized Born Surface Area calculation was used to validate the binding energy of ligand-protein complex. Molecular Dynamics analysis for of the lead compounds–MtbDAH7Ps complexes showed that the backbone of MtbDAH7Ps in their complexes were stable. These results suggest that the shortlisted lead compounds ZINC04097114, ZINC15163225, ZINC16857013, ZINC06275603, and ZINC05331260 could be developed into novel drug leads to inhibit DAH7Ps in Mycobacterium tuberculosis.Keywords: MtbDAH7Ps, Mycobacterium tuberculosis, HTVS, molecular dynamics
Procedia PDF Downloads 1794428 Sloshing-Induced Overflow Assessment of the Seismically-Isolated Nuclear Tanks
Authors: Kihyon Kwon, Hyun T. Park, Gil Y. Chung, Sang-Hoon Lee
Abstract:
This paper focuses on assessing sloshing-induced overflow of the seismically-isolated nuclear tanks based on Fluid-Structure Interaction (FSI) analysis. Typically, fluid motion in the seismically-isolated nuclear tank systems may be rather amplified and even overflowed under earthquake. Sloshing-induced overflow in those structures has to be reliably assessed and predicted since it can often cause critical damages to humans and environments. FSI analysis is herein performed to compute the total cumulative overflowed water volume more accurately, by coupling ANSYS with CFX for structural and fluid analyses, respectively. The approach is illustrated on a nuclear liquid storage tank, Spent Fuel Pool (SFP), forgiven conditions under consideration: different liquid levels, Peak Ground Accelerations (PGAs), and post earthquakes.Keywords: FSI analysis, seismically-isolated nuclear tank system, sloshing-induced overflow
Procedia PDF Downloads 474